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Abstract
Word embeddings have been successfully trained in many languages. However, both intrinsic and extrinsic metrics are
variable across languages, especially for languages that depart significantly from English in morphology and orthography.
This study focuses on building a word embedding model suitable for the Semitic language of Amharic (Ethiopia), which is
both morphologically rich and written as an alphasyllabary (abugida) rather than an alphabet. We compare embeddings
from tailored neural models, simple pre-processing steps, off-the-shelf baselines, and parallel tasks on a better-resourced
Semitic language — Arabic. Experiments show our model’s performance on word analogy tasks, illustrating the divergent

objectives of morphological vs. semantic analogies.
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1. Introduction

Word embeddings are ubiquitous in today’s language-
related applications. A long history of distributional
semantics efforts (Deerwester et al., 199(; Blei et al.)
2003; Padé and Lapata, 2007) have largely given way
to efficient_neural network-inspired word embedding
methods (Mikolov et al., 2013; Pennington et al.]
2014), which have been applied across dozens of tasks
with great success. Word embeddings have also been
studied in bilingual (Zou et al., 2013) and multilingual
(Ammar et al., 2016; Bojanowski et al., 2017) settings,
but evaluations in lesser-resourced languages have been
cursory and highly variable.

This work focuses on word embeddings in the Amharic
language, the second-most-spoken Semitic language
(Eberhard et al., 2020). Similar to other Semitic lan-
guages like Arabic or Hebrew, it is morphologically
rich, with templatic morphology that is fusional rather
than agglutinative, so that morphemes are difficult to
separate:

AaPAAAU-
imelesalehu
return. 1sg. future

hgarANT°
almelesem
return.1sg.neg.past

Ambharic is written with the Fidel alphasyllabary (also
known as an abugida). Each character in Amharic Fi-
del represents both a consonant (35) and a vowel (7 +
5 diphthongs) and is unique, yet there are similarities
for each onset (consonant) and for each nucleus (vowel)
of syllables. Below, note the similarities in shape cor-
responding to consonants as well as vowels: Note that

v U b2 7 Z v r
ha hu hi ha hé hs ho
QA N~ A a N A [
le lu i la le 1o o

spoken Amharic does not follow the syllabic structure

'https://www.ethnologue . com/language/amh

of the Fidel characters strictly; for example, the 6th
form may have an 9] vowel or no vowel at all.

As we will show, word embedding models face unique
challenges in this lesser-studied language. An abugida
orthographic system as described above (besides Fi-
del, see also e.g., Devanagari) is distinct from an abjad
(requisite glyphs only represent consonants, e.g., Ara-
bic), syllabary (glyphs represent syllables with no vi-
sual similarity between related sounds, e.g., Japanese
hiragana or katakana), or alphabet (glyphs give vowels
equal status to consonants).

Thus, this work introduces both simple (Section )
and complex (Section ) embedding models de-
signed for Amharic. In addition, it releases two
Ambharic language resourcesf: a cleaned but unla-
beled corpus of digital Amharic text used for train-
ing word embeddings, and an Amharic evaluation re-
source for morphological and semantic word analogies
(Section {)).

Our results (Section E) show that word embeddings
in the Amharic language benefit from linguistically in-
formed treatment of the orthography, and that simple
pre-processing architectures outperform complex mod-
els. We note that the utility of embeddings in this
lesser-resourced language is hampered by the need for
large corpora, especially on heavily semantic tasks.

2. Related Work

Mikolov et al. (2013) have shown that words can be
represented using distributed vectors by implicitly fac-
torizing the co-occurrence of the tokens (Levy and
Goldberg, 2014) and their word2vec algorithm that
employs the asynchronous gradient update has been
extensively used. Similarly, Pennington et al’s GloVe
representation (2014) performed their matrix factor-
ization on windows of words explicitly. These well-
known methods were able to demonstrate effective-
ness in inferring morphological and semantic regular-
ities, despite ignoring morphological regularities be-

’https://github.com/leobitz/amharic_word_embedding
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tween words. However, challenges such out of vocabu-
lary and complex morphological structure led the ex-
ploration of subword or character-level models. Clos-
est to this work are the character-aware neural lan-
guage modeling approach of Kim et al. (2016) and the
fastText sub-word skip-gram (swsg) models of Bo-
janowski et al. (2017). Kim et al. used a convolutional
neural network (CNN) as their word-level representa-
tion, directly feeding dense vectors (embeddings) to a
long short-term memory (LSTM) language model.
Bojanowski et al’s fastText (2017) introduced a sim-
ple subword model on top of the skip-gram model
(2017): subword character n-grams, alongside the orig-
inal target word, have their own vectoral representa-
tions that are summed to form a word (e.g., for slant
with n = 3, the set of vectors would include {<sl,
sla, lan, ant, nt>}). This subword model improved
embeddings for the morphologically rich languages of
Arabic, German, and Russian in a word similarity task.
Other work on morphologically rich languages has ap-
plied subword models to tasks like machine translation
(Vylomova et al., 2017).

Training models across more languages leads to further
insights on subword modeling; in subsequent work on
fastText, Grave et al. (2018) trained models in 157
languages. This massive study showed that a large
training corpus for embeddings (the Common Crawl)
was extremely important in building more accurate
embeddings.

Significant efforts in aligning embeddings across mul-
tiple languages (Zou et al., 2013; Ammar et al., 2016)
are only tangentially related to ours. Multilingual em-
beddings, though, have been jointly developed with
other tasks such as language identification (Jaech et
al., 2016).

Instead of translated evaluation sets (Zahran et al.,
2015; Abdou et al., 2018), we are interested in build-
ing mono-lingual word/subword embeddings validated
within their own linguistic context. Most non-English
models with significant monolingual evaluation efforts
(other than those described above) are relatively well-
resourced compared to Ambharic, e.g.. Chinese (Chen
et al., 2015) and Arabic (Dahou et al., 2016). We em-
ploy Arabic’s larger resources for comparison, since it
is also in the Semitic language family.

3. Methods
3.1. Alphabetization and abjadization

Our first subword models combine two simple
linguistically-motivated pre-processes with the Bo-
janowski et al’s model (2017). First, we normalized
Ambharic Fidel consonants and represented vowels sep-
arately, approximating an alphabet. Second, we nor-
malized consonants and eliminated the vowels, approx-
imating an abjad. Below, we chose the 6th form of
each Fidel to represent the consonant, since that form
is also used for a consonant with a null vowel.

A — NeAad"i — AP
sehm — selam— slm
Abugida — Alphabet — Abjad

Word Embeddings
Cons
Decoder Dense Layer
GRU
( ) VOW8| Max poo\ingTﬂattemng
Decoder
(GRU) 2D Convolution

1

Word matrix

| T | consonants

Figure 1: Consonant-Vowel subword (cvsw) model,
with CNN character embedding and separate RNN-
modeled consonant and vowel sequences.

| consonants |I

vowels

Note that this is computationally different from
other purported abugidas. Hindi’s Devanagari script
has vowel markers that are separate Unicode code
points, easily distinguished by computational systems;
Ambharic’s Fidel script has a single Unicode code point
for each consonant—vowel character. Indeed, only full
syllabaries are as opaque from the standpoint of digi-
talized orthographies.

3.2.

We introduce a consonant-vowel subword model (cvsw)
for alphasyllabary text, shown in Figure [ll. Here, an
input word is represented in 3 ways: a sequence of one-
hot consonants, a sequence of one-hot vowels, and a
static matrix where each row is a two-hot vector (one-
hot consonant concatenated with a one-hot vowel) rep-
resenting an alphasyllabary character in the word.
The model is similar to autoencoder which learns ef-
ficient data encoding. It contains an “encoder” CNN
(followed by max pooling and a dense layer) which em-
beds the sequence of the alphasyllabary characters in a
given word. We chose this CNN to encode the input to
the latent space after preliminary experiments with al-
ternative architectures, e.g., one-hot or removing RNN
input sequences, with the intuition that an embedding
of a word is directly formed from its consonant and
vowel. The dense layer is considered the embedding
of a given sequence. Two recurrent neural networks
(RNNS) using gated recurrent units (GRUs) “decode”
the sequence of the input characters. One RNN pre-
dicts the consonant sequence; the other predicts the
vowel.

The probability of predicting a character [ is given by:

Consonant-Vowel subword model

P(ly..dy | xy..xy) = HP(Ct | w,c1...ce—1)

] 'HP(Ut|U,U1...Ut_1)
log(P(ly...0¢ | ©1...2¢)) = log(P(ct|u, c1...c; — 1))
+ log(P(ve|u, v1..00 — 1))
where [ denotes the alphasyllabary character sequence
to be predicted, ¢ and v are the consonant and vowel

features of the letter, and finally, u is the fixed length
embedding (latent feature) of the input sequence.
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Figure 2: Our dataset for the morphologically rich, fu-
sional language of Amharic, in comparison with the
English text8 benchmark, has more words that are
used few times (left side of graph).

4. Experiments
4.1. Training Data

We built a new, unlabeled training corpus by using
our own crawler on four Amharic news websites from
a variety of genres. As a pre-process, we removed non-
Ambharic words and letters and replaced all digits with
the # character. After pre-processing, the corpus con-
tained 16,295,955 tokens consisting of 855,109 unique
tokens with average frequency of 19.05; this is simi-
lar in size to the English text8 benchmark (17 million
tokens, with an average frequency of 66). The result-
ing corpus was used for all evaluated Amharic embed-
dings. For comparison, Figure P shows the distribution
for 17M tokens in both the collected Amharic dataset
vs. the well known text8 (first 1 x 10® characters in
English Wikipedia). The Ambharic line shows a much
higher prevalence of words with 1-5 counts than the
text8 line. This illustrates the typological differences
between English vs. the fusional and morphologically
rich Amharic.

For Arabic, we trained embeddings with the Arabic
Wikipedia dump from 20th December, 2018, and fol-
lowed standard pre-processing proceduresH See Ta-
ble [l

Although Amharic contains 12 vowels, 2 of them never
appear in our corpus, so we choose to model the lan-
guage as having only 10 vowels in all models. A fur-
ther 3 (diphthongs) are relatively less-frequently used.
On the consonants side, we include 40 characters: 39
typical Amharic characters, plus one reserved for mis-
cellaneous other characters.

4.2. Word Analogy Task

Rather than translating an English corpus, we col-
lected language-specific evaluation data. We created a

3 Available at: https://github.com/motazsaad/process-
arabic-text/blob/master/clean_ arabic_ text.py

Pre-processed corpus Ambharic Arabic

Total tokens 16,295,955 16,284,308
Unique tokens 855,109 584,204
Avg. token frequency 19.057 27.874

After min-thresholding at frequency of 5

Total tokens 15,129,549 15,523,827
Unique tokens 155,427 131,014
Avg. token frequency 97.342 118.499

Table 1: Corpus statistics on web news (Ambharic) and
Wikipedia subset (Arabic). Min-thresholding at fre-
quency of 5 (default in word2vec tool) removes rare
words.

web interface where native Amharic-speaking student
volunteers were presented with random words from the
Ambharic corpus (and a refresh button).

Users created word analogies by dragging & drop-
ping 4 words in a A : B :: C : D pattern. With
this relatively unbiased process, we collected 1731
Ambharic analogies; 568 were semantic (e.g., nephew :
niece :: son : daughter ), while 1163 were mor-
phological (e.g., building : buildings :: road :
roads). Following Mikolov et al. (2013), each word
in these analogies was iterated through for evaluation
(i.e., 4562 morphological analogies), using vector arith-
metic (A~ C — D + B) and the top n closest words
(Levy and Goldberg, 2014).

Extrinsic evaluation is out of the scope of this work
due to the poor availability of resources in Amharic.
Instead, we compare with Arabic embeddings on the
Google word analogy task (Zahran et al., 2015),
trained on a similarly-sized corpus (Section a)

4.3. Experimental setup

Our evaluations report the grid-search-maximized
combinations of the following variables: written lan-
guage I € {Amh-Fidel, Amh-Alphabet, Amh-Abjad, Ara-
bic}; model m € {skip-gram, fastText, CNN}; embed-
ding dimension d € {100, 200, 300}; window size w €
{0, 1, 2}; subword size n € {2-4, 2-6} for fastText.

“Order” of co-occurrence. As noted in Artetxe et

al. (2018), word embeddings depend on word co-
occurrence. Tuning the order of these co-occurrences,
even through a simple linear transformation, can have
a profound effect on whether the embeddings perform
well in morphological vs. semantic tasks. Our experi-
ments thus sweep the co-occurrence “order” parameter
of @ € [-1.0,1.0].

CNN model parameters. For input in the CNN-based
model, consonants are represented by a size-40 vector;
vowels are size-10. Words are at longest 11 characters
in our corpus, and two more characters are added to
signal the beginning and ending of a sequence. Hence,
our input is a 13x50 matrix. The encoder is composed
of a 16 (5, 5) filters. It is followed by max pooling
with a (3, 3) filter. Finally, the flattened output of the
pooling layer is passed through a dense layer which will
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Figure 3: The “order of co-occurrence” for embeddings (Artetxe et al., 2018) controls optimization for morpho-

logical vs. semantic embeddings.

Morph Sem
No-subword sg (Fidel) 8.44 5.87
swsg (Abjadized) 26.87 2.12
swsg (Fidel) 37.64 2.31
swsg (Alphabetized) 49.85 2.84
cvsw (Fidel) 421 (+sg) 2.95
No-subword sg (Arabic) 7.31 10.85
swsg (Arabic) 10.40 6.97

Table 2:  Accuracy (best parameters) of subword mod-
els vs. skip-gram (word2vec) on morphological vs. se-
mantic analogies.

map it to 100 length vector. This vector is the latent
representation of the input with all its morphological
intricacies. We defined and trained the model using the
keras deep learning library, with an initial learning
rate of 0.0003, the Adam optimizer, and 500-sample
batches, applying Nesterov momentum for 10 epochs.

5. Results and Discussion
5.1. Word Analogy Results

Table E reports the main results of our work.

First, subword models were able to improve the per-
formance on morphological word analogies, but sur-
prisingly, subword information proved detrimental to
semantic analogy performance. Furthermore, off-the-
shelf fastText made a more pronounced improvement
on morphological performance in Amharic (from 8.44
to 37.64) than in Arabic (7.31 to 10.40).

Focusing on the morphological test, note that swsg
subword models all outperformed a no-subword skip-
gram model (8.44). With swsg, abjadization dispenses
with some of the available information, harming per-
formance (26.87) relative to the full Fidel represen-

tation (37.64), while alphabetized swsg achieves the
highest overall performance (49.85).

The performance of our proposed neural cvsw is overall
a negative result, underperforming the baseline non-
subword model. On morphology, this model consid-
ers only internal character patterns and is not robust
to small variations for morphologically similar words.
When cvsw is inserted into a skip-gram model, it ex-
hibits the best performance among the subword models
on the semantic task; the fact that this underperforms
a basic sg model highlights the difficulty of improving
the semantic performance via morphological informa-
tion.

5.2. Order of co-occurrence

Ambharic subword models have differential effects on
morphological vs. semantic performance; these are
more pronounced than in Arabic. Diving into these
divergent objectives, Figure J illustrates linear post-
transformations of the embeddings (Artetxe et al.
2018) based on the “order of co-occurrence” (already
maximized upon in Table P's results). Artetxe et al.
found that embedding models can often support both
semantic and morphological tasks, but semantic tasks
are often better addressed by lower values of o and
morphological tasks by higher values.

Figure E has maxima for morphology and semantics
at similar « values. This implies that Arabic and
Ambharic embeddings are not as affected by “order of
co-occurrence” — e.g., are not able to ‘recover’ perfor-
mance on the opposite type of word analogy. We ex-
pect that this is due to the fusional, morphology-rich
nature of Semitic languages, which suggests that pro-
ducing useful embeddings in these languages is chal-
lenging.
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Figure 4: Training curve on the morphological & semantic word analogy tasks, showing accuracy of top Amharic

and Arabic models.

5.3. Training Curves

Figure H shows training curves for the best Amharic
vs. the best Arabic models, up to the Amharic corpus
size of 16M (in tokens, before pre-processing).
Interestingly, the Arabic and abjadized Amharic mod-
els improve slowly with corpus size. It appears that
morphologically important information is stored in
vowels for both languages, and the abjad orthogra-
phies fail to surface that information for computation.
On the other hand, Amharic’s Fidel orthography and
its alphabetized counterpart improve rapidly with new
data, making use of this vowel information.

The training curve for semantic word analogies shows
the expected characteristic for Arabic and even for the
poor-performing Ambharic subword models. At mini-
mum, the upward training curves show that large data
is important for high embedding quality, reiterating
previous lessons learned (Grave et al., 2018).

6. Conclusion

We have presented methods and challenges
for word embeddings in Ambharic, and re-
leased our training and evaluation data at

github.com/leobitz/amharic_word_embedding/.
Accounting for the consonant—vowel alphasyllabary in
Ambharic text has a significant effect on the quality
of produced embeddings. Other Amharic tasks may
benefit from a simple alphabetization of its digital
orthography.

Our future work includes further resource development
for Amharic and related languages, rigorous evalua-
tions of word embeddings and language models on ex-
trinsic NLP-related tasks, and transfer learning with
newer pre-trained models.
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