
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 2461–2469
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

2461

Evaluating Approaches to Personalizing Language Models

Milton King, Paul Cook
University of New Brunswick

Fredericton, New Brunswick, Canada
milton.king@unb.ca, paul.cook@unb.ca

Abstract
In this work, we consider the problem of personalizing language models, that is, building language models that are tailored to the writing
style of an individual. Because training language models requires a large amount of text, and individuals do not necessarily possess a
large corpus of their writing that could be used for training, approaches to personalizing language models must be able to rely on only a
small amount of text from any one user. In this work, we compare three approaches to personalizing a language model that was trained
on a large background corpus using a relatively small amount of text from an individual user. We evaluate these approaches using
perplexity, as well as two measures based on next word prediction for smartphone soft keyboards. Our results show that when only a
small amount of user-specific text is available, an approach based on priming gives the most improvement, while when larger amounts
of user-specific text are available, an approach based on language model interpolation performs best. We carry out further experiments
to show that these approaches to personalization outperform language model adaptation based on demographic factors.

Keywords: Language modelling, Personalization, Domain adaptation

1. Introduction
In this work, we consider the problem of personalizing lan-
guage models, that is, building language models that are tai-
lored to the writing style of an individual. Language mod-
elling requires a large amount of text to sufficiently train a
language model. However, a large amount of text from any
one user — for example social media users such as bloggers
— is not necessarily available for training a user-specific
language model. To overcome this issue, some techniques
treat text from other users that share demographic charac-
teristics, such as age or gender, as training data. Although
this has been shown to improve the performance of lan-
guage models (Lynn et al., 2017), this demographic infor-
mation is typically obtained via document metadata, which
is not available for all document types, or for all users. This
suggests a need to personalize language models while only
relying on a small amount of text from the user.
We propose and evaluate three different personalization
techniques, while limiting the models’ access to different
amounts of text from the user. These techniques are ap-
plied to a language model that was trained on a large back-
ground corpus of in-domain text (specifically blog posts).
The three techniques include continuing to train the back-
ground model on text from the user, interpolating the back-
ground model with a model that was trained on the user’s
text, and priming the state of the background model with
text from the user. Our results show that we are able to
improve the performance of a background long short-term
memory (LSTM) neural network language model using any
of the personalization techniques. The interpolated models
perform best when a relatively large amount of text is avail-
able from the user, however, priming performs best when
only a small amount of user text is available. We further
apply the interpolation technique to an n-gram background
language model and show that it improves its performance,
similarly to how it improved the LSTM language model.
Furthermore, we benchmark our personalized models
against models that use the same techniques, but that use

text from users with the same demographic characteristics
as the target user — specifically age and gender — or text
from randomly-selected users, for model adaptation. Our
findings indicate that all three of our proposed approaches
to personalization out-perform model adaptation based on
demographics, and that these improvements are not the re-
sult of the language model simply having access to more
data.

2. Related Work
Language models are important components of systems for
many downstream NLP tasks, such as machine translation
(Och and Ney, 2004), speech recognition (Jelinek, 1976),
handwriting recognition (Marti and Bunke, 2001), parsing
(Choe and Charniak, 2016), and classification (Howard and
Ruder, 2018). It is reasonable to expect that better per-
forming language models for individual people will result
in better performing systems for these downstream tasks
for individual people. For example, a non-personalized
language model might suggest words in speech recogni-
tion that would be correct for many people, but that have
rarely been used by the user of the application. An ideal
personalized language model would generate probabilities
for words that the person is more likely to use, rather then
what the majority of speakers would use.
In this work, we use both n-gram language models and neu-
ral language models. Neural language models have been
shown to be superior to n-gram language models (Mikolov
et al., 2010) but often require more text to train and re-
quire more computation time. Our neural language model
is an LSTM neural network, which can handle an arbitrary
length of text as input and can learn how much should be re-
membered from previous states (Sundermeyer et al., 2012).
Prior research has increased the size of the training corpus
for a user by including text from other users based on de-
mographics. The assumption being made is that people of
similar demographics tend to write similarly. Lynn et al.
(2017) used metadata such as age, gender, and personality

2462

to adapt their models for tasks such as sentiment analysis
and sarcasm detection. Such metadata can be useful (Lynn
et al., 2017), although it is not always available due to a
limitation of the collected data, or privacy concerns of the
user. For example, the user’s metadata may not have been
recorded, or the user may not be willing to share this in-
formation. Also, in the case that a model can access meta-
data from a user, there is the possibility that the model does
not have text from other users in this demographic. In this
paper, we compare model personalization using text from
a specific user, with model adaptation based on text from
other users of the same demographic.
Language modeling has been applied to a variety of do-
mains including text from Wikipedia (Merity et al., 2016),
children’s books (Hill et al., 2015), and newswire text
(Mikolov et al., 2010). Personalizing language models
can be seen as a domain adaptation problem where a lan-
guage model that is trained on a large background corpus
is adapted to text from a specific domain, which can be text
from a single person. Domain adaptation has been applied
for adapting one domain to another, such as adapting be-
tween newspaper sections (Jaech and Ostendorf, 2018) or
YouTube video categories (Irie et al., 2018). Downstream
applications that have benefited from domain adaptation in-
clude classifying the relevancy of tweets for a natural disas-
ter (Alam et al., 2018), sentiment analysis, question classi-
fication, and topic classification (Howard and Ruder, 2018).
Alam et al. (2018) adapted their model from one disaster
to another with a series of neural networks and classifiers.
Irie et al. (2018) associated each YouTube category with
its own LSTM and connected each one using a ‘mixer’
LSTM, which generated weights for each YouTube cate-
gory. Mikolov and Zweig (2012) adapted a recurrent neu-
ral network by using a vector of a distribution over topics
as input to both the hidden layer and output layer. Lin et
al. (2017) do not modify the neural network but allow the
language model that was trained on the source domain to
continue training on the target domain to form personalized
word embeddings. The amount of text that they used for
training ranged from 1,959 tokens per user to 32,690 tokens
per user. We apply a similar technique, with the amount of
text per user ranging from 100, to over 100k, tokens.
Radford et al. (2019) conditioned a transformer for text
generation by priming it by exposing it to an input text,
and then using the state of the transformer for text genera-
tion. Here we personalize a language model by priming an
LSTM by updating its state while exposing it to text from a
user.

3. Data and Evaluation
3.1. Dataset
The dataset that was used consists of blog posts from
19,320 users. It was originally used in Schler et al. (2006).
We perform sentence splitting on each document, and add
start-of-sentence and end-of-sentence tokens to each sen-
tence.
We select the 10 users who have the largest amount of text
to form our set of users that we use for evaluation, which
we label USER. Our test users consist of 6 males and 4 fe-
males with ages ranging from 14 to 47 years old with a

mean of approximately 28 years. We split up the text from
each user in USER into a training set and a held out set,
without splitting up blog posts. We do not split up blogs
to ensure that we do not have parts of the same blog post
in the training and testing data. We randomly select sen-
tences from the training set so that each user has 6 corpora
with the following numbers of tokens: 100, 500, 1000, 10k,
100k, and all of the text available for that user. We refer to
these corpora as USER-TRAIN. The held out set consists of
approximately 25% of the user’s text, from which we ran-
domly extract sentences until we have at least 10k tokens
from each user. We refer to this test set as USER-TEST. We
use USER-TRAIN to build personalized language models,
and test them on USER-TEST.
We use the 20 users with the largest amount of text after the
top 10 to form our random samples, where we randomly
extract samples of text of the same sizes as USER-TRAIN
from this group to form RANDOM.
The text from the remaining 19,290 users is used to build
our background corpus (BACKGROUND). The text from
any one user is limited to 30k tokens to avoid text from
one user saturating the corpus and biasing the corpus to
strongly represent their text. We replace each type in
BACKGROUND that has a frequency less than 10 with a
special UNK token. We do this to reduce the cost of training
language models. The resulting corpus contains approxi-
mately 116M tokens and 93k types.
We randomly select 5 users from RANDOM for tuning our
models. We split up the text into training (TUNE-TRAIN)
and testing (TUNE-TEST), where TUNE-TRAIN contains
1000 tokens from each user and TUNE-TEST contains the
remaining tokens.
We randomly select sentences from non-test users (i.e.,
users not in the USER set) that have a common age and gen-
der with the target user, to generate 5 demographic-based
corpora per user in USER with different amounts of text
to form the set DEMOGRAPHIC. The sizes of the corpora
for each user are similar to those for (USER-TRAIN), i.e.,
roughly 100, 500, 1000, 10k, and 100k tokens. The num-
ber of users that have the same age and gender as the target
user ranges from 45 (females aged 47 years) to 2380 (males
aged 17 years).
We perform the same preprocessing on all corpora, which
involves casefolding, tokenization by the Stanford Core
NLP toolkit (Manning et al., 2014), and converting all nu-
merals to a special <num> token. The details for each
dataset are shown in Table 1.

3.2. Evaluation
We evaluate our models on each of the 10 users from USER-
TEST. We use the text from USER-TRAIN that corresponds
to the same user to personalize a language model trained
on BACKGROUND. For example, we use text from user x
in USER-TRAIN to personalize our model, which is eval-
uated on text from user x in USER-TEST. We allow our
models to use different amounts from USER-TRAIN, which
includes 100, 500, 1000, 10k, and 100k tokens, and the full
amount of the text available. The amount of text available
for each user varies, and ranges from approximately 226k
to 446k tokens. We test our models at the sentence level,

2463

Name Definition
BACKGROUND Blogs from 19,290 users used to train

background models
USER-TRAIN Samples of text of varying sizes from

each of 10 different users; models train
on tokens from a single user

USER-TEST 10k tokens from each of the 10 users
from USER-TRAIN; used for testing
models

TUNE-TRAIN Tokens from each of 5 different users;
similar to USER-TRAIN but for tuning
models

TUNE-TEST Varying amounts of text from each of
the 5 users in TUNE-TRAIN; used for
evaluation during model tuning

RANDOM Text from 20 users with the next largest
amount of text after those in USER-
TRAIN and USER-TEST; used as ran-
dom text for benchmarking

DEMOGRAPHIC Text from users that share the same age
and gender as the target user; contains
samples of the same amounts of text as
USER-TRAIN

Table 1: Description of datasets.

which means that the language models cannot use informa-
tion from previous sentences, and that the cell state of the
LSTM is reset before each test sentence so that the results
are not affected by the ordering of the test sentences.

3.3. Evaluation Metrics
In this section, we describe each of the three evaluation
metrics that we use.

3.3.1. Adjusted perplexity

perp = − 1

N

N∑
i=1

log(p(wi)) (1)

Perplexity is defined in Equation 1, where N is the num-
ber of tokens in the corpus. It is one of the most common
ways to evaluate language models when each model con-
tains the same vocabulary. Perplexity can’t be used to com-
pare language models with different vocabularies, because
language models with smaller vocabularies replace more
tokens with UNK, which can artificially increase the perfor-
mance of the model. For example, a language model that
has a very small vocabulary could perform well in terms
of perplexity by only predicting UNK. Ueberla (1994) pro-
posed an evaluation metric called adjusted perplexity to ad-
dress this problem. Adjusted perplexity penalizes language
models when the target type is not in the vocabulary. The
equation for adjusted perplexity is the same as perplexity,
with the exception that the probability of UNK is recalcu-
lated using Equation 2 below:

p(UNK) =
p(UNK)

|UNK-TYPES|
(2)

with UNK-TYPES being the set of types that are converted
to UNK in the test data.

3.3.2. Accuracy@k
To evaluate our models on a more extrinsic setup, we eval-
uate using accuracy@k for each token in the test set. This
metric says a language model predicted correctly if the next
word in the corpus is in the top k words predicted by the
model. It reflects the desired behaviour of a next-word sug-
gestion feature, as on many smartphone soft keyboards. We
focus on k=3, which is common for such systems. We ex-
clude the end-of-sentence marker from this evaluation be-
cause it would not be part of a text being typed.

3.4. Accuracy@k Given c Keystrokes
This metric extends accuracy@k by allowing the model to
see the first c characters of the target token. If c is greater
than or equal to the length of the target token, then the prob-
ability for the target token is set to 1. Again, this evalua-
tion metric lends itself to the desired behavior of a language
model that is assisting a person who is writing a message,
and has typed the first c keystrokes of the next word. Simi-
larly to accuracy@k, we focus on k=3 and exclude the end-
of-sentence marker from this evaluation.

4. Language Models
We explore two different types of language models in our
experiments. The first model is an n-gram language model
that uses Kneser-Ney smooting (Heafield et al., 2013) with
n = 3. Preliminary experiments showed that n = 3 yielded
the lowest adjusted perplexity on TUNE-TEST.
The second model is a neural language model that
uses an LSTM. We performed preliminary experiments
by testing on TUNE-TEST to tune our models. We
performed a grid search over the following parameters
with their associated values: number of hidden units
(128, 256, 512, 1024, 2048); number of layers (1, 2); size
of embeddings (64, 128, 256, 512, 1024); number of train-
ing epochs (1, 2, 3); and batch size (1, 2, 5, 15, 30, 45). We
found that the best performing neural language models that
were trained on TUNE-TRAIN and tested on TUNE-TEST
contained 256 hidden units, an embedding size of 256, con-
tained 1 layer, and trained for 1 epoch with a batch size of 2.
We used the default settings for the neural language model
that was trained on the background corpus which was an
embeddings size of 128 with 1024 hidden units, and 1 layer,
which was trained using a batch size of 45 for 1 training
epoch. The batch size for the user-level model is smaller
than the model trained on the background corpus, because
the training data for each user is relatively small. For all
LSTMs, we set the sequence length to 30, the learning rate
to 0.002, and use cross entropy as the loss function.

5. Personalization Techniques
We discuss the three different personalization techniques in
the following subsections.

5.1. Interpolation
In this approach, we interpolate a language model that was
trained on BACKGROUND with a language model that was
trained on USER-TRAIN by calculating the element-wise
mean of their probability distributions. If only one of the
two language models’ vocabularies contains a given type,

2464

then the language model that is missing the type gives a
probability of 0. Therefore, the interpolated probability
for that type would be (p+0)/2, where p is the probability
from the language model that contains that type. This is
the only personalization technique that is applied to the n-
gram model that was trained on BACKGROUND because
of its relatively poor performance compared to the neural
model, discussed in Section 6.1.

5.2. Continue Training
This personalization technique allows our neural language
model that was trained on BACKGROUND to continue
training on USER-TRAIN. We do not update the vocabu-
lary of the language model, which means that all out-of-
vocabulary words will be replaced with UNK. We set the
batch size to 2 for the training on USER-TRAIN (similar to
the models trained only on user-level text) because of the
small amount of text that is used for training. All other pa-
rameters remain the same.

5.3. Priming
In this setup, we prime a language model that was trained
on BACKGROUND by inputting tokens from USER-
TRAIN, which updates the cell state of the language model
without changing the weights of the LSTM. We then freeze
the state of the language model and perform testing as
usual. We reinitialize the state to the frozen primed state
before each sentence in the test data.

6. Experimental Results
In this section, we show results for our experiments in terms
of adjusted perplexity (Section 6.1.), accuracy@k (Section
6.2.), and accuracy@k given c (Section 6.3.). We then com-
pare personalized models against models that use the same
techniques, but with text from users that share demographic
characteristics with the target user, and with randomly-
selected users (Section 6.4.).
We separate the results based on the background model and
the evaluation metric. All graphs show results over dif-
ferent amounts of text from the secondary corpus, except
when using accuracy@k given c, where we show results
for different values of c. The background models are all
trained on the entire amount of text from BACKGROUND.
The models are named using their model type and personal-
ization technique. For example, the neural model that was
trained on BACKGROUND and then primed on text from
the user would be called neural background primed user.
A description of the models is shown in Table 2.

6.1. Adjusted Perplexity
In this subsection, we evaluate our personalized models,
along with non-personalized background models, using ad-
justed perplexity, for differing amounts of text from the
user.
In Figure 1, we show the adjusted perplexity for mod-
els that involve the neural background model. We
see that none of the models are the best perform-
ing model for every amount of text from the user.
For less than 10k tokens of user-specific training data,

<Neural/n-gram> background
Neural or n-gram language model trained on

BACKGROUND
<Neural/n-gram> user

Neural or n-gram language model trained on the
user’s text

<Neural/n-gram> background+
<neural/n-gram> user

<Neural/n-gram> background interpolated with a
neural or n-gram language model trained on the

user’s text
Neural background+n-gram background

Neural background interpolated with
n-gram background

Neural background primed user
Neural background, primed on the user’s text
Neural background continue training user

Neural background, with training continued on the
user’s text

Table 2: Description of language models.

neural background primed user achieves the best perfor-
mance, but above 10k tokens, the models that are inter-
polated with the user-only models start to perform bet-
ter. For 100k tokens and more, neural continue training
starts to outperform neural background primed user but
still does not outperform the interpolated models. We
also included neural background interpolated with n-
gram background for comparison, and we see that it out-
performs neural background by itself. Even though n-
gram background, n-gram user, and neural user all per-
form poorly by themselves, they are all able to improve the
performance of neural background when interpolated with
it.1 Neural background primed user achieves a similar ad-
justed perplexity, regardless of the amount of text from the
user. This might be due to how many steps in the past that
the state can remember, i.e., the state may largely be unaf-
fected by the more distant tokens used for priming. This
phenomenon was explored by Khandelwal et al. (2018).
In Figure 2, we show the adjusted perplexity for models
that involve the n-gram background model. We see that
n-gram background interpolated with either of the user-
only models (n-gram user and neural user) outperforms
n-gram background by itself when at least 1000 tokens
are available. n-gram background interpolated with n-
gram user outperforms n-gram background for all amounts
of text from the user, and outperforms n-gram background
interpolated with neural user when less than 100k tokens
from the user are used. That neural background interpo-
lated with neural user performs better with larger amounts
of text is most likely a result of neural models requiring
more text to train. This is interesting since n-gram user
outperforms neural user for all amounts of text.2

1These three models are not shown due to their large adjusted
perplexities. n-gram user does not outperform neural background
regardless of the amount of text from the user.

2User-only models are not shown in the graph due to their poor
performance when using less than 10k tokens for training.

2465

Figure 1: Adjusted perplexity for personalized and non-personalized models that include the neural background model.
(Lower is better.)

Figure 2: Adjusted perplexity for personalized and non-personalized models that include the n-gram background model.

Evaluating with adjusted perplexity showed that a back-
ground model interpolated with a user-only model performs
well when larger amounts of user-specific text are avail-
able. In particular, neural background interpolated with ei-
ther user-only model outperforms all other models when
using 10k tokens or more of the user’s text. The priming
method achieves the best performance when given fewer
than 10k tokens from the user.

6.2. Accuracy@3
In this subsection, we evaluate our personalized mod-
els, and non-personalized background models, using accu-
racy@3 for differing amounts of text from the user.
In Figure 3, we show the accuracy@3 for models that in-
volve neural background. One of the main differences
from adjusted perplexity for the neural models is that
now neural background primed user outperforms all mod-
els, for each amount of text from the user, except for
the case of the full amount of text available. More-
over, neural background primed user with 1000 tokens
from the user outperforms all other models, including
those that use the full amount of user-specific text. Neu-
ral background interpolated with neural user now outper-

forms neural background interpolated with n-gram user.
The improvement with the use of neural user over the
use of n-gram user for only accuracy@3, and not ad-
justed perplexity, might be because of accuracy@3 be-
ing a more relative metric than adjusted perplexity. For
example, a model needs to assign high probability for
the correct type to perform well under adjusted perplex-
ity (which a standard neural model does not do with a
small amount of training text), but with accuracy@3, a
model only needs to generate a probability for the correct
type that is greater than other types in the model’s vocabu-
lary. This figure also shows that interpolating the two back-
ground models no longer outperforms neural background
by itself. Neural background continue training user out-
performs neural background when at least 100k tokens
from the user are available, as opposed to the adjusted
perplexity metric, which showed that only 10k tokens
are needed for neural background continue training user
to outperform neural background.
In Figure 4, we show that n-gram background inter-
polated with either user-only model outperforms n-
gram background by itself when the user-only model is
trained on at least 500 tokens. There is not a large differ-

2466

Figure 3: Accuracy@3 for personalized and non-personalized models that include the neural background model. (Higher
is better.)

Figure 4: Accuracy@3 for personalized and non-personalized models that include the n-gram background model.

ence between the two interpolated models until 100k tokens
are used, when n-gram background interpolated with neu-
ral user starts to largely outperform n-gram background in-
terpolated with n-gram user. This supports the earlier ob-
servation of neural models requiring more text for train-
ing to outperform n-gram models. Due to models that
use neural background greatly outperforming models that
use n-gram background, we do not further consider n-
gram background.
This evaluation with accuracy@3 showed that priming per-
forms the best, or similar to the best model, for all amounts
of user-specific text considered. Moreover, priming with
1000 tokens performed the best of all models considered,
even those using orders of magnitude more user-specific
training data.

6.3. Accuracy@3 Given c Keystrokes
Figure 5 shows accuracy@3 given c keystrokes for some of
our best performing models, along with neural background.
For each approach to personalization, we consider the
amount of text from the user that gave its best performance
in terms of accuracy@k. Specifically we use 100k tokens

for neural background continue training, the full amount
of user-level text for neural background interpolated with
neural user, and 1000 tokens for the priming method.
Given only one character, all of our models
achieve approximately 70% accuracy@3. Neu-
ral background primed user achieves the best performance
when no characters are available to the models, but neu-
ral background interpolated with neural user achieves the
best performance when there is at least one character avail-
able. This may be due to the introduction of the user-only
model’s vocabulary, resulting in non-zero probabilities for
more words that were used by the user.
Evaluating with accuracy@3 given c keystrokes, we see
that each of the approaches to personalization outperforms
the background model, for all values of c, and that the in-
terpolated model performs best when at least one keystroke
is given.

6.4. Comparing to RANDOM and
DEMOGRAPHIC

In this section, we compare the approaches to personaliz-
ing language models with variations of these approaches in

2467

Figure 5: Accuracy@3 given c keystrokes for selected models.

which text from the user (i.e., USER-TRAIN) is replaced
with text from DEMOGRAPHIC or RANDOM. We carry
out these experiments with DEMOGRAPHIC and RAN-
DOM to determine whether language model adaptation
based on demographic characteristics is as effective as per-
sonalization, and whether the improvements in model per-
formance we see with personalization are simply a result of
more text being available to the models.
In Figure 6, we show the adjusted perplexity and ac-
curacy@3 for models based on interpolation.3 Neu-
ral background interpolated with neural user always out-
performs neural background interpolated with random and
neural background interpolated with neural demographic.4

In Figure 7, we show the performance of models that con-
tinue training on a second corpus. Continuing to train on
user-specific text always outperforms neural background
by itself, and continuing to train on RANDOM or DE-
MOGRAPHIC. We see an unexpected behaviour from the
models that continue training on RANDOM and DEMO-
GRAPHIC, which might be due to how these corpora were
generated. To build RANDOM and DEMOGRAPHIC, we
randomly select sentences, meaning that consecutive sen-
tences in the corpora are most likely not actually consec-
utive sentences in blog posts. Our models train across
sentences using sequences of 30 tokens, and therefore the
words seen in a sequence can be “out of place” when trying
to predict the target word. This effect was not present in the
interpolated models. This might be because the continue
training model starts with the neural background model —
which was trained on sentences that were in the correct or-
der — and then continues training on sentences that are not

3For experiments in this subsection, the largest corpus size we
consider is 100k tokens. Using all text available for RANDOM
would give a much larger corpus than for any individual user in
USER-TRAIN, and for DEMOGRAPHIC would give corpora of
widely varying sizes.

4Neural demographic was trained using a batch size of 45 in
anticipation of training on a relatively large amount of text

in the correct order. On the other hand, the language mod-
els trained on the second corpus for the interpolated models
only see sentences that are out of order.
In Figure 8, we show that all primed models outperform
the unprimed neural background model, which suggests
that priming on any in-domain text can improve perfor-
mance. Neural background primed on user-specific text
outperforms all other models, for all amounts of text con-
sidered. Neural background primed on DEMOGRAPHIC
outperforms neural background primed on RANDOM —
showing that model adaptation based on demographics is
indeed useful, but less effective than personalization. The
issue that was present in models that continue training in
Figure 7 for RANDOM and DEMOGRAPHIC does not ap-
pear to affect primed models, which might be due to the
state of the LSTM being less affected by words further
away from the target word — making words outside the
current sentence less likely to affect the state.
These experiments show that language models that are
adapted using text from a specific user — i.e., personal-
ized models — outperform models that are adapted based
on demographic factors, and models that simply use addi-
tional in-domain text for adaptation, for all amounts of text
used for model adaptation, and for both evaluation metrics
considered.

7. Conclusions
In this work, we showed that a background language model
can be improved through personalization for a specific user,
while requiring relatively little text from that user. We con-
sidered three different personalization techniques, and three
evaluation metrics. We showed that for adjusted perplexity
and accuracy@3, each personalization technique can im-
prove over the background model, with interpolated mod-
els performing better when a relatively large amount of text
is available from the user, while priming performs better
when a relatively small amount of text from the user is
available. We further showed that priming outperforms all

2468

Figure 6: Adjusted perplexity (left) and accuracy@3 (right) for neural background and interpolated models.

Figure 7: Adjusted perplexity (left) and accuracy@3 (right) for neural background and models that continue training on a
second corpus.

Figure 8: Adjusted perplexity (left) and accuracy@3 (right) for neural background and neural background primed on a
second corpus.

other models, even those which use orders of magnitude
more user-level text for personalization, for accuracy@3.
For accuracy@3 given c keystrokes, we showed that the
best performing models get a large increase in performance
— from approximately 0.35 to 0.7 — when at least one
keystroke is given. Finally, we showed the importance
of personalization over model adaptation based on demo-
graphic factors. For each personalization technique, using
text from a specific user for model adaptation outperforms

using text from users with similar demographic character-
istics. In future work we plan to further explore interpola-
tion, specifically by tuning the interpolation weight, which
currently gives equal weight to the background and user-
specific language models. We further intend to consider
transformers for personalization, which have shown state-
of-the-art language modelling results (Radford et al., 2019).

2469

8. Bibliographical References
Alam, F., Joty, S., and Imran, M. (2018). Domain adap-

tation with adversarial training and graph embeddings.
In Proceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long
Papers), pages 1077–1087, Melbourne, Australia.

Choe, D. K. and Charniak, E. (2016). Parsing as lan-
guage modeling. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing,
pages 2331–2336, Austin, Texas.

Heafield, K., Pouzyrevsky, I., Clark, J. H., and Koehn, P.
(2013). Scalable modified Kneser-Ney language model
estimation. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics, pages
690–696, Sofia, Bulgaria.

Hill, F., Bordes, A., Chopra, S., and Weston, J. (2015). The
goldilocks principle: Reading children’s books with ex-
plicit memory representations. CoRR, abs/1511.02301.

Howard, J. and Ruder, S. (2018). Universal language
model fine-tuning for text classification. In Proceedings
of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages
328–339, Melbourne, Australia.

Irie, K., Kumar, S., Nirschl, M., and Liao, H. (2018).
Radmm: Recurrent adaptive mixture model with appli-
cations to domain robust language modeling. 2018 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 6079–6083.

Jaech, A. and Ostendorf, M. (2018). Personalized lan-
guage model for query auto-completion. In Proceedings
of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers), pages
700–705, Melbourne, Australia.

Jelinek, F. (1976). Continuous speech recognition by sta-
tistical methods. Proceedings of the IEEE, 64(4):532–
556, April.

Khandelwal, U., He, H., Qi, P., and Jurafsky, D. (2018).
Sharp nearby, fuzzy far away: How neural language
models use context. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 284–294, Mel-
bourne, Australia.

Lin, Z., Sung, T., Lee, H., and Lee, L. (2017). Personal-
ized word representations carrying personalized seman-
tics learned from social network posts. In 2017 IEEE Au-
tomatic Speech Recognition and Understanding Work-
shop (ASRU), pages 533–540.

Lynn, V., Son, Y., Kulkarni, V., Balasubramanian, N., and
Schwartz, H. A. (2017). Human centered NLP with
user-factor adaptation. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, pages 1157–1166, Copenhagen, Denmark.

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard,
S., and McClosky, D. (2014). The Stanford CoreNLP
Natural Language Processing Toolkit. In Proceedings of
the 52nd Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages 55–
60, Baltimore, USA.

Marti, U.-V. and Bunke, H. (2001). On the influence of

vocabulary size and language models in unconstrained
handwritten text recognition. In Proceedings of Sixth
International Conference on Document Analysis and
Recognition, pages 260–265. IEEE.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
(2016). Pointer sentinel mixture models. ArXiv,
abs/1609.07843.

Mikolov, T. and Zweig, G. (2012). Context dependent re-
current neural network language model. In 2012 IEEE
Spoken Language Technology Workshop (SLT), pages
234–239. IEEE.

Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., and
Khudanpur, S. (2010). Recurrent neural network based
language model. In INTERSPEECH 2010, pages 1045–
1048.

Och, F. J. and Ney, H. (2004). The alignment template ap-
proach to statistical machine translation. Computational
Linguistics, 30(4):417–449.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. (2019). Language models are unsupervised
multitask learners.

Schler, J., Koppel, M., Argamon, S., and Pennebaker, J. W.
(2006). Effects of age and gender on blogging. In AAAI
spring symposium: Computational approaches to ana-
lyzing weblogs, volume 6, pages 199–205.

Sundermeyer, M., Schlüter, R., and Ney, H. (2012). LSTM
neural networks for language modeling. In INTER-
SPEECH 2012, pages 194–197.

Ueberla, J. P. (1994). Analyzing and improving statis-
tical language models for speech recognition. CoRR,
abs/cmp-lg/9406027.

	Introduction
	Related Work
	Data and Evaluation
	Dataset
	Evaluation
	Evaluation Metrics
	Adjusted perplexity
	Accuracy@k

	Accuracy@k Given c Keystrokes

	Language Models
	Personalization Techniques
	Interpolation
	Continue Training
	Priming

	Experimental Results
	Adjusted Perplexity
	Accuracy@3
	Accuracy@3 Given c Keystrokes
	Comparing to RANDOM and DEMOGRAPHIC

	Conclusions
	Bibliographical References

