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Abstract
Pre-trained models have achieved great success in learning unsupervised language representations by self-supervised tasks on large-scale
corpora. Recent studies mainly focus on how to fine-tune different downstream tasks from a general pre-trained model. However, some
studies show that customized self-supervised tasks for a particular type of downstream task can effectively help the pre-trained model
to capture more corresponding knowledge and semantic information. Hence a new pre-training task called Sentence Insertion (SI) is
proposed in this paper for Chinese query-passage pairs NLP tasks including answer span prediction, retrieval question answering and
sentence level cloze test. The related experiment results indicate that the proposed SI can improve the performance of the Chinese Pre-
trained models significantly. Moreover, a word segmentation method called SentencePiece is utilized to further enhance Chinese Bert
performance for tasks with long texts. The complete source code is available at https://github.com/ewrfcas/SiBert tensorflow.
Keywords: Self-supervised tasks, Bert, Pretrained model

1. Introduction
Recently pre-trained language models like Bert (Devlin et
al., 2018), XLnet (Yang et al., 2019b), Elmo (Peters et al.,
2018) ,GPT (Radford et al., 2018) have been demonstrated
to offer substantial performance boosts for many NLP tasks
such as Machine Reading Comprehension, Named Entity
Recognition, and Natural Language Inference. There are
usually two steps in similar models: pre-training and fine-
tuning. Model parameters are trained on unlabeled data
over different pre-training tasks and then applied to differ-
ent labeled downstream tasks for fine-tuning. Researchers
were devoted to improving fine-tuning skills to enhance
performance of downstream tasks in previous months, but
actually some studies (Sun et al., 2019b) (Yang et al.,
2019a) (Dong et al., 2019) have shown that self-supervised
tasks during pre-training have a huge impact on the perfor-
mance of fine-tuning as these tasks determine the learning
method and whether pre-trained models can utilize massive
unlabeled data efficiently.
Bert, the most popular language pre-trained model in NLP
communities, includes two pre-training tasks: Masked LM
(MLM) and Next Sentence Prediction (NSP). In the MLM
task, Bert randomly masks a certain percentage of tokens in
the sentences and learns to predict these masked tokens. In
the NSP task, Bert learns to predict whether two sentences
are adjacent. In fact, the NSP task has two obvious short-
comings: (1) Its initial target is to model the relationship
between two sentences, which is usually consequential, ad-
versative or contradictory. However, due to the long length
of two sentences, there are inevitably many domain-specific
words. Therefore the Bert model can judge by whether two
sentences belong to a same field, not complex inference in
sentence level. As a result, the NSP task is more like a sim-
ple document-level task rather than a complex sentence-
level task. Actually, the NSP task usually takes only 1/10
of the total training time to achieve nearly 100% accuracy.
(2) The input format of the NSP task is inconsistent with
some downstream tasks. For example, in Machine Reading
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Comprehension tasks (MRC), the input format is always a
query and passage pair, and is different from the NSP task.
This setup difference would produce a deviation between
pre-training and fine-tuning, and leads Bert to continue to
make decisions by repeated or highly matched tokens be-
tween two sentences rather than its semantic analysis and
inference ability. This wrong tendency to learn some spe-
cific rules in word-level would make the model over-fitting
occurs easily especially in small datasets.

Some studies have shown customized pre-training tasks for
downstream tasks can effectively help a model to capture
corresponding knowledge and semantic information. Hence
a new pre-training task, Sentence Insertion (SI), is proposed
in this paper to replace the NSP task in BERT for MRC
datasets. The SI task randomly extracts a sentence from the
document as the query, and predicts the location of it as the
training objective. Meanwhile, for segments with no answer
when it comes to long MRC inputs in downstream tasks,
the query is extracted from another document 40% of the
time, and the model needs to judge if an answer exists. The
SI task has advantages below: (1) It models representations
in sentence level, as the model has to analyze the logical
relationships between sentences to acquire an exact deci-
sion, and it can avoid the wrong tendency to rely on highly
matched words. (2) It is more compatible with the query-
passage pairs mode, because its input format is consistent
with MRC tasks. In this mode, the query in MRC would
also pay more attention to the relevant parts in the pas-
sage after the SI task pre-training, even without fine-tuning.
That is, the SI task strengthen a model’s search ability sig-
nificantly. Finally, to further enhance the model, a Chinese
word segmentation method based on SentencePiece (Kudo,
2018) is used to embed long sequences short enough. For
comparison, a baseline similarly to English WordPiece is
made, which is tokenized by a Chinese tokenizer pkuseg
(Luo et al., 2019).

The comparison between SI and NSP is made in eight dif-
ferent types of Chinese NLP tasks. Due to the different
pre-training corpus, a Bert-NSP model is trained as another
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baseline in the same setup under our own corpus. Two Chi-
nese pre-training works: Bert-WWM (Cui et al., 2019) and
Ernie 1.0 (Sun et al., 2019a) are also used as the baselines.
SI algorithm outperforms all other pre-trained models in
query-passage pairs tasks, and takes a slim lead with Bert
in other tasks.
The contributions of this paper are summarized as follows:
(I) A new pre-training task SI is presented to eliminate the
difference between fine-tuning and pre-training in query-
passage pairs NLP tasks. This model is named SiBert. It
ranks 1st place on Chinese Machine Reading Comprehen-
sion 2019 leaderboard and exceeds the official Bert baseline
by nearly 20%.
(II) A Chinese word segmentation method based on Senten-
cePiece is used in this paper for tasks with long texts, which
saves a lot of memory and help the model to contain more
words in a segment to provide more context information for
model decisions.
(III) The optimization skills of BlockSparse (Child et al.,
2019), and the fast-gelu activation function are used, en-
abling the model to be trained on 8 16GB Tesla v100 GPU
with batch size 256, length 512. The code and model will
be published open source to GitHub.

2. Related Work
2.1. Self-Supervised Tasks
Due to the high expense of labeled data, unsupervised rep-
resentation learning on large-scale unlabeled text corpora
in self-supervising method has become popular recently.
Bert is an auto-encoding pre-trained model. It uses multi-
layers transformers (Vaswani et al., 2017) to learn lexical,
syntactic and semantic knowledge among texts during pre-
training before fine-tuning it on downstream tasks. The per-
formance of unsupervised representations usually depends
on the self-supervised tasks. Thus, it is crucial to design
these pre-training tasks with more robustness. In the past
few months, research on self-supervised NLP tasks is out-
lined as follows:
(I) To strengthen seq2seq downstream tasks like machine
translation, (Song et al., 2019) present Masked Sequence
to Sequence (MASS) pre-training task for encoder-decoder
based language generation. Its encoder receives a sentence
with randomly masked fragment as input, and its decoder
tries to predict this masked fragment.
(II) To strengthen generation task, (Dong et al., 2019)
use three types of language modeling objectives: unidi-
rectional (both left-to-right and right-to-left), bidirectional,
and seq2seq prediction. Specific self-attention masks were
utilized to control what context the prediction conditions
on.
(III) To construct more general-purpose relation extractors
for information extraction. (Soares et al., 2019) design a
self-supervised task named Matching the blanks. They ex-
tract sentences that contain the same entity, then probabilis-
tically replace each entity’s mention with [BLANK] sym-
bols and model the context information.
(IV) In terms of multi-task self-supervised learning, Ernie
2.0 implements multi-task learning during pre-training. It
constructs seven self-supervised NLP tasks to capture dif-
ferent aspects of information in the training corpus at Word-

aware, structure-aware and semantic-aware levels. These
tasks share the same encoding networks, and Ernie 2.0 con-
stantly introduces a large variety of tasks to realize contin-
ual learning in more steps.

2.2. Subword Segmentation
2.2.1. English Subword Segmentation
In subword segmentation of pre-trained models, it is hard to
balance the contradiction between the vocabulary size and
Out Of Vocabulary (OOV) problem. Byte-Pair-Encoding
(BPE) (Sennrich et al., 2015) is a subword segmentation al-
gorithm, which includes character-level and word-level to-
kens representations simultaneously. BPE first splits whole
sentences into individual characters. The most frequent ad-
jacent pairs of characters are then consecutively merged un-
til reaching a desired vocabulary size. The vocabulary is
then applied by WordPiece in Bert for tokenization.

2.2.2. Chinese Subword Segmentation
WordPiece cannot be applied to Chinese directly, as there
is no space between words in Chinese. Google Chinese
Bert adds space around all CJK Unicode, and single Chi-
nese characters become equivalent to English words. In this
method, vocabulary is generated by a heuristic method, and
all Chinese tokens in it are single Chinese characters. This
method has two major drawbacks: (1) The co-occurrence of
Chinese characters would make tokens pay almost all atten-
tion to the adjacent characters which can form a word with
it and ignore the sentence information. (2) Each position is
occupied by only one character, and important context in-
formation is often lost in long sequence inputs, as texts are
divided into several segments.
Ernie 1.0 (Sun et al., 2019a) is a Chinese pre-trained model
released by Baidu. To solve the first problem above, they
design a knowledge masking strategy including entity-level
masking and phrase-level masking. The Entity-level strat-
egy masks entities which are usually composed of multiple
words. The Phrase-level strategy masks the whole phrase
which is composed of several words standing together as
a conceptual unit. Researchers of Bert-WMM (Cui et al.,
2019) train a new model from the Google official Bert-base
model with the whole word masking strategy which is sim-
ilar to phrase-level masking as a remedy for the model to
know the word boundary. These masking strategies can al-
leviate the first problem of subword segmentation in the last
paragraph partly.

3. Our Approach
3.1. Model Architecture
3.1.1. Encoder Layer
The architecture of the model is shown as Fig. 1. Con-
cretely, given the input sample consisted of a query with
one sentence Q = {Sentencek} and a passage with n
sentences P = {Sentencei}ni=1. Q is selected from P in
60% of the time and selected randomly from another pas-
sage in 40% of the time. The segment embeddings of them
areEmbeddingA andEmbeddingB correspondingly. The
[CLS] symbol is located in the first position of the whole in-
put, and two [SEP] symbols are located in the last position
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Figure 1: The detailed pre-training process of SI. The input of transformer encoder is the sum of word embedding, segment
embedding and position embedding. The whole input is fed into a multi-layers transformer, and the representations of input
are generated. All representations whose input is [MASK SEN] or [CLS] have labels and only the label in the right position
of them is ”1”.

of the query and passage part. Therefore, the whole input
X can be seen as the concatenation of

X = [[CLS], Q, [SEP ], P, [SEP ]]. (1)

The input X will go through a multi-layers transformer
encoder later and outputs a sequence representation T for
multi-tasks pre-training:

T = transformer(X), (2)

where X,T ∈ Rdlength×dmodel . dlength is the length of the
sequence and dmodel indicates the dimension of the model.
BlockSparse skills (Child et al., 2019) is applied to ac-
celerated calculation. Additionally, gelu activation function
0.5x(1 + tanh[

√
2/π(x+ 0.044715x3)]) is replaced with

fast gelu x ∗ sigmoid(1.702x) in the feed-forward layers
of the transformer. This replacement reduces operations of
GPU and saves nearly half of the memory.

3.1.2. Task Layer
There are three pre-training tasks in total, which are Sen-
tence Insertion (SI), Sentence-Document Relation Predic-
tion (SDRP) and Masking Language Model (MLM). More
details about MLM can be found in (Devlin et al., 2018).

3.1.3. Sentence Insertion
As mentioned above, Q : Sentencek (60% : k ∈ n, 40% :
k /∈ n) is randomly extracted as the query input. Referring
to the NSP strategy used in Bert, we extract 60% of Q from
the original passage P , and 40% of Q from random sen-
tences. Then, a [MASK SEN] symbol is inserted to replace
the original Sentencek in the passage if Q belongs to P .
Later, [MASK SEN] symbols are inserted among sentences
(including the beginning and end of documents) in the pas-
sage with a 50% probability. These [MASK SEN] symbols
are used for predicting the location of the query in SI tasks.
The labels of all [MASK SEN] symbols in SI are generated
during the data generation. As shown in Fig. 1, only the la-
bel in the correct position is ”1”, while others are all ”0”.
Furthermore, if query Q is randomly selected from other
documents, the label of the position [CLS] symbol is ”1”,

and all other labels are ”0”. Whether Q belongs to this doc-
ument or not, no other [MASK SEN] symbols will be in-
serted into the passage, and the locations of these symbols
are fixed.
Suppose there are K [MASK SEN] and one [CLS] sym-
bols in the inputX and the output logits of SI can be written
as :

M = gather(T, indexK+1) ∈ RdK+1×dmodel ,

logits(M) = softmax(WSIM),
(3)

where M is the output of transformer encoder which locate
in the positions of [CLS] and [MASK SEN] symbols. The
cross entropy loss of SI can be computed as:

L = −
∑
i∈σ

p(i)log(logits(M(i))), (4)

where p(i) is the real label in position i and σ is the set of
pre-training data.

3.1.4. Sentence-Document Relation Prediction
It is believed that adding more tasks to pre-trained mod-
els can improve the robustness of language representation.
Therefore, a specific task for [CLS] symbol is designed.
This task shares the same encoder layer with SI. The out-
put in [CLS] would go through a fully-connected layer and
is used to predict the relation between the query and pas-
sage. The pairs that are labeled as ”0” stand strong rele-
vance, which means the query and passage are extracted
from the same document and the query is a part of the pas-
sage. Those labeled as ”1” represent weak relevance, which
means the pairs are from the same document, but the query
is not a part of the passage. The label ”2” means that the
query and passage are completely irrelevant and extracted
from different documents.

3.2. SentencePiece
SentencePiece is a subword segmentation algorithm based
on language model probabilities. This algorithm is used in
this paper to reduce the sentence length for long text tasks.
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The probability of a subword sequence S={s1, ...sn} is the
product of the subword occurrence probabilities p(si):

p(S) =

n∏
i=1

p(si), (5)

where all subwords si is from a pre-determined vocabulary
and each subword occurs independently. Subword occur-
rence probabilities p(si) are estimated via the EM algo-
rithm. The most probable segmentation for the input sen-
tence would be given by maximizing p(S).
Most subwords in our pre-determined vocabulary are com-
posed of multiple characters. An experiment was imple-
mented before the pre-determined vocabulary size was de-
cided. The experiment shows that as the size and average
length of subwords in vocabulary increasing, the text would
be embedded shorter and the performance of long text tasks
would be better. The reason is that when one character oc-
cupies only one token in the previous pre-trained models,
long sequence would be split into several segments. In this
situation, the Bert model would lose many context infor-
mation. In our pre-determined vocabulary, 2.7 characters
occupy one token on average, which is a substantial im-
provement in context information retention.
It is noteworthy that phrase-level vocabulary cannot be ap-
plied to token-level downstream tasks directly. When the
label level is tiny (for example just one Chinese character),
the output of a token (usually several Chinese characters)
is too large to represent such a tiny label. For this reason,
SentencePiece may only be applied to sentence-level task,
not token-level task at present.

4. Experiment
4.1. Pre-training Setup
4.1.1. Models
Models compared includes Google Bert, Ernie1.0, Bert-
WWM, Bert + SI (SiBert), Bert-NSP, Bert + SI + Sen-
tencePiece (2SiBert), Bert + SI + SentencePiece + SDRP
(3SiBert), Bert-WordPiece, and SiBert finetuned with the
artificial symbol [MASK SEN] (SiBert + AS).
Google Bert is an official Chinese pre-trained model. Ernie
1.0 and Bert-WWM are another two models released in
(Cui et al., 2019) and (Sun et al., 2019a). The experiment
results of Ernie1.0 and Bert-WWM are the same as the val-
ues in their papers. In SiBert, the NSP task is replaced by
the SI task. For the fair comparison, another Bert baseline is
trained under our own corpus and denoted as Bert-NSP. The
methods and pre-training tasks listed above are added into
our models in sequence to verify their effects respectively.
Besides, Bert-WordPiece is another baseline in which the
Pkuseg tokenizer tool is used to delimit a semantic bound-
ary for all phrases. Spaces are set around these phrases,
and then sentences are tokenized by WordPiece. In other
words, these phrases are equivalent to the words in English.
Finally, as many [MASK SEN] symbols occur during pre-
training, but these symbols do not exist during fine-tuning.
To avoid the damage in the performance caused, these artifi-
cial symbols are inserted back between sentences in down-
stream tasks, to make a comparison with the original ver-

sion. This model is denoted as SiBert + AS (Artificial Sym-
bols).

4.1.2. Pre-training Details
All models have the same model size as Bert. The only
change is that models are optimized with Adam optimizer
using the following parameters as (Liu et al., 2019): β1 =
0.9, β2 = 0.98. Corpus includes several sources: 2 million
news from different websites, 550k from Wikipedia, 620k
from the financial field, 480k from BaiduBaike, 860k from
Baike community, and 2710k from Zhihu, which is a com-
munity website similar to Quora. The vocabulary size is
20k and 70k for the character-level and phrase-level sub-
word segmentation models respectively. Finally, models are
trained on 8 16G Tesla V100 GPU for 1000k steps for 4.5
days.

4.2. Datasets and Fine-tuning Details
4.2.1. Classifications

(i) ChnSentiCorp1: ChnSentiCorp is a Chinese sentiment
analysis dataset which aims to identify whether given
sentences are positive or negative.

(ii) LCQMC (Liu et al., 2018): LCQMC is a semantic
similarity task which aims to identify whether two
sentences are similar semantically.

(iii) THUCNews2: THUCNews is a document classifica-
tion dataset which is a part of THUCTC. It contains
50K news in 10 domains, including sports, finance,
technology, etc.

(iv) Dbqa3: NLPCC-DBQA is a Question Answering
(QA) task which aims to select answers for the cor-
responding questions. It is a query-passage pairs task
with short text.

(v) XNLI (Conneau et al., 2018): XNLI is a natural lan-
guage inference task to predict semantic relationship
(entailment, contradiction and neutral) between two
sentences.

For all classification tasks, The fine-tuning method is the
same as Bert. The final hidden vector C ∈ Rdmodel corre-
sponding to the first input tokens [CLS] would be the aggre-
gate representation and then is fed into the prediction layer.
The only new parameters introduced in output layer is the
weight W ∈ RK×dmodel , where K is the number of labels.

4.2.2. NER
MSRA-NER (Levow, 2006): MSRA-NER dataset is a se-
quence labeling task released by Microsoft Research Asia.
In MSRA-NER dataset, the label includes O, B-PER, I-
PER, B-ORG, I-ORG, B-LOC and I-LOC. So this NER
task is treated as a 7 classification task, and we use micro
average F1 as the result.

1https://github.com/pengming617/bert classification
2http://thuctc.thunlp.org
3http://tcci.ccf.org.cn/conference/2016/dldoc/evagline2.pdf
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Task Metrics SiBert 2SiBert 3SiBert SiBert+AS WordPiece Bert-NSP Bert WWM Ernie 1.0 Google Bert
Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test Dev Dev Test Dev Test

Dbqa F1 83.2 83.8 81.4 82.6 83.1 83.2 84.5 84.0 80.4 80.8 81.4 80.3 – 82.3 82.7 80.7 80.8
Cmrc2018 EM/F1 68.3/87.6 – – – – – 68.7/88.3 – – – 65.0/85.2 – 66.3/85.6 65.1/85.1 – 65.5/84.5 –
Cmrc2019 QAC 81.2 82.4 84.9 85.7 85.9 87.2 – – – – 71.9 – – – – 70.6 70.0

Table 1: Results of query-passage pairs tasks. Our models (whose names include ”SiBert”) exceed a lot more than any other
models. SiBert + AS, which contains [MASK SEN] symbols between sentences, achieves a better result than SiBert and
it proves to improve the performance of query-passage pairs tasks. 3SiBert achieves the best result in CMRC 2019, which
indicates the effect of SI in MRC tasks, SentencePiece in long text tasks, and multi-tasks pre-training respectively.

Task Metrics SiBert 2SiBert 3SiBert SiBert+AS WordPiece Bert-NSP Bert WWM Ernie 1.0 Google Bert
Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test

Chnsenticorp Accuracy 95.5 95.9 95.5 96.1 95.8 96.7 95.1 95.6 95.1 95.2 95.1 95.2 95.1 95.4 95.2 95.4 94.6 94.3
Lcqmc Accuracy 89.3 87.5 88.2 87.2 89.0 88.1 89.1 88.0 88.1 85.6 88.3 86.7 89.4 86.8 89.7 87.4 88.8 87.0
Xnli Accuracy 78.7 77.9 78.7 78.2 78.6 77.8 78.5 77.7 78.2 78.0 77.8 76.8 79.0 78.0 79.9 78.4 78.1 77.2

Msra-ner F1 96.0 95.2 – – – – 95.6 95.4 – – 95.7 95.0 – – 95.0 93.9 94.0 92.6
Thunews Accuracy 97.9 97.7 98.4 98.2 98.7 98.5 97.8 97.9 98.1 98.1 97.4 97.2 98.0 97.6 97.6 97.3 97.7 97.6

Table 2: Results of classification and NER tasks. Our models perform similarly as Ernie 1.0, and take a slim lead over
Google Bert. Among our models, as 3SiBert utilizes all our methods, it still achieves the best values except token level
tasks, which proves the effectiveness of these methods. In addition, [MASK SEN] symbols are useless in classification and
NER tasks.

Methods Dev Qualify Improvement
Google Bert 70.59 70.01 –

SiBert (without WWM) 77.69 78.49 +7.10/+8.48
SiBert (with WWM) 81.17 82.44 +10.58/12.43

2SiBert 83.07 83.86 +12.48/13.85
2SiBert + DA 84.87 85.67 +14.28/15.66
3SiBert + DA 87.32 87.17 +16.73/17.16

3SiBert + DA + SSI 90.01 89.71 +19.42/19.70

Table 3: The ablation experiments for CMRC 2019. In this
table, WWM means the Whole Word Masking for Chinese.
DA indicates the data augmentation for samples with un-
paired queries and passages. And SSI is the Short Sentence
Insertion pretraining task mentioned in Section 4.2.3.

4.2.3. MRC
(i) CMRC 2018 (Cui et al., 2018): Chinese Machine

Reading Comprehension 2018 is a span-extraction
task, which is similar to SQuAD that extract a pas-
sage span for the given question.

(ii) CMRC 20194: Chinese Machine Reading Compre-
hension 2019 is a sentence cloze-style MRC task.
Given a passage and several sentences extracted from
it, the model aims to complete the blanks in pas-
sage with candidate sentence. The Question Accuracy
(QAC) is defined as blanks completed exactly / total
number of blanks.

For CMRC 2018, the probabilities of each word to be the
start and end of answer span are computed. The maximum
sum of the two probabilities in which the end position is
after the start position would be our prediction.
For CMRC 2019, we concat each candidate sentence and
the passage with blanks of missing sentences as one sam-
ple. Then all blanks in the passages are replaced with

4https://github.com/ymcui/cmrc2019

[MASK SEN] symbols, and the [CLS] symbol works as the
prediction for the incompatible short sentence. Finally, we
mask all other tokens to prevent the redundancy. The loss
of this sentence cloze task can be written as:

Lcmrc2019 = −
K+1∑
i=1

yi log softmax(logitsi), (6)

where i indicates the position of K sentences blanks
[MASK SEN] and one [CLS] symbols. For further per-
formance improvement of CMRC 2019, we finetune the
3SiBert with another 500k steps with Short Sentence In-
sertion (SSI) predictions, which splits sentences with ”,”.
Therefore, the sentence average length of SSI is reduced
to 15. During the SSI fine-tuning, we masked some short
sentences with [MASK SEN] directly instead of adding
[MASK SEN] among them, which maintains consistency
compared with the CMRC 2019 task. Besides, the answer
is predicted dynamically, which means that the model first
predicts one sentence selected from the candidates with the
highest logits, and then the passage is recovered with this
predicted sentence before the predication of next sentence.
And this process continues until all [MASK SEN] blanks
are filled. The dynamical predicting can improve about 3%
in the accuracy.

4.3. Results
For each downstream task, the best learning rate is selected
from {1e-5, 3e-5, 5e-5} and the batch size is selected from
{32, 64} during the fine-tuning. Each task is trained for five
times with different seeds. We select the best score and the
average score for dev and test result correspondingly.
Table. 1, Table. 2 shows results of query-passage pairs tasks
and other tasks respectively. Details about the ablation ex-
periments of CMRC 2019 are discussed in Table. 3. For
the vacancies in Table 1 and Table 2, there are four reasons
summarized as follows (1) SentencePiece cannot be applied
to token level tasks. (2) [MASK SEN] symbols have al-
ready been inserted in the CMRC 2019 task, and SiBert
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Figure 2: (a) shows the average values of [MASK SEN] symbols to tokens in different parts of passage in each layer. (b)
shows the attention score percentages of query to the right answer sentence in each layer. Attention scores of special tokens
like [SEP] and [CLS] are not included in the computation.

cannot predict the answers without these artificial symbols.
(3) The results are not mentioned in the original papers. (4)
There is no test dataset in this downstream task.
Fine-tuning skills such as dynamical predicting, ensemble
learning and continual learning are limited in this section
for fair comparison, so any optimized result is not included
in the table. Finally, with so many methods in the experi-
ments, it is quite hard for readers to summarize these mod-
els into a unifying conclusion. Therefore, the results are dis-
cussed in four parts.
(I) SI based models outperform all other models in query-
passage pairs tasks. This is because the SI task models rep-
resentations in sentence level, which is more compatible
with this type of task. In other tasks, they perform similarly
as Ernie 1.0.
(II) SentencePiece have huge advantages in long text
datasets (CMRC 2019, THUCNews), though its perfor-
mance are slightly affected in short texts. This result
shows the phrase-level segmentation method in Chinese
pre-trained model is able to improve tasks with long text.
Besides, SentencePiece also outperforms WordPiece in all
tasks, proving to be a more appropriate phrase-level Chi-
nese word segmentation algorithm.
(III) Adding [MASK SEN] symbols between sentences
during fine-tuning can improve query-passage pairs tasks
effectively, while it is useless for other tasks. These sym-
bols can play the role of a local information observer in
passage for query. More experiments will be conducted to
explore these symbols in next section.
(IV) Pre-trained models would benefit tremendously from
adding more tasks. A classification task SDRP is added
into pre-training. Compared to the original model, 3SiBert
achieves a better result in most downstream tasks.

5. Discussion
5.1. Visualization of Attention
Exploring Bert’s internal mechanism (Jawahar et al., 2019)
(Clark et al., 2019) by visualizing attention scores has
become the popular practice recently. Hence, a series
of experiments are designed to examine the effect of
[MASK SEN] symbols and the internal mechanism of SiB-
ert .

Task Metrics SiBert Bert-NSP
Original Dataset Accuracy 87.10 80.25
Filtered Dataset Accuracy 73.28 56.41

Table 4: Results of original and filtered datasets

5.1.1. Local Information Observer
So far, there have been many studies that focus on the func-
tions of [CLS] and [SEP] in Bert. Accordingly it is also
important to clarify what [MASK SEN] symbols attend to
in SiBert by visualizing attention scores. This explains why
adding this symbol into query-passage pairs tasks can im-
prove the performance. Meanwhile, researchers can explore
more reasonable fine-tuning methods base on this fact. In
our experiments, attention scores are extracted from multi-
layers transformer on 1k data, and then the average atten-
tion scores of [MASK SEN] symbols to each sentence are
computed. Fig. 2(a) shows the average attention scores of
[MASK SEN] symbols to the tokens in their previous sen-
tences, next sentences and the rest of passage in each layer
of the transformer. The average value of a [MASK SEN]
symbol to all passage is 1.
From Fig. 2(a), the average attention of this symbol to the
previous sentence (2.96) and next sentence (2.74) is far
more than the value to the rest of passage (0.61). Consider-
ing that the high value may come from the nearer position,
the average attention scores of a token to its nearest 140
tokens in passage are extracted, and the result (1.8) is sig-
nificantly lower than the other two values.
This experiment shows that [MASK SEN] symbols in SiB-
ert are equivalent to local information observers. These
symbols would pay more attention to the adjacent sen-
tences, and judge whether the sentences adjacently provide
useful information. Query-passage pairs tasks would ben-
efit from the information provided by these artificial sym-
bols.

5.1.2. Global Information Probing
In order to understand the global attention mode of SiBert
in query-passage pairs tasks, We use CMRC 2018 as the
input, and compute the attention score percentage of the
query to the sentence which contains real answer to mea-
sure the relevant information search ability. It should be
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(c) 9-12 layers

Figure 3: These waterfall plots show a sample of Fig. 2(b), and a new dimension ”Sentence Index” is added to present the
distribution of the attention in each sentence. Fig. 3(a), Fig. 3(b) and Fig. 3(c) show first to fourth, fifth to eighth, and ninth
to twelfth layer respectively. The colors of lines depend on its derivative, and the right sentence (8th) is marked by a red
line below.

noted that this experiment is conducted before fine-tuning.
The result is shown in Fig. 2(b), SiBert gives far more at-
tention to the answer sentence than other sentences in the
passage (average 15.4%). This number is also higher than
Bert-NSP. Besides, this value would increase gradually as
the layer goes deeper.
Fig. 3 is the visualization of an example in the last seg-
ment. This sample shows the sentence-level attention dis-
tribution in each transformer layer. In this sample, the 8th
sentence which is marked by a red line below is the real an-
swer sentence, and the 6th, 7th sentences also include the
key words, as they are deceptively false answers. From Fig.
3(a), models tend to focus on the first few sentences at the
beginning, and it may come from the nearer position. Then
SiBert would attend to sentences with key words in middle
layers in Fig. 3(b), and SiBert might be performing matches
in the token level. In this example, SiBert attends closely to
the answer sentence in the last four layers as shown in Fig.
3(c). This is believed to be a sign that SiBert has found the
right answer by multi-turns inference. Most query-passage
pairs downstream tasks would benefit from this attribute.
From these phenomena, it is obvious that since SiBert
has performed many sentence-level interactive matches be-
tween the query part and the passage part during pre-
training, the query can spontaneously focus on the most rel-
evant parts in the passage even without fine-tuning. These
relevant parts may contain the answer directly or provide
useful information in the search of the answer, so it appears
as a global information probing ability. This ability reduces
the randomness in the early stage of gradient descent, and
prevents the model from falling into over-fitting caused by
making decisions merely by highly matched tokens.

5.2. Discussion of Tasks with Sentence Clues
Many pre-trained language models make decisions not by
complex inference process, but by co-occurrence words
clues. These statistical clues mainly stem from the unbal-
anced word distribution, and result in that some specific
words are prone to a specific label erroneously. Although
this method can achieve high performance in downstream
tasks, it is not convincing enough. So, a new dataset is con-
structed in this paper to exclude the false co-occurrence

clues. This dataset is the same to our pre-training data, and
some heuristic methods are used to search the synonyms
and concurrent words between the query and the corre-
sponding answer sentences. Later, these examples are fil-
tered. The dataset is split into training and test sets after the
search step to ensure two datasets are in the same distribu-
tion.
The results are shown in Table 4. The dataset before and af-
ter the filtered process are denoted as Original Dataset and
Filtered Dataset respectively. In the Original Dataset, the
two results are very close, and the gap is only 6.85%. How-
ever in the Filtered Dataset, the gap rises sharply to 16.87%.
This experiment proves that SiBert models sentence-level
relationships between the query and passage. Although
many samples based on word-level information are fil-
tered, SiBert still maintains a high accuracy, while Bert-
NSP shows a huge performance decline.

6. Further Conclusions
In this paper, a new NLP self-supervised task SI is
proposed, and its state-of-the-art performance in query-
passage pairs downstream tasks is verified by experiments.
Furthermore, advantages of phrase-level pre-trained models
in long text datasets are shown. Based on our work, there
are also two further conclusions for future work: (1) Self-
supervised tasks in different levels would help pre-trained
models to avoid over-fitting caused by simply clues. (2)
Downstream tasks benefit tremendously from eliminating
the difference between pre-training and fine-tuning.
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