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Abstract
Recognizing spatial relations and reasoning about them is essential in multiple applications including navigation, direction giving and
human-computer interaction in general. Spatial relations between objects can either be explicit – expressed as spatial prepositions,
or implicit – expressed by spatial verbs such as moving, walking, shifting, etc. Both these, but implicit relations in particular, require
significant common sense understanding. In this paper, we introduce the task of inferring implicit and explicit spatial relations between
two entities in an image. We design a model that uses both textual and visual information to predict the spatial relations, making use of
both positional and size information of objects and image embeddings. We contrast our spatial model with powerful language models
and show how our modeling complements the power of these, improving prediction accuracy and coverage and facilitates dealing with
unseen subjects, objects and relations.
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Figure 1: woman [?] bed. Language models adopt the
choice seen most commonly, i.e., sleeping on, but we pro-
pose an image-specific model.

1. Introduction
Humans are able to do common sense reasoning across
a variety of modalities – textual, visual and for a vari-
ety of tasks – reasoning, locating, navigation. Several
such tasks require spatial knowledge understanding and
reasoning (Kordjamshidi et al., 2010), (Kordjamshidi et
al., 2011), (Johnson et al., 2017), (Wang et al., 2017),
(Baldridge et al., 2018). Although, there has been sev-
eral recent works on common-sense reasoning (Speer and
Havasi, 2012), (Emami et al., 2018), (Sap et al., 2018),
(Storks et al., 2019), progress on spatial understanding and
common-sense is rather limited. Prior work has either not
been spatially focused (Lin and Parikh, 2016), (Xu et al.,
2015),(Antol et al., 2015) or very restrictive in the class
of spatial relations they handle (Xu et al., 2017), (Kord-
jamshidi et al., 2017). Recently, (Collell et al., 2018) pre-
sented the task of predicting an object’s location and size in
an image given the subject’s bounding box and the spatial
relation between them.
In this paper, we address the problem of understanding
spatial relations. We specifically want to infer the spatial
relationship between two entities given an image involv-

ing them. Spatial relations can either be – explicit (spatial
prepositions such as on, above, under) or implicit (intrinsic
spatial concepts associated with actions – sleeping, sitting,
flying). We take as input an image and the bounding boxes
of the entities which are spatially related, the word and im-
age embeddings of the two entities, and we want to pre-
dict the spatial relation between them (eg: sleeping, stand-
ing, sitting-on in Figure 1. We compare this with power-
ful language models like BERT (Devlin et al., 2018) which
have been trained on very large text corpora in a variety
of contexts. Although BERT is not conditioned on the im-
age, it can still provide a good list of candidate relations
between the two entities using only the structured text in-
formation and it can provide new relations unseen in the
specific dataset we train on. We show that these comple-
mentary attributes – being able to use the image-specific
information by a task-specific model and being able to pre-
dict a wide range of relations – by BERT, can together give
better performance than either approach alone, especially in
low-resource and generalized settings (Collell et al., 2018).
For the woman,?,bed example, if we were to rely on a lan-
guage model alone, the prediction would be laying on or
sleeping on almost all the time. This is because using just
the textual modality makes it blind to the image specific
cues. Using both the textual and visual information leads
to a more robust model conditioned on both the image and
the subject and object text description.
Our contributions are four-fold: (1) New task definition
of explicit and implicit spatial relation prediction for two
entities in an image. We explore another dimension of com-
monsense understanding of spatial relations with visual and
language information. (2) Usage of Spatial BERT: combi-
nation of BERT and a spatial model. We conduct thorough
experiments to show the role of the image, position and
language information for the task under different settings-
varying the number of training examples, the type of the
spatial relations and the type of BERT.1 (3) As a byprod-
uct, we propose a re-scoring technique for evaluating this
model combination. (4) We show that Spatial BERT is

1https://github.com/sdan2/Multimodal-Spatial
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able to predict in the generalized setting – for unseen sub-
jects, objects or relations.

2. Model Details
2.1. The Basics
This task is to predict the spatial relation R given the sub-
ject S and the object O. For the subject S, we have the cor-
responding text information Ts, position information Ps,
and image information Is. Similarly, we have the corre-
sponding text information To, position information Po, and
image information Io for the object O.

2.2. The Spatial Model
Feed Forward Network (FF). For the text information, we
use average (for multi-word subjects and objects) glove em-
beddings (Pennington et al., 2014) of the words in the text
to represent it. For simplicity, we use ws and wo to rep-
resent the average glove embbeddings for the Ts and To.
As for the position P , it contains 4 float values denoting
the x and y coordinate of the subject(object) center and the
half-width and half-height of the bounding box of the sub-
ject(object). We then pass ws, wo, Ps, Po through a feed
forward network with 128 neurons and take a softmax of
the predictions of all possible relations:

h = [σ(Ws[ws;Ps] + bs);σ(Wo[wo;Po] + bo)]

p̂ = softmax(Whh+ bh)

where σ is the activation function ReLU.
Feed Forward Network + Image Embeddings (FF+I). In
addition to the text information and position information of
the subject and object, we use pre-trained visual embed-
dings to represent the image information Is and Io. For
simplicity, we use is and io to represent the visual embed-
dings for the subject and the object. The visual embeddings
of the words are provided by (Collell and Moens, 2018)
from a VGG128 network (Chatfield et al., 2014) pre-trained
on Imagenet and fine-tuned on Visual Genome (Krishna et
al., 2016). The hidden representation in the FF + Image
Embeddings are as following:

h = [σ(Ws[ws;Ps; is] + bs);σ(Wo[wo;Po; io] + bo)]

2.3. The Language Model
BERT. We use BERT (Devlin et al., 2018) as language
model to predict the most likely spatial relation by mask-
ing the relation and providing ”subject [MASK] object” as
input and running the beam search to obtain top 20 predic-
tions.
Fine-tuned BERT (f-BERT). We fine-tune BERT for the
Visual Genome datatset by collecting all the ”subject rela-
tion object” texts from the training data.

2.4. Spatial BERT
We combine the prediction of our best model (FF+I) with
normal BERT and fine-tuned BERT to get two combined
models. We essentially re-rank the predictions from the two
models. Assume p̂bert and p̂ff are the predicted probability
distribution from the BERT and FF+I models, the predicted
probability of Spatial BERT is: p̂ = p̂ff + λp̂bert, where
λ is a non-negative float to adjust the weight of the BERT
predictions.

(a) cat UNDER chair (b) cat ON chair

Figure 2: Examples of explicit spatial relations from Visual
Genome of (cat, ?, chair)

(a) man RIDING surfboard (b) man CARRYING surf-
board

Figure 3: Examples of implicit spatial relations from Visual
Genome of (man, ?, surfboard)

3. Experiments
3.1. Dataset
We use the Visual Genome dataset (Krishna et al., 2016).
We work on the (subject, relation, object) triples where
the subject and object is accompanied by the bounding
box information2. The dataset is partitioned into two cat-
egories: explicit and implicit based on the spatial relation
in a triple and the experiments are performed separately for
each category. There are 333321 implicit and 682374 ex-
plicit triples. In Figure 2 we see examples from the dataset
for the explicit relations between cat as subject and chair
as object. In Figure 3 we see examples from the dataset
for the implicit relations between man as subject and
surfboard as object.
For the explicit relations, on is the majority relation with
frequency 425308 and the majority baseline for explicit
relation prediction is 62%. Similarly, for the implicit re-
lations, has is the majority relation with a frequency 167780

2Note each image is scaled to 1 so that the sizes are compara-
ble. See (Collell et al., 2018) for more information on the data-
preprocessing step.
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Figure 4: cat BENEATH chair. Even if we have never seen
beneath as a relation during the training phase but have seen
cat UNDER chair (Figure 2), using the BERT predictions
and re-scoring the choices using the GloVe embedding sim-
ilarity, we want to be able to predict unseen relations at test
time.

and the majority baseline for implicit relation prediction
is 50%.

3.2. GloVe based Re-Scoring Metric
One of the principal benefits of using language models is
that they can predict new relations never seen during the
training of the spatial model (see Figure 4). In several cases
(especially the low training data regimes) where BERT is
used in combination with the spatial model, BERT may
predict spatial relations which are unseen in training and
we need an effective strategy to re-score the spatial model
predictions based on these unseen predictions. For exam-
ple, say, BERT predicts atop (not seen during training) as
the relation between book and table for an image whose
gold triple is (book, on, table). In such situations we de-
velop a re-scoring metric to distribute the score BERT as-
signs to unseen relations (atop) among the seen relations
(on, above, over) which are related to it. This relatedness
is measured by the cosine similarity between the unseen
word vector and the word vectors for relations present in the
dataset. Thus, score(on) = score(on) + sim(on, atop) ∗
score(atop).

3.3. Experimental Settings
We present the experiment results separately for the explicit
and implicit relations. For each type of relation, we vary
the percentage of data used for training as 1%, 10%, 50%,
75%, 100%. We try two variations of BERT – the normal
pre-trained BERT and f-BERT: BERT fine-tuned on the im-
plicit and explicit dataset respectively. We try variety of λ
(from 0.01 to 1) to combine the BERT scores and the spa-
tial model scores and we report the best result across differ-
ent values of λ ( we exclude 0 or∞ (large positive values)
which are already reflected in only-BERT and only the spa-
tial model results). In all the settings the train-development-
test split is set as 75− 15− 15%.

3.4. Results
We see that the best performance in several of the settings
is achieved by Spatial BERT. Although the gains may look
small, the number of data-points is huge and thus, the im-
provement is significant in terms of absolute counts. For
smaller percentages of training data, the spatial models per-
form poorly but later on beats BERT. Also, notice BERT
performs significantly better for the explicit spatial rela-
tions than the implicit spatial relations possibly because
the set of implicit relations is much larger and the task
of predicting them requires more image understanding and
common-sense compared to the explicit spatial relations.
BERT and f-BERT performances do not change across dif-
ferent data percentages because they are both just used for
inference and the amount of training data does not affect
them.

4. Unseen Subject, Object or Relation
It is greatly desirable that models learn to generalize to un-
seen contexts and is necessary for true spatial understand-
ing of the relations.

4.1. The Settings
If a spatial relation was seen during training – (man, rid-
ing, horse) and the supporting image, the model should be
able to infer that the implicit (in this example) spatial re-
lation for a new image depicting (lady, riding, elephant)
should be riding, even if it has never seen the subject (lady)
or object (elephant) before. We show two illustrative ex-
amples from Visual Genome that we want to handle for the
unseen subject (Figure 5) and unseen object (Figure 6) set-
tings respectively. The pre-trained embeddings of the un-
seen subject(object) is similar to the embeddings of similar
seen subject(object) and this (along with the positional in-
formation) should help the model identify that the relations
are similar. To systematically test this capability, we per-
form experiments for the implicit and explicit relations in
Table 2. For each dataset type we experiment with three
settings – unseen subject, unseen object and unseen re-
lation.
The unseen subject(object) setting is relatively easier com-
pared to the unseen relation setting. For subject, we test
if we can correctly predict the flying relation in (kid, fly-
ing, kite) even if we have never seen (kid, flying, X) dur-
ing training. For objects, we test if we can correctly pre-
dict the riding relation in (man, riding, elephant) even if
we have never seen (X , riding, elephant) during train-
ing. Here, X denotes any object or subject, respectively.
We first tabulate all the (subject, relation), (object,relation)
pairs and we split this list into the test set pairs(15%) and
the training and development set pairs(85%). We then
form the test set (train, development) by collecting all data-
points whose (subject,relation), (object,relation) is in the
test( train or development) set pairs. Thus, the test set has
(subject,relation), (object,relation) which are not seen dur-
ing training. We only use the normal pre-trained BERT for
the generalized experiments since fine-tuning is not very
natural for these settings.
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Spatial Relation Explicit Implicit
% of Training Data 1% 10% 50% 75% 100% 1% 10% 50% 75% 100%

BERT 38.56 38.56 38.56 38.56 38.56 6.9 6.9 6.9 6.9 6.9
f-BERT 73.03 73.03 73.03 73.03 73.03 77.6 77.6 77.6 77.6 77.6

FF 0.8 72.1 74 74.4 74.7 0 75.0 78.8 79.0 79.5
FF+I 0.71 72.7 74.1 74.5 74.72 0.01 75.79 78.86 79.3 79.5

BERT+FF+I 36.4 72.88 74.7 74.9 75.2 6.35 75.7 79 79.3 79.5
f-BERT+FF+I 73.06 73.06 74.2 74.52 74.74 77.6 77.5 79.3 79.7 79.9

Table 1: Comparison of performance (in percentage accuracy) of different models for explicit and implicit spatial relations,
normal and f-BERT and combinations with the best spatial model for varying portions of training data.

Model Expl(S, R) Impl(S, R) Expl(O, R) Impl(O, R) Expl(R) Impl(R)
BERT 61.9 14.4 59.9 27.0 24.1 13.7
FF+I 60.1 68.6 59.5 50.1 0 0

BERT+FF+I 67.4 59.8 62.5 54.1 24.0 13.7

Table 2: Experiments for unseen subjects, objects and relations (for both explicit and implicit relations). Spatial BERT
gives better performance than BERT or FF+I for Impl(O, R) but not in Impl(S, R) potentially because the subject set is
much sparser than the object set.

(a) man RIDING elephant (b) woman RIDING ele-
phant

Figure 5: In this example from Visual Genome,suppose we
have seen (man, riding, elephant) in training. In the sec-
ond image, we want to be able to predict riding, even if we
have never seen the (woman, riding) combination before

4.2. Analysis
Unseen Subject. For the explicit relations, we see that Spa-
tial BERT performs much better than either model in isola-
tion. This is potentially because the explicit relations are a
smaller set and easier for BERT to predict and this in turn
helps Spatial BERT. However, since the class of implicit
relations are much larger and subtle BERT performs very
poorly and spatial model by itself performs the best for the
implicit relations.
Unseen Object. As shown in Table 2, for both the explicit
and the implicit relations Spatial BERT gives the best per-
formance although BERT by itself does not perform very
well.
Unseen Relation. This task is possible because BERT is
able to predict a much larger class of relations and using our
GloVe-scoring metric we can decompose the scores of these

(a) man RIDING elephant (b) man RIDING bike

Figure 6: In this example from Visual Genome, suppose
we have seen (man, riding, elephant) in training. In the
second image, we want to be able to predict riding, even if
we have never seen the (riding, bike) combination before

relations across the known set of relations and this should
bring the correct relations towards the top of the ranked list.
We also relax the accuracy metric by counting a prediction
as correct if the gold relation is in the top-5 predicted re-
lations. In this setting, the spatial model by itself cannot
predict any unseen relation and thus, BERT gives the best
performance.

5. Discussion
We presented the task of spatial relation prediction and de-
veloped models that use position information, visual em-
beddings and word embeddings to predict relations. Fur-
ther we show that combining this model with BERT helps
for low resource settings and generalization over unseen
subjects, objects and relations. However, the visual em-
beddings for entities which are used in our models are of
limited use in some situations. For example, it is hard for
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our models to distinguish between (man, running, dog) and
(man, walking, dog) given (man, –, dog). In future we want
to use more principled ways of incorporating image spe-
cific information to have an even more fine-grained spatial
relation classification. We also want to develop an inter-
active system that does both the object position prediction
task (Collell et al., 2018) and the spatial relation prediction
task for a spatially-involved domain such as Blocks World
(Bisk et al., 2016).
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