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Abstract
Brain signals are captured by clinical electroencephalography (EEG) which is an excellent tool for probing neural function. When EEG
tests are performed, a textual EEG report is generated by the neurologist to document the findings, thus using language that describes the
brain signals and their clinical correlations. Even with the impetus provided by the BRAIN initiative (brainitititive.nih.gov), there are
no annotations available in texts that use natural language describing the brain activities and their correlations with various pathologies.
In this paper we describe an annotation effort carried out on a large corpus of EEG reports, providing examples of EEG-specific and
clinically relevant concepts. In addition, we detail our annotation schema for brain signal attributes. We also discuss the resulting
annotation of long-distance relations between concepts in EEG reports. By exemplifying a self-attention joint-learning method used
to predict concept, attribute and relation annotations in the EEG report corpus, we discuss the promising results of automatic an-
notations, hoping that our effortwill inform the design of novel knowledge capture techniques thatwill include the language of brain signals.

Keywords: language of the brain, medical concepts, long-distance relations.

1. Introduction
The diagnosis and clinical management of epilepsy as well
as the evaluation of other types of brain disorders (Smith,
2005), including encephalopathies, neurological infections,
Creutzfeldt-Jacob disease, and even in the evaluation of the
progression of Alzheimer’s disease are informed by clinical
electroencephalographies (EEG). An EEG records electri-
cal activity along the scalp and measures spontaneous elec-
trical activity of the brain. The signals measured along the
scalp can be correlated with brain activity. But, as noted
in (Beniczky et al., 2013), the complexity of the EEG sig-
nal, interpreted and documented in EEG reports, produces
inter-observer agreement known to be moderate. As more
clinical EEG signals and reports become available, the in-
terpretation of EEG signals can be improved by providing
neurologists with results of search for patients that exhibit
similar EEG characteristics.
Neurologists that are interested in patients that exhibit cer-
tain EEG characteristics can use in their their queries med-
ical concepts that characterize the EEG tests, e.g. EEG
activities of the brain, EEG events, or the clinical corre-
lations between brain signals and pathologies of the brain.
In order to discover relevant EEG reports, there is a need
to automatically identify EEG-specific concepts as well as
relations they hold to the clinical correlations of the brain
signals. The ability to identify such concepts is hindered by
the absence of annotations in medical texts covering EEG-
specific information.
In this paper we describe an annotation effort performed on
a corpus of 23,000 EEG reports from over 15,000 patients
collected over 12 years at the Temple University Hospital
(TUH). The corpus is freely available after registration1.
Moreover, this corpus is, to our knowledge, the only pub-
licly available resource of EEG signals and EEG reports.
Because no previous language annotations were performed

1 https://www.isip.piconepress.com/projects/tuh_eeg/

on any EEG reports, we believe that our effort fills a gap in
clinical informatics as well as in clinical language resources
- as it is the first effort performed on this form of clinical nar-
ratives. The annotations were performed through a combi-
nation of deep and active learning, reported in (Maldonado
and Harabagiu, 2019). The resulting annotations consists
of (1) a gold-standard set, vetted by experts in neurology
and natural language processing; and (2) a silver-standard
set, produced by a neural learning technique that uses self-
attention and benefits from active learning. Both sets of
annotations may serve the automatic discovery of connec-
tions between abnormal brain signals and the pathologies of
the brain. These annotations could also inform knowledge
acquisitions methods operating both on Electronic Health
Records (EHRs) and medical literature. In our previous
work (Goodwin and Harabagiu, 2016), we used these an-
notations to produce a multi-modal index for patient cohort
retrieval.
In summary, the contributions of the work described in this
paper is three-fold:

1. Annotations on a corpus of EEG reports, which were
designed to convey a written impression of the vi-
sual analysis of the brain signals along with its clinical
significance. The annotations capture both the EEG-
specific concepts as well as general clinical concepts,
such as medical problems, treatments and other tests;

2. Annotation of the attributes of brain signals, recog-
nized in EEG activities, which describe the morphol-
ogy of the signal; the frequency band; the brain back-
ground; the recurrence of the brain signals; as well as
a set of spacial attributes of the brain signals, includ-
ing the brain hemisphere were they occur or the more
specific brain location, as well as the dispersal of these
signals.

3. Annotations of long-distance relations between pairs
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of EEG-specific and clinically relevant concepts from
the same EEG report.

The remainder of the paper is organized as follows. Sec-
tion 2 presents structure and content of EEG reports while
Section 3 details the concepts, attributes and relations that
were annotated in the corpus of EEG reports. Section 4
briefly discusses the automatic annotation while Section 5
presents the annotation results. Section 6 summarizes the
conclusions.

2. Structure and Content of EEG Reports
The American Clinical Neurophysiology Society Guide-
lines for writing EEG reports mandates that each EEG re-
port starts with a clinical history of the patient including
information about the patient’s age, gender, current med-
ical conditions (e.g. “right leg swelling”), and relevant
past medical conditions (e.g. “asthma”) followed by a list
of medications the patient is currently taking (e.g. “Al-
buterol”), described in a separate section. Together, these
two initial sections depict the clinical picture and therapy of
the patient, containing a wealth of medical concepts includ-
ing medical problems (e.g. “right leg swelling”), symp-
toms (e.g. “facial droop”), signs (e.g. “twitching”) and
treatments (e.g. “Albuterol”, “gastrocnemius surgery”).
After the clinical picture and therapy of the patient is estab-
lished, the introduction section of the EEG report describes
the techniques used for the current EEG (e.g. “digital video
EEG using standard 10-20 system of electrode placement
with one channel of EKG”), the patient’s condition at the
time of the record (e.g. wakefulness), and possible activat-
ing procedures carried out (e.g. “photic stimulation”).
The description section is the mandatory part of the report,
meant to provide a complete and objective description of
the EEG, noting all observed EEG activities (e.g. “fron-
tocentral beta”, “triphasic waves”), and EEG events (e.g.
“stimulation”). The impression section indicates whether
or not the EEG test is abnormal and, if so, lists the abnormal-
ities in decreasing order of importance. These abnormali-
ties are usually describing EEG activities (e.g. “triphasic
waves”), but can also be EEG Events. Finally, the clinical
correlation section explains what the EEG findings mean in
terms of clinical interpretation, (e.g. "findings indicative of
underlying metabolic encephalopathy").
As illustrated in Figure 1, each of the sections ofEEG reports
mentions multiple forms of medical concepts, which have
annotations indicating medical problems [PROB], treat-
ments [TR], tests [TEST], EEG activities [ACT], and EEG
events [EV]. In addition, these medical concepts are charac-
terized by various attributes, which we have also annotated.
The attributes are defined in Section 3.1. The recognition of
medical concepts and their attributes in EEG reports is vital
for many applications requiring data-driven representation
of EEG-specific knowledge, including decision support sys-
tems. However, the identification of the medical concepts
in the EEG reports is not sufficient, as these concepts also
exhibit clinically-relevant relations between them. With-
out knowledge of these relations the acquired EEG-specific
clinical knowledge would not be represented in a graphi-
cal format, but rather a list of concepts mentioned in EEG

CLINICAL HISTORY: 35 year old right
handed female with history of
[asthma]PROB and no family history of
[seizures]PROB or [head trauma]PROB.
Last year she had [gastrocnemius
surgery]TR. She presents with [right
leg swelling]PROB. She recently
developed [twitching]PROB and there
is a noticeable [facial droop]PROB.
MEDICATIONS: [Albuterol]TR, many others.
INTRODUCTION: [Digital video EEG]TEST

is performed in lab using standard 10-20
electrode placement system with anterior
temporal electrode and [EKG]TEST

electrodes. Wakefulness and sleep stage
1, stage 2 were recorded. Aggravated
procedures with [hyperventilation]EV

and [photic stimulation]EV were
performed.
DESCRIPTION OF THE RECORD: The record
opens to a well formed posterior
dominant rhythm at 9Hz with 2260
microvolts amplitude and normal
frontocentral beta. There are frontally
predominant, relatively synchronous
[triphasic waves]ACT seen throughout the
record. [Stimulation]EV of the patient
produces cessation of the [triphasic
waves]ACT. [Focal slowing]ACT was seen
at T3 at 2-4 Hz at times in runs of 2.
not clearly monomorphic.
IMPRESSION: Abnormal EEG due to:
1. [Triphasic waves]ACT.
2. [Slowing]ACT.
CLINICAL CORRELATION: No [seizures]PROB

were recorded. The [triphasic waves]ACT

are indicative of underlying [metabolic
encephalopathy]PROB including [hepatic
encephalopathy]PROB.

Figure 1: Synthetic Example EEG Report.

reports. Therefore, several clinically relevant relations be-
tween concepts have also been identified and annotated in
the corpus. It is important to note that the relations we have
annotated are long-distance relations, connecting often con-
cepts that are mentioned in different sections of the EEG
report, or concepts that are in separate sentences. There-
fore, we believe that by releasing these annotations, we will
enable other researchers to make use of the data for many
possible downstream applications, not only in the biomed-
ical field, but also in application that rely on information
extraction.

3. Annotations in EEG Reports
Only five types of medical concepts were annotated in the
EEG reports: (1) EEG activities, (2) EEG events, (3) medi-
cal problems, (4) medical treatments, and (5) medical tests.
Many of themedical concepts mentioned in the EEG reports
are similar to those evaluated in the 2010 i2b2 challenge
(Uzuner et al., 2011), as they represent medical problems,
tests and treatments, thus we could take advantage of our
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Concept Type Polarity Modality EEG Activity-Specific
EEG Activity
EEG Event
Problem
Test
Treatment

Table 1: Medical concept types and their attribute types.

participation in that challenge and use their definitions for
identifying medical concepts. However, EEG reports also
contain a substantial number of mentions of EEG activi-
ties and EEG events, as they discuss the EEG test. We
defined these new types of medical concepts by relying on
the definitions of the International Federation of Clinical
Neurophysiology (Noachtar et al., 2004).
For each type of medical concept, we annotated theirmodal-
ity and polarity. We selected these two attributes because
we have noticed that they are often expressed in the EEG
reports. When we considered the recognition of the modal-
ity, we took advantage of the definitions used in the 2012
i2b2 challenge (Sun et al., 2013) on evaluating temporal re-
lations in medical text. In that challenge, modality was used
to capturewhether amedical event discerned from amedical
record actually happens, is merely proposed, mentioned as
conditional, or described as possible. We extended this def-
inition such that the possible modality values of “factual”,
“possible”, and “proposed” indicate that medical concepts
mentioned in the EEGs are actual findings, possible findings
and findings that may be true at some point in the future,
respectively. For identifying polarity of medical concepts
in EEG reports, we relied on the same definition used in
the 2012 i2b2 challenge, considering that each concept can
have either a “positive” or a “negative” polarity, depending
on any absent or present negation of its finding. Through the
identification of modality and polarity of the medical con-
cepts, we aimed to capture the neurologist’s beliefs about the
medical concepts mentioned in the EEG report. For exam-
ple, in the EEG report illustrated in Figure 1, we identified
the medical problem “right leg swelling" with a “factual"
modality and a “positive" polarity in the clinical history sec-
tion. In the same section, the medical problem “seizures"
had the modality “factual" and the polarity “negative".The
medical problem “hepatic encephalopathy" in the clinical
correlation section was found to have the modality “possi-
ble" and the polarity “positive".

3.1. Medical Concepts and their Attributes in
EEG Reports

An EEG activity is defined as “an EEG wave or sequence of
waves”, while an EEG event is defined as “a stimulus that
activates the EEG” by the International Federation of Clini-
cal Neurophysiology(Noachtar et al., 2004). EEG activities
are describing the signals produced by the brain. The anno-
tation of EEG activities in clinical narratives poses several
challenges. As first reported in (Maldonado et al., 2017a),
we noticed that EEG activities are not mentioned in a con-
tinuous expression. For example, in the narrative fragment:
“there are also bursts of irregular, frontally predominant
[sharply contoured delta activity]ACT , some of which seem

to have an underlying [spike complex]ACT from the left
mid-temporal region" we can recognize one EEG activity
that is mentioned by distant text spans in the narrative. To
address this problem, we considered that EEG activities are
expressed in EEG reports through (a) an anchors and (b) the
attributes of the EEG activity. This assumption enabled us
to identify the anchors of EEG activities, annotate them in
EEG reports while also recognizing the attributes of EEG
activities, without annotating them in the reports, but at-
taching them to the anchors. For this purpose, we defined
16 attributes which are specific to EEG activities.
Since the Morphology best defines the EEG activities, we
decided to use it as an anchor for each mention of an EEG
activity in the EEG report. However, Morphology repre-
sents the type or "form" of an EEG activity, which may have
multiple values, as seen in Table 2, therefore the Morphol-
ogy remains also as an attribute of the EEGactivities. When
considering the Morphology of EEG activities, we relied
on a hierarchy of values, distinguishing first two types: (1)
Rhythm and (2) Transient. In addition, the Transient type
contains three sub-types: Single Wave, Complex and Pat-
tern. Each of these sub-types can take multiple possible
values, illustrated in Table 2. In addition to Morphology,
we considered three classes of attributes for EEG activities,
namely (a) general attributes of the waves, e.g. the Fre-
quency Band , the Magnitude, and Background - which
asserts whether the EEG activity occurs in the background
or not; (b) temporal attributes and (c) spatial attributes. The
only temporal attribute considered is Recurrence, which
describes how often the EEG activity occurs. As spacial at-
tributes, we considered theDispersal, theHemisphere and
eight additional attributes for the Brain Location where
the EEG activity is observed, since an activity can simul-
taneously occur in more than one brain location. All at-
tributes have multiple possible values associated with them.
Table 2 defines each of the 16 attributes of EEG activities
and illustrates the possible values each of these attributes.
Therefore, any identification of EEG activities in EEG re-
ports amounts to recognizing the 16 attributes listed in Ta-
ble 2 along with the polarity and modality attributes. We
note that we selected these 16 attributes for EEG activities
after consulting numerous manuals of neurology, and dis-
cussing with practicing neurologists. Furthermore, we were
interested to generate a hierarchical structure for the Hier-
archical epileptiform Activity Descriptors (HAD), rooted
in the Act tag. In deciding the nodes of the HAD, we
have consulted the Epilepsy Syndrome and Seizure Ontol-
ogy (ESSO)2, which encodes 2,705 classes with an upper
ontology targeting epilepsy and selected the concepts that
best describe EEG activities.
In contrast, EEG events, which are frequently mentioned in
EEG reports as well, can be recognized only by identifying
the text span where they are mentioned and their polar-
ity and modality attributes. While the Hierarchical Event
Descriptors (HED) (available from http://www.hedtags.org)
have defined many types of EEG experimental events, we
decided to annotate the EEG events as a single tag Ev in the
TUH corpus.

2 http://bioportal.bioontology.org/ontologies/ESSO
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Attribute 1: Morphology ::= represents the type or “form” of
EEG Attribute 2: Frequency Band

waves. • Alpha (8 – 13 Hz)
• Rhythm: continuous rhythmic activity • Beta (13 – 32 Hz)
• Transient • Delta (< 4 Hz)

• Single Wave: • Theta (4 – 8 Hz)
• V wave • Gamma (> 32 Hz)
• Wicket spikes • N/A
• Spike Attribute 3: Background
• Sharp wave • Yes
• Slow wave • No

• Complex: A sequence of two or more waves having a
characteristic form or recurring with a fairly consistent Attribute 4: Magnitude ::= describes the amplitude of the
form, distinguished from background activity EEG activity if it is emphasized in the EEG report
• K-complex • Low: e.g. subtle (spike); small (polyspike discharges)
• Sleep spindles • High: e.g. high amplitude (spike); excess (theta)
• Spike-and-sharp-wave complex • Normal: the default value
• Spike-and-slow-wave complex

• Sharp-and-slow-wave complex Attribute 5: Recurrence ::= describes how often the EEG
activity occurs

• Triphasic wave • Continuous: the activity repeats in a continuous,
• Polyspike complex uninterrupted manner
• Polyspike-and-slow-wave-complex • Repeated: the activity repeats intermittently

• Pattern: any characteristic EEG Activity • None: the activity occurs once
• Suppression Attribute 6: Dispersal ::= describes the spread of the activity
• Amplitude Gradient over regions of the brain
• Slowing • Localized (focal): limited to a small area of the brain
• Breach Rhythm • Generalized (diffuse): occurring over a large area of the
• Benign Epileptic Transients of Sleep (BETS) brain or both sides of the head
• Photic Driving (response) • N/A: the default value
• Periodic Lateralized Epileptiform Discharges
• Generalized Periodic Epileptiform Discharges Attribute 7: Hemisphere ::= describes which hemisphere
• Epileptiform discharge (unspecified) of the brain the activity occurs in
• Disorganization • Right
• Positive Occipital Sharp Transients of Sleep (POSTS) • Left
• Unspecified: the default attribute value, used if no • Both
morphological information is given • N/A

Location Attributes: Brain Location ::= describes the region of the brain in which the EEG activity occurs. The
BRAIN LOCATION attribute of the EEG Activity indicates the location/area of the activity (corresponding to the
electrode placement under the standard 10-20 system).
• Attribute 8: Frontal (i.e. Anterior): The frontal region of the brain including all F*, Fp* and AF* electrodes
• Attribute 9: Occipital (i.e. Posterior): The occipital region of the brain including all O* electrodes
• Attribute 10: Temporal: The temporal region of the brain including all T* electrodes
• Attribute 11: Central: The central region of the brain including all C* electrodes
• Attribute 12: Parietal: The parietal region of the brain including all P* electrodes
• Attribute 13: Frontocentral: The area between the frontal and central regions of the brain including all FC* electrodes
• Attribute 14: Frontotemporal: The area between the frontal and temporal regions of the brain including all FT* electrodes
• Attribute 15: Centroparietal: The area between the central and parietal regions of the brain including all CP* electrodes
• Attribute 16: Parieto-occipital: The area between the parietal and occipital regions of the brain including all PO* electrodes

Table 2: Attributes specific to EEG activities.

EEG reports from the TUH corpus mention three other
forms of medical concepts, which were used in the 2010
i2b2 challenge (Uzuner et al., 2011), namely medical prob-
lems (e.g., disease, injury), tests (e.g., diagnostic procedure,
lab test), and treatments (e.g., drug, preventive procedure,
medical device). These additional forms of medical con-
cepts can be recognized by the text span where they are
mentioned and their polarity/ modality attributes. The five
medical concept types that we have annotated and their spe-
cific attributes are listed in Table 1 and in Table 2 details the
EEG activity-specific attributes. In summary, we have an-
notated the medical concept types and their corresponding
attributes which are summarized in Table 1. EEG activi-

ties, which capture the brain signals, are characterized by 18
different attributes: the 16 EEG-activity-specific attributes
listed in Table 2 as well as polarity and modality. EEG
events, medical problems, tests and treatments are charac-
terized by only 2 attributes, namely polarity and modality.

3.2. Relations between Medical Concepts in EEG
Reports

The relations that we have annotated in the TUH corpus
of EEG reports are binary relations between the five types
of medical concepts that we have considered, namely: (1)
EEG activities; (2) EEG events; (3) medical problems; (4)
tests; and (5) treatments. When selecting the types of re-
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Concept 
mention1=
“triphasic waves” Concept

mention2=
“encephalopathy”

Concept
mention3=
“metabolic encephalopathy”

Concept 
mention4=
“the waves” Concept

mention5=
“triphasic waves”

RELATION (case 1)

RELATION (case 2)

Concept  Entity A
Triphasic Wave
Type: EEG Activity
Morph: Triphasic_Wave
Frequency: N/A
Background: No
Magnitude: Normal
Recurrence: Repeated
Dispersal: Focal
Hemisphere: N/A
Frontal
Modality: Factual
Polarity: Positive

Concept  Entity B
Metabolic
Encephalopathy
Type: Medical Problem 
Modality: Factual
Polarity: Positive

Figure 2: Concept entities, their mentions and possible
relations between them.

lations to be annotated, we have been informed by discus-
sions with practicing neurologists and settled on four types
of relations: (1) Evidences; (2) Evokes; (3) Clinical-
Correlation and (4) Treatment-For. The motivation of
selecting these relations was based on the observation that
these relations correspond to the implicit knowledge gleaned
by neurologists from the EEG reports which informs their
reading of the Impression and Clinical Correlation sections
of the EEG report. This relation schema is adapted from the
schema reported in previous work (Maldonado et al., 2017b;
Maldonado et al., 2018). The Evidences relation considers
EEG activities or medical problems as providing evidence
for medical problems mentioned in the EEG report. The
Evokes relation represents the relationship where a medi-
cal concept evokes an EEG activity. EEG events, medical
problems and treatments can all evoke EEG activities. The
Clinical-Correlation relation connects the EEG activi-
ties and medical problems mentioned in the Clinical Cor-
relation section of the EEG report if the activity clinically
correlates with the medical problem. The Treatment-For
relation links treatments to the medical problems for which
they are prescribed.

When producing the annotations of relations, we took into
account the observation that in the same EEG report, the
medical concepts may be mentioned several times, which
prompted us to distinguish between concept mentions and
concept entities. Figure 2 illustrates two concept entities
and their corresponding concept mentions. As it can be
seen, the concept entities are illustrated through (1) their
normalized name; (2) their type; and (3) their identified
attributes. We normalized each concept mention into a
canonical form (referred to as normalized name) using the
(i) the morphology attribute for EEG activities and (ii) the
United Medical Language System (UMLS) (Lindberg et
al., 1993) preferred name of the concepts of other types.
To identify the concept entities, we assumed that concept
mentions from the same EEG report that (1) have the same
normalized name, (2) the same type, and (3) the same values
of their attributes co-refer to the same concept entity. We
annotated relations between concept entities, not between
concept mentions.
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Figure 3: Architecture for Self-Attention Concept, Attribute
and Relation (SACAR) Identification.

4. Joint Learning to Automatically Annotate
Concepts, Attributes and Relations in

EEG Reports Using Transformers
In (Maldonado and Harabagiu, 2019) we have detailed a
neural network architecture capable of extracting (a) med-
ical concepts; (b) their attributes and (c) the relations be-
tween them simultaneously from EEG reports. The archi-
tecture uses self-attention to learn a representation of all the
words in the EEG report. Self-attention, sometimes called
intra-attention, is an attention mechanism relating different
positions of a single sequence (of words) in order to com-
pute a representation of the sequence. The system reported
in (Maldonado and Harabagiu, 2019) is called the Self-
Attention Concept, Attribute and Relation (SACAR) identi-
fier and it was used for automatically annotating concepts,
their attributes, and relations spanning them by encoding
long contexts across multiple sentences from the EEG re-
ports available from the TUH corpus. SACAR employs a
transformer narrative encoder (TNE) to generate an encod-
ing, bji , for each word, w

j
i , in each sentence Sentencej in the

narrative of the EEG report3. These word encodings serve
as input to: (1) the concept type and boundary labeler that
detects the boundaries of each conceptmentioned in an EEG
report as well as its concept type; (2) the attribute classifier
that recognizes the attributes of each medical concept; and
(c) the relation detector that identifies relations between the
concepts from the same EEG report. As shown in Figure 3,
all these three modules operate jointly because they share
the encoding of the words and sentences produces by the
TNE.

3 Tokenization was performed using the GENIA tagger (Tsu-
ruoka et al., 2005) and sentence splitting was performed using
OpenNLP (opennlp.apache.org).
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Concept Types
Annotations EEG Activity EEG Event Medical Problem Test Treatment

Gold 1438 452 798 716 539
Predicted 191,541 60,206 115,630 95,371 69,794

Relation Types
Annotations evidences evokes treatment-for clinical-correlation

Gold 397 342 356 195
Predicted 49,942 45,554 47,419 25,974

Table 3: Data statistics for the evaluation dataset along with automatically generated annotations.

Concept Type Precision Recall F1

EEG Activity 0.9460 0.9080 0.9266
EEG Event 0.9072 0.8299 0.8668
Medical Problem 0.8866 0.8358 0.8605
Treatment 0.9511 0.8814 0.9149
Test 0.9050 0.9280 0.9164
All Types (Macro Avg.) 0.9192 0.8766 0.8974

Table 4: Evaluation Results for Concept Type and Boundary
Recognition.

Model Precision Recall F1

evokes 0.8402 0.8569 0.8485
evidences 0.5955 0.6109 0.6031
treatment-for 0.5806 0.9042 0.7071
clinical-correlation 0.8287 0.8006 0.8144
All Relations (Macro Avg.) 0.7112 0.7932 0.7499

Table 5: Evaluation Results for Relation Identification.

The transformer narrative encoder (TNE) learns a contextu-
alized encoding for eachword in anEEG report given the full
context of the EEG report using self-attention. In EEG re-
ports, certain words tend to be more ambiguous than others,
suggesting that computing the encodings of these words re-
quires additional processing to correctly capture their mean-
ing from the contexts in which they appear. Therefore the
TNE leverages Adaptive Computation Time (Graves, 2016)
to dynamically allocate more computational resources for
the encoding of some words compared to others in the same
EEG report. Specifically, the TNE consists of an Adaptive
Universal Transformer (Dehghani et al., 2018) with 12 re-
current blocks as described in (Maldonado and Harabagiu,
2019). The TNE learns howmany processing steps (blocks)
are necessary to encode each word and to dynamically halt
processing for oneword, but to continue processing for other
words whose encodings still require further refinement. The
TNE is described in detail in (Maldonado and Harabagiu,
2019). The word embeddings produced by the TNE are
shared among the three prediction modules.
The first predictionmodule, theConcept Type andBoundary
Annotator, first identifies spans of text that correspond to
medical concept mentions by assigning a label to each word
in the narrative of the EEG report indicating that the word
begins amedical conceptmention (B), is inside of amedical
concept mention but not at the beginning (I), or is outside
of a medical concept mention (O). In this way, medical
concept mentions can be identified by continuous sequences
of words starting with a word labeledB optionally followed

Attribute Precision Recall F1

Morphology – – 0.8868

Rhythm 0.9549 0.9961 0.9751
V wave 0.7143 1.0000 0.8333
Spike 0.7500 0.3023 0.4309
Sharp wave 0.6522 0.8333 0.7317
Slow wave 0.9048 0.8261 0.8636
K-complex 1.0000 1.0000 1.0000
Sleep spindles 0.8333 1.0000 0.9091
Spike-and-slow 1.0000 0.6250 0.7692
Triphasic wave 1.0000 0.8000 0.8889
Polyspike complex 0.4000 1.0000 0.5714
Suppression 1.0000 0.2857 0.4444
Slowing 0.8710 0.9000 0.8852
Breach Rhythm 1.0000 1.0000 1.0000
Photic Driving 1.0000 1.0000 1.0000
PLEDs 0.3333 0.2500 0.2857
Epileptiform discharge 0.7000 0.6364 0.6667
Disorganization 0.7895 0.6250 0.6977
Unspecified 1.0000 0.4286 0.6000

Frequecy Band – – 0.9356

Alpha 0.9286 0.8387 0.8814
Beta 0.8750 0.6364 0.7368
Delta 0.9524 0.7143 0.8163
Theta 0.9000 0.6923 0.7826
N/A 0.9744 0.9954 0.9848

Background 0.9704 0.9428 0.9564

Magnitude – – 0.9273

Low 0.7273 0.4444 0.5517
High 0.8421 0.4848 0.6154
Normal 0.9636 0.9934 0.9783

Recurrence – – 0.9045

Continuous 0.6750 0.8438 0.7500
Repeated 0.7179 0.8740 0.7883
None 0.9761 0.9574 0.9667

Dispersal – – 0.8951

Localized 0.7714 0.5094 0.6136
Generalized 0.8400 0.4118 0.5526
N/A 0.9464 0.9943 0.9698

Hemisphere – – 0.9117

Right 0.8182 0.6429 0.7200
Left 0.7647 0.5200 0.6190
Both 0.8182 0.4737 0.6000
N/A 0.9540 0.9920 0.9727

Modality – – 0.9550

Factual 0.9682 0.9682 0.9682
Possible 0.7824 0.5027 0.6121
Proposed 0.7429 0.5098 0.6049

Polarity 0.9165 0.9071 0.9118

Location 0.7506 0.6062 0.6707

Table 6: Evaluation Results for Attribute Classification.

by words labeled I . In order to also identify the type of the
medical concepts from the EEG reports and to distinguish
EEG activities, EEG events, medical problems, treatments,
and tests, we extended the IOB labeling system to include
separate B and I labels for each concept type, yielding 11
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total medical concept boundary and type labels: LC ={B-
ACT, I-ACT, B-EV, I-EV, B-PR, I-PR, B-TR, I-TR, B-TE,
I-TE, O}. The concept type and boundary labeler assigns a
label li ∈ LC to each word wi in the EEG report by passing
each word’s encoding produced by the TNE through a fully
connected softmax layer as described in (Maldonado and
Harabagiu, 2019).
As medical concepts are identified in EEG reports, the at-
tribute classifier determines the values of each attribute type
for each medical concept using another transformer encoder
– this time operating at the sentence level – and a series of
linear classifiers, one for each attribute type. The attribute
classifier needs to further refine the encoding for each word
using the sentence transformer encoder (STE), which is an-
other adaptive universal transformer module similar to the
TNE, operating at the sentence level instead of the full nar-
rative. The word encodings produced by the TNE are fed
to the STE, one sentence at a time. The encoding produced
by the STE for the head token of each concept identified by
the Concept Type and Boundary Annotator is then fed to a
series of softmax classifiers to predict the attribute values
for that concept.
The Relation Detector automatically identifies relations be-
tween pairs of concept entities recognized in EEG reports
using a learned Bi-affine transform between mentions of
each concept entity pair. More specifically, relation discov-
ery was cast as a prediction of the most likely relation type
between two concept entities. The two cases of selecting
in each pair of concepts the relation source and destination,
which are illustrated in Figure 3.2., were addressed simulta-
neously, considering that the first concept of the pair is the
source while the second concept is the destination for one
possible relation, and conversely for a second possible re-
lation. The prediction of the most likely relation was made
possible by generating for each concept mention cki of every
concept entity both a source encoding, ski and a destina-
tion encoding dki using the Source Net, and the Destination
Net, respectively, as illustrated in Figure 3, implemented as
two-layer neural networks:

sji = SourceNet(cji ) = W 1
S

(
ReLU

(
W 0

Sc
j
i

))
dji = DestinationNet(cji ) = W 1

D

(
ReLU

(
W 0

Dcji

))
where W 0

S ,W
1
S ,W

0
D,W 1

D ∈ Rd×d are weight matrices.
These encodings enabled us to represent all possible re-
lations between each pair of concept entities from an EEG
report in terms of their mentions using anN×R×N tensor,
L, where N is the number of concept mentions discovered
in the EEG report and R is the number of possible relation
types. For each source concept entityS and each destination
concept entity D, we consider (a) the source encodings of
all the mentions of S in the EEG report, denoted as sm; and
(b) the destination encodings we produced for all the men-
tions ofD, denoted as dn. In order to compute each value of
L, we used a bi-affine function between a source encoding,
sm, and a destination encoding, dn, for each relation type
r ∈ R. Details of the computation of bi-affine function,
of the scores of all possible relations between each pair of
concept entities as well as the way in which the probability

distribution over all possible relation types are available in
(Maldonado and Harabagiu, 2019).

5. Annotation Results
The SACAR model was used to automatically identify con-
cepts, their attributes, and relations between them in the
TUH EEG corpus. The TUH EEG corpus consists of 23002
documents. In this corpus, the average number of tokens
per document is 264. Some EEG reports are very short,
others are long, but the average number of sentences in
EEG reports is 16. However, the longer EEG reports had
on average 4,631 tokens, which about 17.5 times the size
of average EEG report. The largest number of sentences in
any EEG report was 230.
Annotation statistics for (a) the manually annotated data
used to train SACAR and (b) the predicted annotations pro-
duced by SACAR are presented in Table 3. We evaluated
the predicted annotations using a subset of 140 EEG reports
from the TUH EEG corpus in which concepts, attributes,
and relations weremanually annotated by experts. This sub-
set was constructed from a seed set of 40manually annotated
reports using ten rounds of active learning in which 10 re-
ports were sampled each round as described in (Maldonado
and Harabagiu, 2019). The evaluations were performed us-
ing 7-fold cross-validation on the gold subset of 140 EEG
reports. Manual annotation was performed by three grad-
uate students after extensive consultation with practicing
neurologists. Average inter-annotator agreement, measured
using Jaccard Score (Levandowsky and Winter, 1971), was
0.9658, 0.9518, and 0.8843 for concept boundary, attribute,
and relation identification, respectively.
In our experiments we evaluated (1) the results of the
concept annotation predictor; (2) the prediction of con-
cept attributes both for EEG-specific concepts and gener-
ally clinically-relevant concepts; and (3) relation prediction.
The results for concept type and boundary detection are pre-
sented in Table 4 in terms of precision, recall, and F1 score,
where predicted concept boundaries are considered correct
if they exactly match a manually annotated boundary. At-
taining amacro-averaged F1 score of 0.8974, SACAR is able
to accurately identify medical concept mentions in EEG re-
ports.
Table 6 presents the results for each value of each attribute.
Attribute valueswith no examples in themanually annotated
(gold) data are omitted. Aggregated metrics are presented
for each attribute type using micro-average, however preci-
sion and recall are omitted formulti-class classification tasks
since they are equivalent to F1. In general, performance
for each attribute type is promising. However for some
attributes, performance is significantly hindered (e.g. Mor-
phology=Spike, Magnitude=Low, Dispersal=Generalized).
This could be due to the scarcity of such attribute values
in the annotated data. Future work may benefit from ac-
tive learning policies which bias toward under-represented
attribute values.
The results for relation identification are presented in Ta-
ble 5. It is not surprising to find that the best predicted
relations were the evokes and the clinical-correlation
relations. In each abnormal EEG report, the EEG activities
evoke some pathology, well known to practicing neurolo-
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gists. Similarly, abnormal brain signals clinically correlate
with known pathologies, thus such examples are abundant
in the EEG reports. Conversely, evidences relations were
the most difficult to predict, with SACAR attaining F1 score
of 0.6031. This is not surprising, given that evidences
relations are often complex and even spark disagreement
among neurologists (Beniczky et al., 2013). It is not un-
common for an activity to be noted as evidencing a medical
problem in one EEG report, but not evidencing the same
problem in another report. Moreover, the textual cues in-
dicating some evidences relations varied and were often
subtle. Furthermore, in many cases we noticed the need
for accurate co-reference resolution of EEG activities men-
tioned in the Impression section and those mentioned in the
Clinical Correlation.

6. Conclusion
We have described the annotation effort that captures the
language used for describing brain signals and their corre-
lations to other medical concepts. The corpus on which
we have performed the annotations consists of a large set of
EEG reports, available from theTempleUniversityHospital.
We have annotated five types of concepts: EEG activities
(representing the brain signals), EEG events, medical prob-
lems, treatments and tests. For all brain signals, we have
also produced annotations for 18 different attributes, while
for the other concepts we have annotated only modality and
polarity attributes. We have also considered several types
of relations between concepts in EEG reports, which were
always long-distance relations. We have also shown that
a self-attention-based neural model was successful at pre-
dicting not only annotations of EEG-specific concepts that
describe brain signals and their attributes, but also anno-
tations of clinically-relevant long-distance relations. These
promising results should lead to the development of knowl-
edge capture techniques operating both of Electronic Health
Records and on medical literature, capable to characterise
the language of brain signals.
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