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Abstract

We present Odinson, a rule-based information extraction framework, which couples a simple yet powerful pattern language that can
operate over multiple representations of text, with a runtime system that operates in near real time. In the Odinson query language, a
single pattern may combine regular expressions over surface tokens with regular expressions over graphs such as syntactic dependencies.
To guarantee the rapid matching of these patterns, our framework indexes most of the necessary information for matching patterns,
including directed graphs such as syntactic dependencies, into a custom Lucene index. Indexing minimizes the amount of expensive
pattern matching that must take place at runtime. As a result, the runtime system matches a syntax-based graph traversal in 2.8 seconds

in a corpus of over 134 million sentences, nearly 150,000 times faster than its predecessor.
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1. Introduction

Information extraction (IE) forms the backbone of many
important real-world applications, such as identifying frag-
ments of protein signaling pathways from biomedical pub-
lications (Kim et al., 2013) and assembling complex models
of real-world systems (Sharp et al., 2019). Efficient meth-
ods for scalable retrieval and extraction enable new forms
of linguistic analysis leveraging large text corpora (Biber,
2009). At a high level, IE approaches can be grouped into
two categories: (a) rule-based methods and (b) machine
learning. Chiticariu et al. (2013) found that, while machine
learning (ML) approaches have garnered great attention in
academia, the opposite is true in industry, where rule-based
approaches are preferred because of their interpretability
and maintainability (Sculley et al., 2014). Our work fo-
cuses on the latter class of approaches.

Rule-based approaches make use of patterns that match
over a variety of representations, from surface (de Does et
al., 2017) to more complex syntactic and semantic struc-
tures (Chang and Manning, 2014). While matching patterns
over structures like syntax can add resilience to linguistic
variation, doing it naively can be very expensive. We argue
that this is an important limitation for several reasons.
First, slow runtimes limit the applicability for large doc-
ument collections. For example, PubMed', a repository of
biomedical publications, has indexed more than one million
publications each year, for the past seven years. Sequen-
tially analyzing just one year’s worth of these publications
with an IE system that takes one minute per paper would re-
quire nearly two years. Second, it would be ideal for these
systems to be interactive, especially in the rule development
stage, and previous research has shown that a slowdown of
even a few hundred milliseconds affects the way users in-
teract with a system (Brutlag, 2009; Liu and Heer, 2014).
Finally, efficiency is critical when incorporating IE systems
as components of larger, iterative systems, as is done with
active learning (Settles, 2009). In these complex systems,
any speedups (or slowdowns) are magnified.

Here we propose an IE framework which couples a simple
yet powerful pattern language that can operate over mul-

"https://www.ncbi.nlm.nih.gov/pubmed

tiple representations of text in under 3 seconds over 134
million sentences.
Our work makes the following contributions:

1. We present Odinson, a rule-based IE framework with
a runtime system that is five orders of magnitude faster
than its predecessor, Odin (Valenzuela-Escédrcega et
al., 2016), and other IE systems. We achieve this
speedup by indexing most of the information neces-
sary for matching patterns, including directed graphs
such as syntactic dependencies, into a custom Lucene?
index. Indexing minimizes the amount of expensive
pattern matching that must take place at runtime.

2. We introduce a novel pattern language that is in-
spired by Odin’s language (Valenzuela-Escéarcega et
al., 2016). However, unlike Odin, Odinson’s pattern
language allows the mixture of multiple representa-
tions in the same pattern. For example, a pattern in
this language may start as a regular expression over
surface tokens and continue with a regular expression
over syntactic dependencies. This provides additional
flexibility in the way patterns can be written, espe-
cially useful in domains where syntactic parsers are
unavailable or unreliable.

3. We release the entire IE framework as open-source
software, under the Apache 2.0 license at https:
//github.com/lum-ai/odinson. In addition to
the core software, an API and user interface are pro-
vided.

2. Related Work

Our work builds upon the vast amount of work on rule-
based IE in the literature, which has resulted in many soft-
ware frameworks designed for this purpose. However, most
of these approaches have been developed to operate over
a single representation of text, e.g., surface forms (Cun-
ningham et al., 2002; Chang and Manning, 2014; Kluegl

https://lucene.apache.org
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(?<cause> [entity=/.*-Gene_or_gene_product/]) <nsubj [lemma=phosphorylat

(?<cause> [entity=/.*-Gene_or_gene_product/]) <nsubj [lemma=phosphorylate] >dobj (?<effect> [entity=/.*-Gene_or_gene_product/])

1/2 >

X Collapse all

Parent Doc: 3091517

X Sentence ID: 325383

causs :
MEK1 phosphorylates ERK1 and 2 at specific T and Y residues [ 10 ] .

¢ Sentence ID: 325454

Indeed , both p90 Rsk-1 and ERK 1/2 phosphorylate g§]#4 , thus suppressing its inhibitory function [ 4 , 19, 44 ] ( See Figure 3 ) .

Figure 1: The browser-based user interface for Odinson provides for direct and rapid querying with rich visualiza-
tion (Forbes et al., 2018) to support interactive exploration of large corpora.
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Figure 2: Architecture of our approach. Components that are a part of Odinson are contained inside the gray box. Odinson’s
index writer generates the inverted index. The extractor engine recieves queries from a user, either from the user interface
or directly through the API, after they have been compiled by the query compiler. The queries are executed against the
index and results are returned to the user and/or stored in a state for later use.

et al., 2016), or syntax (Levy and Andrew, 2006; Cham-
bers et al., 2007), but not both. This limitation was ad-
dressed in Odin (Valenzuela-Escarcega et al., 2016), whose
declarative rule language is capable of describing patterns
over either surface or syntactic information in the same
grammar. This flexibility was demonstrated to be useful
in the biomedical domain, where syntactic parsers are brit-

tle. Specifically, a state-of-the-art Odin grammar for this
domain had to backoff to surface information for 38% of
its patterns (Valenzuela-Escarcega et al., 2018). Here we
extend this expressivity, allowing for both surface and syn-
tactic information in the same pattern, i.e., a single Odinson
pattern can include a regular expression over both surface
tokens and dependency syntax.
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Most existing systems function by attempting to match all
patterns in a given grammar over all sentences in a given
corpus. Odinson avoids this heavy computational overhead
by indexing as much information as possible, including lex-
ical and syntactic information, such that most sentences can
be rapidly filtered out at runtime before more expensive
pattern matching takes place. We show that this yields a
speedup of four orders of magnitude over Odin.

3. Approach

We introduce Odinson, a novel rule-based information ex-
traction (IE) framework, which efficiently indexes syntac-
tic information to rapidly execute patterns over a large cor-
pus. At a high level, the intuition is that the vast majority
of sentences in a document collection won’t match a given
query, and so can be “discarded” without us needing to ac-
tually traverse the dependency graph. We use a custom in-
verted index to do this sentence elimination, and only the
sentences that are likely to contain a match will be checked
for the full pattern. The architecture of this approach is
shown in Figure 2, and summarized below. We provide im-
plementation details in the next section.

First, the Odinson index writer indexes a document collec-
tion which has been syntactically preprocessed. Odinson
defines a simple document format for data ingestion, allow-
ing users to prepare their document collection in JavaScript
Object Notation (JSON) using their own custom prepro-
cessing pipeline* for sentence segmentation, tokenization,
sequence tagging, and parsing. Each annotated sentence in
the document is indexed individually, along with any de-
sired metadata for the document itself to allow for filtering
results by task-relevant criteria, e.g., author, date, geospa-
tial context (detailed in Section 4.). The syntax graphs for
the sentences are serialized and stored in the inverted index
so that they are available at query time.

At runtime, a user provides a query to Odinson using the
declarative rule syntax (Section 5.). The user’s query is
compiled into (a) an index query (a token-level pattern ap-
plied to the inverted index), and (b) a graph traversal pat-
tern (a full description of the path which must exist in the
dependency graph). The Odinson engine first tries to inex-
pensively match the index query against the inverted index.
If this query succeeds for a sentence, then the correspond-
ing syntax graph is deserialized and matched against the
graph traversal pattern (Section 6.). This two-step match-
ing process greatly improves runtime efficiency by avoid-
ing unnecessary graph deserialization and traversal. Results
are returned to the Odinson engine, and can be persisted to
a state (i.e., a database with previous results, see Section
6.1.) and/or returned to the user.

4. QOdinson Index Writer

The first step in the Odinson pipeline is the generation of
the Odinson index. The index writer is responsible for cre-

3While here we use examples which are syntactically pro-
cessed, Odinson’s modular design would allow a user to match
patterns over any directed acyclic graph.

“In our experiments, we used v7.4.4 of processors
(https://git.io/Jv6PC) for document preprocessing.

NSUBJ DOBIJ
v N /Y Serialized and
John eats cake stored in index

Fields available

for index query Indexed information

word John eats cake
lemma John eat cake
tag NNP VBZ NN
chunk B-NP B-VP B-NP
entity | B-PERSON @) 0
incoming nsubj dobj
outgoing nsub]
dobj

Figure 3: Example of indexed fields corresponding to a
sentence. All fields are available for querying using the
Odinson query language. Odinson also indexes other fields
that we have omitted for brevity (e.g., a unicode-aware nor-
malized version of the token). Note that both nsubj and
dob7j in the outgoing field are indexed in the position
corresponding to eats, allowing either to be matched.

ating the inverted index, which contains the full preprocess-
ing for each sentence and document in the corpus and which
enables the rapid execution of queries at runtime. Specifi-
cally, we index three types of information:

(a) The token-level annotations for each sentence are in-
dexed as an independent Lucene document. To allow
for query expressivity, the sentence-document fields are
aligned, such that for each token position, Odinson has ac-
cess to all of the available annotations for that token within
a single query (shown in Figure 3).

Odinson was designed to have a flexible index schema, and
so few fields are mandatory. In particular, the only manda-
tory field is the “raw” field, which encodes unmodified to-
kens. Typically, another field, called “word”, is included.
When the raw token is a symbol (e.g., the Greek letter
5), this field will contain a text version of the token (here,
“beta”).

At indexing time, we automatically generate a field called
“norm” that contains a normalized version of the tokens,
designed to accommodate the fact that the same sequence
of characters can be represented as different unicode se-
quences. We use the ICU library>, and specifically the
NFKC normalization® to enable matching tokens inde-
pendent of the actual unicode sequence. We also per-
form Unicode-aware case-folding so that comparisons to
the “norm” field are case insensitive. Furthermore, Odin-
son uses Lucene’s PositionIncrementAttribute
to index tokens from the “raw” and “word” fields in “norm”
as synonyms in the same position, such that a user can
query with any variant, e.g., 3, beta, BETA, or BeTa, and
receive the same results.

Shttp://site.icu-project.org/home
®https://unicode.org/reports/trl5/
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query:
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[ lemma=eat]
location:Tucson

publication date | 11-27-1980 publication date 1-15-2018

meta-data

location location San Diego

documents

=

John cake

N N

Figure 4: User-specified document metadata is indexed as a
parent document of the sentence documents, enabling effi-
cient filtering at query time. In the example, two sentences
match the query, but only one of them satisfies the metadata
filter.

~ |

Francine has a dog Luis pizza

sentence-level
documents

To make use of syntax, two additional token-level fields
are required: “incoming” and “outgoing”. These fields
encode what incoming and outgoing dependencies corre-
spond to each token, e.g., if a given token is a head or
dependent of some syntactic dependency. While these
fields can be used directly by the user, they are critical
for internal optimizations. For example, with the pat-
tern [lemma=city] >nmod_such_as [], we reduce
the number of dependency graphs that we actually have to
check, i.e., only sentences whose dependency graph has
nmod_such_as are considered, and furthermore, only
sentences containing the lemma “city” and for which that
specific word is the head of a nmod_such_as depen-
dency relation.

Other fields are helpful to index but not required, such as
lemma, chunk, entity, and part-of-speech tags.

(b) The serialized syntax graph is also stored in the index
as a DocValue, for which a document-to-value mapping
is built at index-time, allowing us to retrieve the depen-
dency graph corresponding to a given sentence efficiently.
The syntax graph is only retrieved and expanded when the
sentence could potentially match the user’s query, based on
the token-level annotations, i.e., as determined with the “in-
coming” and “outgoing” fields described above.

Furthermore, to optimize the deserialization of the depen-
dency graphs, we use a custom serialization specific to our
data structure, which was benchmarked as being approxi-
mately 20 times faster at serialization than the built-in Java
serializer on the same data structure, but more critically
for runtime efficiency it deserializes more than 100 times
faster.

(c) The document metadata is indexed in a nested man-
ner, such that the metadata serves as a parent document,
and its corresponding sentence-level documents are its chil-
dren. This is illustrated in Figure 4. By using Lucene’s
index-time join capabilities, these filters are applied effi-
ciently at query time. Odinson does not restrict metadata
types, rather they are user-defined. If a filter is used, then
Odinson returns only the matches that also satisfy the meta-
data filter.

5. Odinson Query Language

The declarative Odinson query syntax is based on that
of Odin (Valenzuela-Escéarcega et al., 2016), which in-
cludes token constraints, syntax queries, named captures,
both greedy and lazy quantifiers, optional and required
event arguments, and look-around assertions. Token con-
straints are boolean expressions over various attributes
of a token (e.g., [word=pretzel & tag=Noun]). Syn-
tax queries describe traversals over the syntax graph.
For example, the query John <nsubj eats >dobj []
would find John, traverse an incoming nsubj edge
to eats, then traverse an outgoing dobj edge to any
other token. By surrounding part of a query with
(?<argument_name>. . .), the tokens can be captured as
named arguments. For example, modifying the previous
query to (?<agent> John) <nsubj eats >dobj []
would capture John as the agent.

In an important departure from the Odin language,
Odinson also supports multiple representations in the
same pattern. Consider this contextualized causal
pattern: (?<cause> []) leads to (?<effect> [])
>nmod_during (?<context> []). Here, in the same
pattern the user can specify sequences of lexical elements
(i.e., leads to) along with syntactic graph traversals (i.e.,
>nmod_during).

5.1. Event Queries

Odinson also supports event queries, which make it easier
to specify complex patterns involving many entities inter-
acting through a trigger. In particular, each event query is
a structured query that contain several sub-queries: one for
the event trigger, and one for each of the required argu-
ments. Additionally, the structure of the query provides
opportunities for further optimization. If all these queries
match, only then is the graph deserialized and checked to
make sure that the required arguments are connected to the
trigger in the specified way. Event queries can also include
arguments that are not required to match, but which are in-
cluded in the result if they do (i.e., optional arguments).

For example, consider this event query shown in Rule 1:

I trigger = [lemma=eat]
> theme:Food = >dobj
3 instrument:Tool+ = >nmod_with >conj?

Rule 1: Odinson event pattern that extracts a relation with
two types of arguments: 1) a theme and 2) one or more
instruments (indicated by the + quantifier following Tool).
Unlike Rule 2, this formulation relies on Food and Tool
mentions having already been found.

This pattern extracts an eating event, which has two types
of arguments, a theme and one or more instruments (in-
dicated by the +). When applied to the sentence Audrey ate
ramen with chopsticks and a spoon, Odinson will extract
an event with one theme and two instruments, as shown in
Figure 5.

In the rule above, all of the referenced mentions (i.e., Food
and Tool) must have been found in advance. However, for
several use cases it is desirable to match patterns in a top-
down manner, i.e., first identifying events of interest and
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then creating relevant entities from the event arguments at
runtime, rather than the bottom-up approach of first find-
ing entities and then events that operate over them (Sharp
et al., 2019). For this reason, in Odinson, we additionally
support argument promotion, another important departure
from Odin. That is, in an event with argument promotion,
we try to match the trigger, follow the dependencies for the
arguments, and then match the compatible resulting nodes

even if they are not pre-existing mentions.
We do this by writing the previous event rule this way:

1 trigger = [lemma=eat]

> theme:"Food = >dobj

3 [chunk=B-NP] [chunk=I-NP] *

4+ instrument:”Tool+ = >nmod_with >conj?
5 [chunk=/[BI]-NP/] [chunk=I-NP] *

Rule 2: Alternative formulation of Rule 1 that allows Food
and Tool mentions to be capture on-the-fly through use of the ~
symbol preceding argument mention labels. In this pattern, token
sequences corresponding to NP chunks found at the end of either
dependency path traversal will be assigned the argument labels
Food and Tool respectively.

The ~ character in the argument labels tells Odinson to cre-
ate the Food and Tool mentions if they don’t already exist,
rather than fail to match. This rule accepts any noun phrases
at the end of the dependency paths and uses them as the
theme and instruments. If the chunk pattern were omit-
ted (i.e., theme: "Food = >dobj), then by default Odin-
son matches the single token at the end of the path.

5.2. Compiler Modularization

While Odinson already provides a declarative language
readily available for end users, the query compiler was de-
signed to decouple the rule language from the specific low-
level operations that need to be performed on the index
through the use of an intermediate representation. This al-
lows different languages to target Odinson’s intermediate
representations and take advantage of the compiler to gen-
erate highly efficient queries that can be used in the Odin-
son framework. Further, our compiler performs several op-
timizations on the query to greatly improve its efficiency.’

6. Query Compilation and Execution

Once a user has provided a query in our declarative lan-
guage, Odinson compiles and executes it. For runtime op-
timization, Odinson aims to index as much as possible, but
not everything can be indexed. For this reason, we use a
multi-step, tiered execution of queries. Queries which do
not involve syntax are compiled into an index query and
matched against the inverted index only (recall Figure 3).
Queries which do involve syntax are compiled into both an
index query as well as a graph traversal pattern. However,
the latter is only executed if the former matches. To help
explain these representations, as well as the tiered query
execution, consider the query and three sentences shown in
Figure 6 alongside the detailed explanations below:

"Currently we focus on peephole optimizations, but we intend
to extend these in the future.

Audrey ate ramen with chopsticks and a
B-NP O B-NP B-PP B-NP

spoon
I-NP I-NP I-NP

NSUBJ DOBJ

NMOD_WITH CONJ
(a) A sentence preannotated with chunks and dependencies.

Am//‘({\'mmen with chopsticks and a

spoon

B-NP O B-NP B-PP  B-NP  I-NP I-NP I-NP
A/ \\\J‘ P\ 1
NSUBJ \DOBJ / \ /
NMOD_WITH Ny

(b) A trigger is found.

Audl‘({\'ramen with chopsticks and a

spoon

B-NP O B-NP B-PP B-NP I-NP I-NP I-NP
n_/ \t/ A\ 7
NSUBJ  \DOBI / \ /

NMOD_WITH “CoNT

(c) A theme argument is matched.

INSTRUMENT

INSTRUMENT

I
Audrey [/'umuu} with [ch(}psti(:ks] and a |spoon

B-NP O B-NP B-PP B-NP [-NP [-NP I-NP
AN\ A
NSUBIJ DOBJ
NMOD_WITH CONJ

(d) Two instrument arguments are matched.

Figure 5: Example sentence illustrating the results of ap-
plying the Rules 1 & 2 given in Section 5.1. (a) The Odin-
son index contains many token and relation annotations as
a basis for capture patterns. (b) The event trigger is a to-
ken pattern that, if matched, becomes the anchor for the
argument patterns. The trigger rule matches here because
the lemma of ate is eat. (c) The system matches the re-
quired argument theme, which asserts that there must be
a direct object dependency link between the trigger and a
noun phrase (here, as found by a chunker and encoded in
the BIO notation). Both the trigger and the required argu-
ments must match in order to extract the event as a whole.
Optional arguments (marked with ?) do not need to match,
but if they are found they will be included as labeled ar-
guments with the extracted event mention. (d) From the
trigger, a nmod_with dependency leads to chopsticks with
a B-NP chunk annotation, making a match. Because of the
+ marker on the instrument line, the rule also matches an
additional instrument argument by continuing through
the optional conij dependency.

Index query: For the user query shown in Figure
6, pretzels <nsubj >xcomp thirsty, the compiler
builds an index query by collapsing the beginning of the
graph traversal (i.e., <nsub3j) to the adjacent word (pret-
zels), where the token field (i.e., incoming or outgoing)
is chosen based on the direction of the dependency.
This results in [word=pretzels & incoming=nsubij].
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Similarly, the last step of the graph traversal is
collapsed, here resulting in a second index query,
[word=thirsty & incoming=xcomp].

Graph traversal pattern: For queries requiring syntax, the
compiler also creates a graph traversal pattern — an automa-
ton representation of the graph traversal, where the initial
state is determined by the already known start position (i.e.,
the index query corresponding to the beginning of the path)
and the valid terminal states are determined by the index
query corresponding to the end of the path. The automaton
will try (in parallel) all paths described by the pattern that
are possible in the sentence. The fact that it can be in many
positions (in the sentence) at once eliminates the need for
backtracking. In order for the graph traversal to match, it
needs to execute the entire pattern and end in a valid termi-
nal state.

pretzels <nsubj >xcomp thirsty

Compiled index query

[word=pretzels & incoming=nsubj]
[word=thirsty & incoming=xcomp]

(a) Example where the index query fails, so the sentence is

skipped.
ADVCL_TO
XCOMP
NSUBJ 0BJ MARK /—N@\
v v N v N
PRP VBP NNS TO VB PRP 1
1 eat  pretzels to  make  me  thirsty

(b) Example where index query succeeds, but graph traversal
fails.

NSUBJ:XSUBJ

M XCOMP

DET m MAR /m\
N N N N
DT NNS VBP VBG TO VB PRP 1
These pretzels are  going to make me  thirsty

(c) Example where both the index query and graph traversal

succeed.
NSUBJ XCOMP
DET AUX NSUB.
N AN /
DT NNS VBP VBG PRP 1

These pretzels  are  making  me  thirsty

Figure 6: Example showing the compilation and execu-
tion of a user query involving syntax. If the index query
succeeds (here, there is the word pretzels with an incom-
ing nsub j relation and the word thirsty with an incoming
xcomp), the full graph traversal pattern is checked to de-
termine whether or not the user query does match the sen-
tence. Here that is, starting at prezels, follow an incoming
nsubj, then follow an outgoing xcomp, and land on the
word thirsty. Full details are provided in Section 6..

Query execution: At execution, sentences that do not
match all components of the index query can be discarded

without inspecting their corresponding dependency graphs,
as shown in Figure 6. This filtering step considerably re-
duces the runtime, and could be exploited even futher (e.g.,
by indexing dependency path n-grams). For the sentences
which survive the index query, we deserialize the graph and
perform the full traversal with the automaton.

In the example in Figure 6, the first sentence is not a match
for the index query (because pretzels doesn’t have an in-
coming nsub3j), so it is discarded. The second sentence
does match the index query, so the full traversal is per-
formed. However, because there is an intervening xcomp
relation, the traversal fails. In the third sentence, both the
surface pattern and the graph traversal succeed and the re-
sult is returned to the user (and/or stored in the state as a
labeled mention, see Section 6.1.).

6.1. Odinson Mentions and State

When a pattern successfully matches, the results are re-
turned as a mention object. The simplest form of a men-
tion consists of a contiguous span of tokens and option-
ally a label. When the result has named captures, these are
also stored in the mention as arguments, each consisting of
a name and a continuous span of tokens. Event mentions
have a label, a trigger mention, and the found labeled argu-
ment mentions, which could be event mentions themselves,
nesting arbitrarily deep.

The found mentions can be stored in a state so that they
can be matched by subsequent patterns. For example, a
pattern such as John <nsubj eats >dobj @Food tries
to match against previously found (and stored) mentions of
Food.

While there are many possible implementations of a state,
currently the state is an SQL database that can either exist
for a current session only (i.e., kept in memory), or it can be
persisted to disk to be re-used in future sessions. Columns
corresponding to the document id, the Lucene segment off-
set, and the mention label are indexed within the database
to optimize retrieval time. We intend to explore other op-
tions for the state, to facilitate a wider variety of use cases,
in the future.

7. Analysis

To evaluate our approach we compare the overall speed dif-
ference between Odin and Odinson.

We used Odin and Odinson to execute six queries (see Ta-
ble 1) on the UMBC® WebBase corpus (Han and Finin,
2013; Han et al., 2013), a high-quality subset of WebBase
(Hirai et al., 2000). The corpus contains approximately 3
billion words and 134 million sentences over 162,399 doc-
uments.

Because of the similarity between Odin and Odinson, it was
possible to construct equivalent queries. An exception to
this is the eat and consult queries, which use the argument
promotion feature of Odinson (see Section 5.1.) for which
there is no direct equivalent in Odin.

We executed each Odin query 5 times (due to time con-
straints) and each Odinson query 40 times and measured
the time elapsed during extraction in each system. The

8University of Maryland, Baltimore County
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Name Pattern Example Results
(?<person> [entity=PERSON]+) .

president [lemma=be] the? president of the? Redesdale was President of the 1,837
(?<organization> [entity=ORGANIZATION]+) Royal Photographic Society. ...
(?<person> [entity=PERSON]) o

born </nsubj(pass)?/ born >/nmod_.*/* >nmod_in Pavel. Andreievich Chekov was 4,443
(?<year> /[0-9]1{4}/) born in 2241...

tem [lemma=be] <cop [lemma=system] The peerage is alegal system of 40,613

syste >nsubj (?<systemName> [tag=/NN.x/]) largely hereditary titles. . . ’
(?<person> [entity=PERSON]) . . “ .

title <nsubjpass called >xcomp Gioachino was called “Keno 730
(2<title> [tag=/NNP.x/) for short.
trigger = [lemma=ecat]
theme: "Food =

>dobj [chunk=B-NP] [chunk=I-NP]* ) )
cat instrument : ~Tool? = Birds, carnivores and rodents 124,645

>nmod_with
location:"Place? =
>nmod_at

trigger =
actorl: "Entity+ =
<acl? >/nsubj(pass)?/
[entity:/PERSON\ORGANIZATION/]+
actor2: "Entity+ =
<acl? (>nmod_with|>dobj)? >dep?
[entity:/PERSON\ORGANIZATION/]+

consult

[chunk=B-NP] [chunk=I-NP] *

eat dropped antlers.

[chunk=B-NP] [chunk=I-NP] *

[lemma=consult & tag=/VB[DZPGN]/]

TSA is consulting with the Na-
tional Maritime Security Advi- 601
sory Committee

Table 1: These queries were used to evaluate Odinson’s speed. These include a token query (president), dependency queries
(born, system, and title), and mixed queries with promoted entities (eat and consult).

maximum heap size was set to 1.5 GB for both systems,
constraining them to modest parameters. Results are sum-
marized in Table 2. Odinson is roughly 150,000 times
faster than Odin on a dataset of 134 million sentences.
Moreover, Odinson loaded its index approximately 300,000
times faster than Odin loaded its serialized documents.
Recall from Section 4. that Odinson has one extra step that
Odin doesn’t, which is the indexing of the corpus. This
indexing step is performed only once, and it only includes
static information (e.g., POS tags, dependency graphs, etc).
The query compositionality is handled at runtime, when the
query is provided by the user, and therefore in Table 2, we
provide the benchmark results for the online querying only,
as this represents the real-world usage.

In order to measure the effect of corpus size on loading
and extraction speed, we queried random subsamples of
the overall corpus using the born query. A comparison of
load and extraction times for each system is shown in Fig-
ure 7. The results indicate that the speed gains of Odinson
are present at all corpus sizes and increase proportional to
corpus size.

In the interest of reproducibility, we have made the code
and data used for our benchmarks publicly available®, so
that the analysis can be extended to other rule-based in-

9https://github.com/lum*ai/ie*benchmarks

Load time (s) Extract time (s)

Query Odin Odinson Odin Odinson
president  6.35x10° 1.50 1.81x10° 1.93
born 3.70x10° 1.53 8.80x10° 2.56
system 3.58x10° 120  9.29x10° 4.58
title 4.34%10° 1.50 6.59x10° 1.85
eat N.A. 1.57 N.A. 12.3
consult N.A. 1.29 N.A. 2.68
Mean 427x10° 142 432x10° 2.83

Table 2: The harmonic means of the loading and extrac-
tion times of each system. Load time is the time required
to read in the corpus with its annotations. Annotations in-
cluded static information such as POS tags and grammatical
dependencies. In Odin’s case, this is done from JSON for-
mat, but Odinson is loaded from a precompiled index. The
Odinson index loading times are not averaged, since they
were loaded only once per query.

formation extraction systems such as KOKo (Wang et al.,
2018). For this work, since we found that many of the
language features described in Wang et al. (2018) are not
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Figure 7: A comparison of load and extraction times for Odin and Odinson across different corpus sizes. Although both
systems scale linearly, Odinson’s optimizations allow for querying four orders of magnitude more documents in only two

orders of magnitude greater time.

included in their public release, a direct comparison of
syntactic patterns was impossible. However, Wang et al.
(2018) report KOKO is 40 times faster than Odin. While we
could not replicate their results, our work demonstrates that
Odinson is 150,000 times faster than Odin, and thus faster
than KOKo.

8. Conclusions

Here we introduce Odinson, a rule-based information ex-
traction framework which is based on Odin but highly op-
timized to provide a runtime fast enough to be interactive,
even when used at scale. This rapid runtime is critical when
users are handling big data or developing rules. Odinson
makes use of an inverted index for sentences and document
metadata, indexing as much surface and syntactic informa-
tion as possible to improve runtime. The dependency graph
for each sentence is also serialized and stored in the index.
At runtime, user queries (which can mix multiple represen-
tations of language) are compiled into index queries and
graph traversal patterns. Only if the index queries succeed
for a given sentence is its dependency graph deserialized
and checked. This provides a rich filter that prevents un-
necessary deserialization and traversal. As a result of all
of these optimizations, Odinson is approximately 150,000
times faster than Odin.
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