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Abstract
Temporal Dependency Trees (TDTs) have emerged as an alternative to full temporal graphs for representing the temporal structure of
texts, with a key advantage being that TDTs can be straightforwardly computed using adapted dependency parsers. Relative to temporal
graphs, the tree form of TDTs naturally omits some fraction of temporal relationships, which intuitively should decrease the amount of
temporal information available, potentially increasing temporal indeterminacy of the global ordering. We demonstrate a new method for
quantifying this indeterminacy that relies on solving temporal constraint problems to extract timelines, and show that TDTs result in up
to a 109% increase in temporal indeterminacy over their corresponding temporal graphs for the three corpora we examine. On average,
the increase in indeterminacy is 32%, and we show that this increase is a result of the TDT representation eliminating on average only
2.4% of total temporal relations. This result suggests that small differences can have big effects in temporal graphs, and the use of TDTs
must be balanced against their deficiencies, with tasks requiring an accurate global temporal ordering potentially calling for use of the
full temporal graph.
Keywords: Temporal Indeterminacy, TimeML,Temporal Information Extraction

1. Introduction
Extracting a representation of the temporal information in a
text is a useful yet challenging task within natural language
processing. Representations of temporal information can
facilitate question answering (Saquete et al., 2004), infor-
mation extraction (Wu et al., 2005), and summarization
(Liu et al., 2012), among many other tasks.
Researchers have developed several formalisms for repre-
senting temporal information expressed in text, each with
specific advantages and disadvantages. Temporal repre-
sentation languages that allow the representation of tempo-
ral graphs, such as Allen’s temporal algebra (Allen, 1983)
or the XML-based Temporal Markup Language (TimeML)
(Sauri et al., 2006), are the most flexible schemes for mark-
ing of events, temporal expressions, and temporal relations.
Temporal graphs expressed in these languages can be used
for inference or determining partial orders of events and
times. Although some of these languages for temporal
graphs are quite expressive (TimeML has 25 relation types)
they have certain limitations. First, the generality of tem-
poral graphs makes many operations on them computation-
ally hard. Second, they are less than ideal for visualization
purposes, as they are difficult for people to read and un-
derstand. Third, they only explicitly provide partial, local
orderings of events.
In response to these limitations, Cheng et al. (2007) in-
troduced the idea of the temporal dependency tree (TDT),
a more computationally efficient representation where all
events are arranged in a tree using only three temporal
relation types: BEFORE, AFTER, and OVERLAPS. Both
Kolomiyets et al. (2012) and Zhang and Xue (2018a) fur-
ther improved TDTs with more precise definitions and in-
creased expressivity. TDTs have the advantage that they
can be easily computed using adapted dependency parsers,
and extracting timelines from TDTs is much easier than
from temporal graphs.
Nevertheless, it is intuitive that TDTs should suffer from

temporal information loss relative to temporal graphs.
TDTs are restricted to a tree form, and so certain temporal
relationship that can be expressed in a graph cannot be ex-
pressed in the tree (e.g., cycles). Furthermore, all TDT ap-
proaches restrict the types of temporal relationships, elimi-
nating even more information. These omissions and restric-
tions should intuitively result in more indeterminacy in the
global ordering of times and events. We demonstrate here
a novel method for measuring the indeterminacy of a gen-
eral temporal graph (a class which includes TDTs), and pre-
cisely measure the increase in indeterminacy of TDTs over
TimeML graphs. We show that TDTs on average suffer
from a 16% increase in indeterminacy on account of their
tree form (resulting from the removal of only 2.4% of the
temporal relations relative to a TimeML graph), and an ad-
ditional 14% average increase in indeterminacy on account
of their restricted relation set, for an overall 32% average
increase in indeterminacy.
The paper is organized as follows. We first discuss re-
lated work (Section 2.). We then explain our methods
(Section 3.), followed by our results with discussion (Sec-
tion 4.). We conclude with the contributions of the work
(Section 5.).

2. Related Work
2.1. Temporal Algebras & TimeML
Allen’s interval algebra was the first attempt to model tem-
poral information in documents (Allen, 1983). It is a calcu-
lus for temporal reasoning that defines 13 relations between
time intervals. These relations are BEFORE, MEETS, OVER-
LAPS, STARTS, DURING, and FINISHES, their inverses,
and EQUALS. Allen’s algebra is what is called a qualita-
tive temporal framework (Barták et al., 2014). In a great
deal of later work, Allen’s conception of temporal alge-
bras was extended to quantitative frameworks, such as Sim-
ple Temporal Problems (STPs), Temporal Constraint Satis-
faction Problems (TCSPs), Disjunctive Temporal Problems
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(DTPs), and Temporal Networks with Alternatives (TNAs)
(Barták et al., 2014). Quantitative temporal frameworks al-
low precise reasoning about the metric temporal distances
between time points. Whether qualitative or quantitative,
the temporal graphs generated through Allen-like frame-
works can be checked for consistency. Allen introduced
a constraint propagation algorithm to do just that (Allen,
1983), using his composition table and a shortest path al-
gorithm, although he also showed by counterexample that
his algorithm was necessarily incomplete. Later, Vilain et
al. (1990) proved that full consistency checking must be
NP-complete.
Because of the utility of temporal frameworks for reason-
ing about time, and also the relevance of time to under-
standing natural language, researchers have sought to apply
these results to text understanding. This requires annotation
schemes that would allow a person or a machine to notate
the events, time points, and temporal relations expressed in
a text.
With regard to expressions of time itself, including expres-
sions of when something happened, how often something
occurs, or how long something takes, researchers have de-
veloped a sequence of TIMEX annotation schemes (Set-
zer, 2001; Ferro et al., 2001; Pustejovsky et al., 2003a)
for annotating expressions such as at 4 a.m. (when), ev-
ery 3 weeks (how often), or for 2 hours (how long). Be-
cause events are also involved in temporal relations, these
approaches developed into schemes for capturing events as
well. For example, the Translingual Information Detec-
tion, Extraction, and Summarization (TIDES) (Ferro et al.,
2001) is an XML-based annotation scheme that integrates
TIMEX2 expressions, events, and six types of temporal re-
lations.
Deficiencies in TIDES led to the development of TimeML,
another XML-based markup language for annotating tem-
poral information, originally targeted at news articles (Sauri
et al., 2006). TimeML added facilities for representing not
just Allen’s classic temporal relations, but also event co-
reference (IDENTITY), sub-event structure (aspectual rela-
tions) and relations of conditional, hypothetical, or coun-
terfactual nature (subordinating relations). In all there are
25 types of relations (called links) in TimeML: 14 tempo-
ral, 5 aspectual, and 6 subordinating. TimeML annotations
explicitly encode a temporal graph, where the nodes are
events or time expressions and edges are temporal links.
More precisely, we define a TimeML temporal graph, in
accordance with prior work, as follows:

Definition 1. TimeML Temporal Graph. A tempo-
ral graph is a graph T = (VT , ET ), where VT =
{e1, e2, . . . , ep, t1, t2, . . . tq} is a set of events ei and time
expressions ti, and ET = {l1, l2, . . . , lr} is a set of tem-
poral links li = (u, v, w), a tuple where u, v ∈ VT and
w ∈ L , where L is the set of TimeML link types.

2.2. Temporal Dependency Trees
Temporal dependency trees (TDTs) were first introduced by
Cheng et al. (2007), in which they sought to identify tem-
poral relations between events using a sequence labeling
model with features from a dependency parse tree. They
only used three temporal relations in their model: BEFORE,

AFTER, and OVERLAPS. They used an HMM combined
with an SVM as a sequence labeling model and achieved
0.75 F1 score on correctly identifying the link type (as well
as the labels NONE or VAGUE) between neighboring event
and times.
Later, Kolomiyets et al. (2012) proposed several improve-
ments to TDTs. They re-defined TDTs as a tree where
nodes are events and edges are temporal links, and ex-
panded the set of link types to six: BEFORE, AFTER, IN-
CLUDES, IS INCLUDED, OVERLAPS and IDENTITY. They
also proposed a timeline extraction method using TDTs.
They evaluated their system with an annotation study: two
annotators created TDTs for 100 short narrative texts (fa-
bles) and then they measured inter-annotator agreement be-
tween them. Using Krippendorff’s α as an agreement mea-
sure, the annotators achieved agreements of 0.86 for event
recognition, 0.82 for link recognition, and 0.70 link label
identification. This work generated an annotated corpus of
temporal dependency trees, but unfortunately this corpus
has not been made public.
Most recently Zhang and Xue (2018a) improved upon
Kolomiyets et al.’s approach by including time expressions
in the tree structure instead of just events. They used only
four relation types (BEFORE, AFTER, OVERLAPS, and IN-
CLUDES), but also included stative events (such as modals),
and automatically generated TDTs for a corpus that in-
cluded both news and narrative genres. They evaluated the
reliability of this approach by double annotation, having
two annotators manually generate TDTs for 20% of their
corpus, achieving F1 agreement scores of 0.97 on time ex-
pression recognition, 0.94 on event recognition, 0.86 on
link recognition, and 0.79 on link label identification. Im-
portantly, for the first time, they provided a precise defini-
tion of the TDT structure:

Definition 2. Temporal Dependency Tree. A temporal de-
pendency tree structure is defined as a 4-tuple (T,E,N,L),
where T is a set of [TimeML] temporal expressions, E is
a set of [TimeML] events, and N is a set of pre-defined
“meta” nodes not anchored to a span of text in the docu-
ment. [Elements from] T , E, and N are the nodes in the
dependency structure, and L is the set of edges in the tree,
where each element in L is a temporal link. (Zhang and
Xue, 2018a, p. 3099)

A TDT is rooted in a ROOT node which represents the
document creation time (DCT). The children of the root
are called meta-nodes, and represent time points defined
relative to the DCT. Three of the meta-nodes defined by
Zhang and Xue, and following Sauri et al. (2006), were
PAST REF, PRESENT REF, and FUTURE REF. They also
defined a fourth ATEMPORAL meta-node for timeless state-
ments. All other nodes in the TDT (descendants of the
meta-nodes) represent events or times. Visualizations of
a TDT are shown in Figure 1(b) and (c).
As mentioned above, there are 14 TimeML temporal re-
lations. Zhang and Xue mapped the 14 TimeML tempo-
ral relations into four relations in their parser, namely BE-
FORE, AFTER, OVERLAPStdt and INCLUDES. We use the
tdt subscript to indicate that their OVERLAPStdt definition
is different than Allen’s. In Allen’s temporal algebra, when
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Zhang and Xue (2018a)
TimeML Link Types Abstracted Link Types

A BEFORE B
A BEFORE BA IBEFORE B

B TERMINATES A

A AFTER B
A AFTER B

A IAFTER B

A BEGINS B

A OVERLAPStdt B

A BEGUN BY B
A ENDS B
A ENDED BY B
A SIMULTANEOUS B
A IDENTITY B
B INITIATES A
B CULMINATES A

A INCLUDES B
A INCLUDES BA DURING INV B

B CONTINUES A

A IS INCLUDED B
B INCLUDES AA DURING B

B REINITIATES A

Table 1: Mapping of 19 TimeML temporal and aspectual
link types into 4 abstract temporal link types used by Zhang
and Xue (2018a).

two events E1 and E2 are related by an OVERLAPS re-
lation (E1 OVERLAPS E2), it means the events intersect
in time but neither is completely contained in the other.
However, in Zhang and Xue’s TDTs, OVERLAPStdt stands
for a conjunction of six TimeML temporal relations: BE-
GINS,BEGUN BY, ENDS, ENDED BY, SIMULTANEOUS and
IDENTITY.
Zhang and Xue also define a non-temporal DEPENDS ON
link type that is only used to connect each meta-node to
their children. Their mapping is shown in Table 1. Since
this mapping essentially abstracts the class of temporal re-
lations, we refer to the TDTs defined by (Zhang and Xue,
2018a) as abstract TDTs. We refer to TDTs that use the
full set of TimeML temporal and aspectual link types as
full TDTs.

2.3. Corpora
We used three manually annotated TimeML corpora in this
work: TimeBank 1.2, the ProppLearner corpus, and the N2
corpus, all in English. TimeBank 1.2 is a collection of news
stories from various sources such as Public Radio Interna-
tional, Voice of America, and the New York Times (Puste-
jovsky and Lazo, 2003). The N2 corpus contains Islamic
Extremist stories including Inspire Magazine that were an-
notated with TimeML, among other things (Finlayson and
Corman, 2014). Finally, the ProppLearner corpus was de-
veloped to enable the machine learning of Vladimir Propp’s
morphology of Russian folktales, contains TimeML anno-
tations (Finlayson, 2017). We provide statistical informa-
tion about the corpora in Table 2.
We use TimeML corpora here because there is no corpus
that has both TimeML temporal graphs and TDTs anno-
tated on it. To our knowledge, there is only one publicly

available corpus of TDTs, the Temporal Dependency Tree
corpus, which is an automatically annotated collection of
Chinese news reports and fairy tale stories (Zhang and Xue,
2018). The TDTs in that corpus were generated using an
adapted dependency parser (Robaldo et al., 2011), but the
texts do not have corresponding TimeML graphs. We use
this corpus only to compare the raw indeterminacy of auto-
matically computed TDTs to our TimeML-derived TDTs.

3. Approach
In order to evaluate what is lost when moving from
TimeML temporal graphs to TDTs, we need texts which
have both TimeML and TDT annotations. This data could
be generated in several different ways. First, we could auto-
matically generate TimeML and TDT annotations for texts
using TimeML and TDT parsers. This is problematic be-
cause of the great deal of noise introduced by even state-
of-the-art TimeML and TDT parsers, which then obscures
what deficiencies are a result of the TDT representation as
opposed to parser performance. Second, we could use a
dataset which has gold standard annotations of TimeML
and TDTs; unfortunately, as mentioned above, these do
not yet seem to exist. There are numerous corpora with
gold-standard TimeML annotations, but we were unable to
find even a single manually annotated, publicly available
TDT corpus that also had TimeML annotations. One corpus
(the TDT corpus) has automatically generated TDT annota-
tions, but no TimeML. The third option, which we use here,
is to generate TDTs programmatically from gold-standard
TimeML annotated texts. This approach guarantees that we
will have both a gold-standard TimeML annotations as well
as the best possible TDT for every text, so that they can be
directly compared.

3.1. Generating TDTs
Because we are automatically generating TDTs from
TimeML graphs, and not generating TDTs using a TDT
parser, there is a question as to whether the TDTs are faith-
ful to the original TDT scheme. We first provide a brief
description of how TDT parsers work, so that it can be seen
that our generation algorithm (Algorithm 1) intuitively fol-
lows the automatic TDT parsing and thus produces a “best
possible” TDT.
A TDT parser, as described by Zhang and Xue (2018b),
starts by initializing a TDT with a ROOT node that rep-
resents the document creation time (DCT), and which has
four children (the meta-nodes): PAST REF, PRESENT REF,
FUTURE REF, and ATEMPORAL. The parser then proceeds
through the text in reading order. Every time the TDT
parser detects a new event or time expression, it attempts
to find a relationship between that event or time and an ex-
isting node in the TDT in a breadth-first manner. If a re-
lationship (link) is found to an existing node (by running a
link classifier, e.g., an SVM), the new event or time is added
as a child to that node, with the appropriate link type, and
removed from further consideration. If no relationship is
found, it is set aside and checked for a relationship with
each new node that is later added to the tree. If, at the end
of the text, there are still nodes that have no relationships
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Corpus Name Texts Words Events Times Relations Text Types

ProppLearner 15 18,862 3,438 142 2,778 Hero tales
N2 Corpus 67 28,462 2,345 349 4,854 Religious texts, Magazine
TimeBank 183 68,555 7,935 1,414 8,242 Broadcast news, Newswire, Biography
TDT Corpus 235 n/a 15,783 1,298 17,081 News reports, Fairytale stories

Total 500 115,879+ 29,501 3,203 32,955

Table 2: Summary of the corpora used in the experiments.

to any other nodes in the tree, they are added as children of
the ATEMPORAL meta-node.
To illustrate the TDT structure, we introduce here a snip-
pet from the TimeBank 1.2 text APW19980213.1320.tml
(Pustejovsky et al., 2003b), which we will use as an exam-
ple throughout the remainder of the paper. In this snippet,
underlined text refers to a marked TimeML event or tem-
poral expression, and is labeled with its id (e.g., e1 or t44)
from the annotation. To enhance understandability, we only
show events and times related to the FUTURE REF meta-
node, which corresponds to one top-level branch of the re-
sulting TDT.

DCT: 1998-02-13t41

Qantas will almost doublee1 its flights between
Australia and India by Augustt43 in the search
for new markets untouched by the crippling Asian
financial crisis. This movee28 comes barely
a montht44 after Qantas suspendede5 a number of
servicese29 between Australia, Indonesia, Thai-
land and Malaysia in the wake of the Asian eco-
nomic crisise30 . The airline has also cute7 all
flightse31 to South Korea.

The temporal graph for this snippet is shown in Figure 1(a).
We can generate a TDT from this temporal graph by fol-
lowing Zhang and Xue’s definition and procedure. During
the process, we generate two types of TDTs: first, TDTs
that use the full set of TimeML temporal and aspectual
links (full TDTs). Then we apply the abstraction mappings
shown in in Table 1 to produce TDTs that use only Zhang
and Xue’s four types (abstract TDTs).
The algorithm for generating full TDTs from TimeML
graphs is shown in Algorithm 1. It follows the TDT parsing
procedure almost exactly, but rather than using a classifier
to determine whether there is a relationship between a new
node and the TDT, it queries the TimeML graph. We begin
by initializing a FIFO queue with all events and times in the
TimeML graph such that they will be returned in text order
(line 2). We next initialize an empty TDT with a ROOT
node and add all four meta-nodes to the tree as children of
the root (lines 3–7). We then pop events or times from the
queue (call this event or time n; lines 8–20), first looking
through the tree in a breadth-first manner for an event or
time to which n is linked (line 11). The presence of a link
is determined by querying the TimeML graph. Note that
in a consistent TimeML graph no two nodes will be con-
nected by more than one temporal or aspectual link. If n
is not found to link to an existing node (line 12), then n is
added to the unlinked set for future processing (line 13). If

n is found to link to existing node, it is added as a child to
that node (line 15) and all unlinked nodes are checked for
relationships to the new node (lines 16–20). Any events or
times that remain unrelated to any other nodes at end of the
text are added as children to the ATEMPORAL meta-node
(line 21).

Algorithm 1 Generating a Full TDT
1: procedure GENERATEFULLTDT(G)

Require: G . TimeML graph
Require: N . FIFO queue
Require: U . set of as-yet unlinked events and times

2: N.pushAll(G.V ) . Add all events and times in text
order

3: T ← ROOT . initialize TDT with the ROOT node
4: T.ROOT.addChild(PAST REF ) . add meta-nodes
5: T.ROOT.addChild(PRESENT REF )
6: T.ROOT.addChild(FUTURE REF )
7: T.ROOT.addChild(ATEMPORAL)
8: while !N.isEmpty() do
9: n← N.pop()

10: for all v ∈ Tv do . iterate over tree breadth-first
11: l← GETLINK(G, n, v) . identify link, if any
12: if l = ∅ then
13: U.add(n)
14: else
15: v.addChildWithLink(n, l)
16: for all u ∈ U do . check all as-yet unlinked
17: l← GETLINK(G, n, u)
18: if l 6= ∅ then
19: n.addChildWithLink(u, l)
20: U.remove(u)

21: ATEMPORAL.addChildren(U)
22: return T

When this procedure is applied to the example temporal
graph in Figure 1(a), it produces the full TDT shown in
Figure 1(b). As can be seen 3 of the original 11 links in the
TimeML graph are omitted in the TDT. One of our main
questions is how much temporal information is lost in this
process, which we measure directly in Section 4.1.
As mentioned above, during the transforming we iterate
events and times in text order. We also experimented with
other orders to determine if the order of iteration mattered.
While different specific links were omitted for different or-
ders (e.g., reverse text order, or random), it resulted in the
same average loss of temporal information. The main rea-
son for this is that to transform a graph into a tree, the algo-
rithm must ultimately remove one edge from every cycle.
After generating full TDTs, we generated abstract TDTs by
applying the mappings shown in Table 1. Figure 1(c) shows
the abstract TDT for the example snippet.
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DEPENDS_ON

FUTURE_REF

IDENTITY

AFTER
ENDS

AFTER

AFTER

BEGINS

AFTER

ENDED_BY

e1

ENDED_BY

AFTER

AFTER

IDENTITY

IDENTITY

ENDS

ENDS

t43

FUTURE_REF

AFTERIS_INCLUDED

IDENTITY

INCLUDES

DEPENDS_ON

AFTER

AFTER

OVERLAPS

OVERLAPS

OVERLAPS

AFTER
INCLUDES

OVERLAPS

t43

e28

e5

e7

t44

e29 e30

e31

e1

e28

e5 t44

e29 e7 e30

e31 e31

e29 e7 e30

e5 t44

e28

e1

t43

(a) (b) (c)

Figure 1: Temporal structures for the example snippet, including (a) the full TimeML temporal graph, (b) a temporal
dependency tree which uses all link types (full TDT), and (c) a temporal dependency tree that uses only the abstract link
types (abstract TDT).

3.2. Extracting Timelines
We can precisely compare the information lost in mov-
ing from TimeML graphs to TDTs by converting both the
TimeML graphs and TDTs into a uniform representation,
namely, timelines. To extract a timeline, we first translate
the TimeML or TDT into a temporal constraint graph using
primitive temporal relations, and then solve the graph. This
translation is made by substituting each individual event or
time interval I by its corresponding pairs of start and end
time points I− and I+, and replacing each link between in-
tervals with conjunctions of primitive temporal constraints
(either < or =) between time points as shown in Table 3. In
addition to the replacements in the table, we also include
for each interval I the constraint that its starting point I−

must be less than its ending point I+. Following Barták et
al. (2014) we can then define a solution to temporal con-
straint problem as shown in Definition 3.

Definition 3. Temporal Constraint Problem. A temporal
constraint problem P = (T,C) where T = {t1, t2, . . .} is
a set of time points, and C = {c1, c2, . . .} is a set of tempo-
ral constraints between intervals, is consistent or solvable
if and only if a vector of integers (i1, i2, . . .) is a solution
(t1 = i1, t2 = i2, . . .) of the temporal graph that satisfies
all the constraints.

This means that if we can assign integers to the time points
such that all temporal constraints are satisfied, then the tem-
poral structure (TimeML temporal graphs, full TDT, ab-
stract TDT, etc.) is consistent and solvable.
To find a solution we used the off-the-shelf Java Constraint
Programming (JaCoP) solver (Kuchcinski and Szymanek,

2013). JaCoP is an open source library that offers a rich set
of constraint types as well as configurable solution search
methods. For this step we use the JaCoP setting that finds
the smallest solution, which assures that any differences in
the length of timelines are the result of temporal informa-
tion content, and not choice of solution. If JaCoP is able to
find a solution then it means the temporal structure is con-
sistent; otherwise it is inconsistent. We applied this method
to the TimeML temporal graphs, full TDTs, and abstract
TDTs for the TimeBank corpus, the N2 corpus, and Prop-
pLearner corpus, as well as to the abstract TDTs automati-
cally parsed by Zhang and Xue.
If the TimeML graphs are inconsistent this meant there
was an error in the manual annotation; we corrected these
graphs by hand using the original text as reference. There
were 9, 10, and 18 inconsistent texts in the ProppLearner,
N2 Corpus, and TimeBank corpus respectively. Because
the TDT Corpus is in Chinese, which we do not speak, we
were unable to correct these annotations, and so we dis-
carded inconsistent TDT annotations. Out of 235 TDT cor-
pus texts, 25 were inconsistent and were discarded.
Once we have integer assignments to time points for the
TimeML graph or TDT, we can sort these integers to ob-
tain the corresponding timeline. Because the same inte-
ger might be assigned to different time points, the length
of timelines can be measured in two ways: the number of
time points, which is directly proportional to the number
of events and times, or the number of time steps, which is
the number of integers in the solution to the temporal con-
straint problem. For instance, the timelines extracted from
the TimeML graph, full TDT, and abstract TDT for our ex-
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A BEFORE B (A+ < B−)
A AFTER B (B+ < A−)
A IBEFORE B (A+ = B−)
A IAFTER B (B+ = A−)
A BEGINS B (A− = B−) ∧ (A+ < B+)
A BEGUN BY B (A− = B−) ∧ (B+ < A+)
A ENDS B (B− < A−) ∧ (A+ = B+)
A ENDED BY B (A− < B−) ∧ (A+ < B+)
A DURING B (B− < A−) ∧ (A+ < B+)
A DURING INV B (A− < B−) ∧ (B+ < A+)
A INCLUDES B (A− < B−) ∧ (B+ < A+)
A IS INCLUDED B (B− < A−) ∧ (A+ < B+)
A SIMULTANEOUS B (A− = B−) ∧ (A+ = B+)
A IDENTITY B (A− = B−) ∧ (A+ = B+)

A INITIATES B same as B BEGUN BY A
A REINITIATES B same as B IS INCLUDED A
A TERMINATES B same as B BEFORE A
A CULMINATES B same as B ENDED BY A
A CONTINUES B same as B INCLUDES A

A OVERLAPStdt B A (BEGINS ∨ BEGUN BY ∨ IDENTITY ∨
ENDS ∨ ENDED BY ∨ SIMULTANEOUS) B

Table 3: Translation of the TimeML temporal and aspec-
tual links into primitive temporal relations between interval
start and end points. For an interval I (an event or a time)
the start point of the interval is denoted by I− and the end
point is denoted I+.

(a) -e29

-e30

+e29

+e31
+e30

-e5

-t44
-e7

+e7
+e5

-t43
-e28
-e1

+t43

+t44
+e28
+e1

-e31

(b)
-e31

-e30

-e29

+e30
+e31
+e29

-e7

-e5

-t44

+e7

+e5
-e28
-e1

-t43

+t44
+e28
+e1

+t43

Figure 2: Timelines corresponding to both the (a) TimeML
graph and (b) full & abstract TDT.

ample snippet are shown in Figure 2. The timeline for the
TimeML graph has 10 time steps and 18 time points. In
this example, the TimeML and TDT timelines both have the
same number of time points, but the number of time steps in
the TDT case is smaller on account of discarded temporal
information. In the general case, because TimeML graphs
encode subordinating relations which are completely dis-
regarded by TDTs, certain events and times might be re-
moved from the TDT timeline altogether, and so the num-
ber of time points in TDT timelines can be smaller than in
the equivalent TimeML timeline.

3.3. Computing Indeterminacy
We compare the information loss between timelines by
computing the indeterminacy of time point orderings rela-
tive to the original temporal graph or tree. Temporal graphs
or trees often do not have enough information to identify

(a) 5BEFORE1 2
3

4 BEFORE

BEFORE

BEFORE

BEFORE

(b) +
1

-
2

-
3

-
4

-
53

+
4
+

5
+

2
+-

1

3
+ - + - - + +

1 2 2 4 5 5 4

-
3
+

Figure 3: An example of temporal indeterminacy, illus-
trated by (a) an indeterminate temporal graph and (b) its
corresponding minimal timeline solution, with the indeter-
minate section marked in gray. The relative order of 3 and
4 is indeterminant.

a unique timeline. We call sections of the timeline that
have multiple possible solutions indeterminant. Similarly,
time points or time steps involved in these sections are also
called indeterminant.
We give a simple example of a temporally indeterminant
TimeML graph in Figure 3. For this temporal graph, the
uniquely determined orderings include the first and last sec-
tions of the timeline, namely 1− < 1+ < 2− < 2+ < 3, 4
and 3, 4 < 5− < 5+. On the other hand, the order of 3 and
4 is indeterminate. There are 11 possible solutions for the
ordering of the start and end points of these two intervals.
An algorithm for identifying indeterminacies is shown in
Algorithm 2. The algorithm works by comparing all pos-
sible timelines, which the JaCoP solver can provide. The
algorithm iterates through all adjacent time point pairs in
the shortest timeline (lines 3–7), and checks to see if these
two points are adjacent in all other timelines (lines 5–6).
If they are not, the order of that pair is marked indetermi-
nate (line 7). In practice, it often takes considerable time to
compute all possible timelines. In our implementation, to
save time, we limited ourselves to 100 random alternative
timelines, and as such gives a lower-bound to the indeter-
minacy. With these results, we can visualize which portions
of the shortest timeline are indeterminate, as illustrated in
Figure 3. We can thus measure the temporal indeterminacy
of the TimeML graphs for the three TimeML corpora, and
the TDTs for all four corpora. The amount of indetermi-
nacy can be measured in a number of ways: we can count
the number of indeterminate time points or time steps; the
number of indeterminate sections; or the fraction of time
steps or time points that are indeterminate. Detailed results
are presented in Section 4.2. and Table 6.

Algorithm 2 Identifying Indeterminacies
1: procedure FINDINDETERMINATESECTIONS(s, T )

Require: s . shortest timeline
Require: T . all other timelines

2: d← ∅ . map of time point pairs to boolean
3: for all p← 〈ti, ti+1〉 ∈ s do . neighboring time points
4: d(p)← false
5: for all t ∈ T do . for all other timelines
6: if p /∈ t then . if the pair are not neighbors
7: d(p)← true . mark the pair indeterminant
8: return d
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Corpus # TimeML # Links %
Links Omitted Omitted

ProppLearner 3,900 24 0.6%
N2 Corpus 3,273 98 3.0%
TimeBank 5,058 166 3.3%

Total or Average 12,231 288 2.4%

Table 4: Counts of temporal relations present in the
TimeML graphs and omitted in the TDTs.

3.4. Implementation
Our implementation was written in Java, building upon
the JaCoP constraint solving tool as mentioned above, and
takes as input TimeML (.tml), Story Workbench (.sty),
or TDT (.tdt) files. Although the constraint satisfaction
problem is in theory NP-complete, our experiments took
no longer than than a second on a current, standard con-
sumer laptop (2.4 GHz 4-core Intel i7 3630QM with 8GB
of RAM). We release our implementation and the timelines
for use by other researchers1.

4. Results & Discussions
4.1. Omitted Temporal Relations
Using Algorithm 1 we transformed the TimeML graphs
from the 265 texts (including corrected texts) in the Time-
Bank, N2, and ProppLearner corpora into full TDTs. The
overall counts of TimeML relations and omitted links is
shown in Table 4, and on average 2.4% of temporal rela-
tions are omitted. The two reasons for these omissions are
(1) tree nodes may only have one parent, and (2) the TDT
representation ignores subordinating links. This observa-
tion emphasizes that in the general case TDTs cannot rep-
resent all of the temporal information in a text.

4.2. Increase in Indeterminacy
After extracting full TDTs from the corpora we generated
abstract TDTs as described at the end of Section 3.1., and
extracted timelines from the TimeML graphs, full TDTs,
and abstract TDTs. Table 5 shows various characteristics
of the timelines so extracted, including their average length
in terms of both time steps and time points (first and sec-
ond groups of columns), total number of time points (third
group), and average percentage decrease of TDT timeline
lengths relative to TimeML timelines in terms of time steps
(last group). In the last column group, we see that over-
all timeline lengths in full and abstract TDTs decrease by
anywhere from 3.4% to 14.7% on average.
We applied Algorithm 2 to these timelines to identify inde-
terminate sections and time points; Table 6 shows the re-
sults. We can compare the relative indeterminacy of time-
lines by computing the percentage of time steps that are as-
signed an indeterminate time point (last group of columns).
Transformation of TimeML graphs into a full TDT in-
creases the temporal indeterminacy by 76%, 16%, and 22%
(average 22%) for the ProppLearner, N2, and TimeBank

1The publicly available code and data is available through
the FIU Dataverse, at DOI https://doi.org/10.34703/
gzx1-9v95/29YPVR

corpora, respectively. These fractions are computed by di-
viding the numbers in the second-to-last column of Table 6
by those in the third-to-last column. Similarly, transforma-
tion of TimeML graphs into abstract TDTs increased inde-
terminacy by 109%, 51%, and 25% (average 32%). Over-
all, 11,437 out of 14,671 (78%) time points are indetermi-
nate for abstract TDT timelines and 10,023 out of 14,671
(70%) are indeterminate for full TDT timelines, compared
with 8,769 out of 15,623 (56%) for TimeML timelines.
Thus, even full TDTs increase temporal indeterminacy sig-
nificantly compared to TimeML graphs. In contrast to time
points, on average 52.2% of time steps in TimeML time-
lines are indeterminate, compared with 67.2% and 78.1%
of time steps in full and abstract TDT timelines. This in-
crease in indeterminacy is potentially important to down-
stream NLP stages; for example, for a question answering
system that is addressing temporal or causal questions, the
text may provide enough information to produce a single
answer, but a TDT representation may not include all of
that information, making it impossible for the QA system
to answer unambiguously.

5. Contributions
We have made two contributions in this paper. First, we
presented an algorithm that transforms temporal graphs to
full or abstracted TDTs. This allows a direct comparison
of TimeML and TDT formalisms, because although there a
several corpora with TimeML annotations, there are as yet
no corpora annotated with both TimeML graphs and TDTs.
Second, by transforming TimeML graphs and TDTs into
timelines we showed that the TDTs are significantly more
temporally indeterminant relative to TimeML graphs: any-
where from 24% to 109% depending on the corpus (aver-
age increase of 32%). This increase in indeterminacy is
attributable to the omission of a mere 2.4% of temporal re-
lations from TDTs. This suggests that in tasks where infor-
mation on the global ordering of events and times is impor-
tant, full TimeML representation is perhaps called for.
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Avg. Len. of Avg. Len. of Avg. % ↓ in
Main Timeline Main Timeline Total # of Time Timeline Len.
in Time Steps in Time Points Points / Corpus in Time Steps

TimeML Full Abs. TimeML Full Abs. TimeML Full Abs. Full Abs.
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only and includes only abstract TDTs, with inconsistent TDTs excluded (25 texts).

Total # Ind. Total # of Ind. Average # of Ind. Avg. % of Time Steps in
Time Points / Corpus Sections / Corpus Sections / Text Timelines that are Ind.

TimeML Full Abs. TimeML Full Abs. TimeML Full Abs. TimeML Full Abs.
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