
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 2086–2094
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

2086

Automated Discovery of Mathematical Definitions in Text

Natalia Vanetik, Marina Litvak, Sergey Shevchuk and Lior Reznik
Department of Software Engineering

Shamoon College of Engineering, Beer Sheva, Israel
{natalyav,marinal,sergesh}@sce.ac.il, liorrezn@gmail.com

Abstract
Automatic definition extraction from texts is an important task that has numerous applications in several natural language processing
fields such as summarization, analysis of scientific texts, automatic taxonomy generation, ontology generation, concept identification, and
question answering. For definitions that are contained within a single sentence, this problem can be viewed as a binary classification of
sentences into definitions and non-definitions. Definitions in scientific literature can be generic (Wikipedia) or more formal (mathematical
articles). In this paper, we focus on automatic detection of one-sentence definitions in mathematical texts, which are difficult to
separate from surrounding text. We experiment with several data representations, which include sentence syntactic structure and word
embeddings, and apply deep learning methods such as convolutional neural network (CNN) and recurrent neural network (RNN), in
order to identify mathematical definitions. Our experiments demonstrate the superiority of CNN and its combination with RNN, applied
on the syntactically-enriched input representation. We also present a new dataset for definition extraction from mathematical texts. We
demonstrate that the use of this dataset for training learning models improves the quality of definition extraction when these models are
then used for other definition datasets. Our experiments with different domains approve that mathematical definitions require special
treatment, and that using cross-domain learning is inefficient.

Keywords: definition extraction, deep learning

1. Introduction

Definitions have a very important role in scientific literature
because they define the major concepts an article operates
with. They are basic building blocks of a scientific article
that are used to properly describe hypotheses, experiments
and analyses. Definitions are used in many automatic text
analysis tasks, such as question answering, ontology match-
ing and construction, formal concept analysis and structural
text summarization. Therefore, automatic definition extrac-
tion (DE) is an important field in natural language process-
ing and can be used for better text analysis and search.

Definitions play a key role inmathematics, but their creation
and use differs from those of "everyday language" defini-
tions (a comprehensive study is given in series of works
by Edwards and Ward in (Edwards and Ward, 2008; Ed-
wards and Ward, 2004; Edwards, 1998) inspired by writ-
ings of Richard Robinson (Robinson, 1962) and lexicog-
rapher Sidney Landau (Landau, 2001)). They distinguish
between extracted definitions report usage and have a truth
value (Edwards and Ward, 2004), while stipulated defini-
tions create usage, indeed create concepts, by decree but
have no truth value. Mathematical definitions frequently
do have a history as they evolve over time. The definition
we use for function, for instance, may not be the one that
was used a hundred years ago. The concept of connectiv-
ity has two definitions, path-connected and set-theoretically
connected (Edwards and Ward, 2008). Van Dormolen and
Zaslavsky (Van Dormolen and Zaslavsky, 2003) describe a
good mathematical definition as containing criteria of hier-
archy, existence, equivalence, and acclimatization. Desired
but not necessary criteria of a definition are minimality, el-
egance and degenerations. Not every definition appearing
in text is mathematical in the above sense. For example,
Wikipedia articles contain definitions of different style. We
see below twoWikipedia definitions, where just one of them

is a mathematical definition.
Definition 1:
Kane & Abel, formally known as ’Double Vision’, is an
American hip hop duo formed by twin brothers Daniel and
David Garcia that were founded by Master P in late 1995.
They were best known for their time with No Limit Records.

Definition 2:
In abstract algebra, an abelian group, also called a
commutative group, is a group in which the result of
applying the group operation to two group elements does
not depend on the order in which they are written. That is,
these are the groups that obey the axiom of commutativity.
Abelian groups generalize the arithmetic of addition of
integers. They are named after early 19th century
mathematician Niels Henrik Abel.

Naturally, we expect to find formal mathematical definitions
in highly abstract texts such as mathematical articles. The
negative aspect of a mathematical definition formulation is
the extensive use of formulas and notations, both in defi-
nitions and in surrounding text. The number of words in
such sentences is smaller than expected due to formulas,
and the sentences that do not contain definitions also use
a lot of notations and formulas. As an example of such
text, Definition 3 below contains highly formal definition
from Wolfram MathWorld. The first sentence in this text is
considered a definition sentence.
Definition 3:
Also called Macaulay ring, a Cohen Macaulay ring is a
Noetherian commutative unit ring R in which any proper
ideal I of height n contains a sequence x1, . . . , xn of
elements (called a ring regular sequence such that for all
i = 1, . . . , n, the residue class of xi in the quotient ring
R/〈x1, . . . , xi−1〉 is a non-zero divisor. If x1, . . . , xn

are indeterminate over a fieldK, the above condition
is fulfilled by the maximal ideal I =< x1, . . . , xn >.

2087

Current methods for automatic DE view it as a binary clas-
sification task, where a sentence is classified as a definition
or a non-definition. A supervised learning process is usu-
ally used for this task, employing feature engineering for
sentence data. The absolute majority of current methods
study generic definitions and not mathematical definitions
(see Section 2.).
In this paper we describe a supervised learning method for
automatic DE from mathematical texts. Our method ap-
plies convolutional neural network (CNN), recurrent neural
network (RNN), and their combinations to the raw text data
and sentence syntax structure, in order to detect definitions.
Our method is evaluated on three different corpora; two are
well-known corpora for generic DE and one is a new anno-
tated corpus of mathematical definitions, introduced in this
paper.
The main contributions of this paper are (1) a new anno-
tated corpus of mathematical definitions, (2) an adaptation
of deep neural networks for DE that uses new representa-
tions of input sentences fed to these networks, and (3) exten-
sive experiments with multiple network and input configu-
rations that are performed on different datasets. These all
contribute to showing that using specifically suited training
data along with suggested sentence representation signifi-
cantly improves extraction of mathematical definitions.
The paper is organized as follows. Section 2. contains
a survey of up-to-date related work. Section 3. describes
datasets, preprocessing, and the structure of neural networks
used in our approach. Section 4. provides evaluation results
and their analysis. Section 5. contains our conclusions.

2. Related Work
Prior work in the field of DE can be divided into three main
categories: (1) rule-based methods, (2) machine-learning
methods relying on manual feature engineering, and (3)
methods that use deep learning techniques.
Early works about DE from text documents belong to the
first category. These works rely mainly on manually crafted
rules based on linguistic parameters (Schuyler et al., 1993;
Klavans and Muresan, 2001; Schuyler et al., 1993; Saggion
and Gaizauskas, 2004; Storrer and Wellinghoff, 2006; Borg
et al., 2009).
The second category of DE algorithms relies on semi-
supervised and supervisedmachine learning that use seman-
tic and other features to extract definitions. This approach
generates DE rules automatically but relies on feature en-
gineering to do so (Fahmi and Bouma, 2006; Westerhout
et al., 2007; Westerhout, 2009; Navigli and Velardi, 2010).
Many recent works explored lexico-syntactic and syntactic
dependencies in order to distinguish between definitions and
regular texts (Reiplinger et al., 2012; Boella and Di Caro,
2013; Espinosa-Anke andSaggion, 2014; Anke et al., 2015).
The DefMiner system, proposed in (Jin et al., 2013), uses
Conditional Random Fields (CRF) and hand-crafted shal-
low parsing patterns to identify definitions in both word and
sentence levels.
Algorithms in the third category use Deep Learning (DL)
techniques for DE, often incorporating syntactic features
into the network structure. Li et al. (2016) uses Long Short-
Term Memory (LSTM) and word vectors to identify def-

initions and then tests this approach on the English and
Chinese texts. The authors of (Anke and Schockaert, 2018)
combine CNN and RNN, based on syntactic features and
word vector representation of sentences for DE. We use
the approach of (Anke and Schockaert, 2018) as a starting
point and as a baseline for our method. The difference be-
tween our method and the above algorithms is a novel text
representation and network architectures that ensure better
performance.
Our approach is based on the observation that the definition
sentences are usually different from regular sentences in
both lexical and grammatical levels. Therefore, we hypoth-
esize that representing sentenceswith both types of informa-
tion should improve their inference. We follow the standard
approach to capture the semantic differences between texts
by considering word embeddings instead words themselves.
We also hypothesize that the automatic feature engineer-
ing performed by neural networks and context-aware clas-
sification models can assist each other and achieve better
performance cooperatively than separately.

3. Methodology
Our approach uses a matrix representation of a sentence,
where every word and every syntactic dependency in that
sentence is represented by a word vector (Figure 1 depicts
the pipeline).
We define several deep neural network architectures that
combine CNN and RNN layers in a different way. We train
every network on preprocessed1 text data, where every sen-
tence is labeled as a definition or a non-definition. During
testing, we use the pre-trained network for DE.

3.1. Sentence representation parameters
To represent sentence words, we use standard sentencemod-
eling for CNNs (Kim, 2014), where every word w is repre-
sented by its k-dimensional word vector ~w (Mikolov et al.,
2013), and all sentences are assumed having the same length
n, using zero padding where necessary. An entire sentence
is then represented by n× k zero-padded matrix Sn×k. We
use k = 300 and n = maxi{length of sentence #i}.
Syntactic dependency, in the dependency parse tree of a sen-
tence, has the form (wi, wj , dij), where wi, wj are words
and dij is the dependency label.2 For example, a tu-
ple (family ,Amiga,nsubj) represents dependency named
nsubj , which connects the word family with word the
Amiga .
We represent the dependency wordswi, wj of a dependency
(wi, wj , dij) by a single vector, denoted by ~rij , computed
in one of the following ways:

• Normalized sum ~rij
avg := 1

2 (~wi+ ~wj) of word vectors
~w1 and ~w2. The resulting vector has 300 dimensions.

• Concatenation ~rij
c := ~w1 ◦ ~w2 of the corresponding

word vectors ~w1 and ~w1. The resulting vector has 600
dimensions.

1 We applied the following text preprocessing steps: sentence
boundary detection, tokenization, and dependency parsing with
Stanford CoreNLP package (Manning et al., 2014).

2 The Stanford CoreNLP parser supports 46 dependency types.

2088

Figure 1: Pipeline of our approach

The dependency label dij is represented in one of the fol-
lowing ways:

• One-hot representation depij of the dependency label
over the search space of size 46.

• Concatenation depij ◦ depthij of one-hot dependency
label representation with the depth vector depthij con-
taining one number—the depth n ∈ Z≥0 of the depen-
dency edge in the dependency tree (edges starting in
the root of the tree have depth 0).

3.2. Neural network models
In this section we describe different neural network models
we have implemented and tested in this work.

3.2.1. Neural network structures
We use several different network configurations, described
below:
1. The convolutional network, denoted by CNN uses a

convolutional layer (LeCun et al., 1998) only.3

2. The CBLSTM network uses a CNN layer followed by
a bidirectional LSTM layer, following the approach of
(Anke and Schockaert, 2018).4

3. The recurrent network RNN that uses a single LSTM
layer.

4. The BLSTMCNN network that uses a bidirectional
LSTM layer followed by a CNN layer.

The main idea behind the choice of network configurations
was to examine the stacking orders of the CNN and RNN
layers to determine which is more beneficial for the DE
task.5

3.2.2. Input representation
The final sentence representation is a concatenation of the
word vector matrix with the dependency structure represen-
tation, enriched with the dependency label information.6
Below, we outline three main input configurations that we
have defined and tested on all our networks.

3 The convolutional layer applies a filter to each n-gram window
of 3 tokens, implying 3-grams. As other parameters, the window
size was set empirically.

4 The CNN layer is followed by the max pooling layer with a size
4.

5 Experiments with different number of CNN and LSTM layers
showed no improvements on the experimental data.

6 Zero-padding was used to ensure the same number of rows in
concatenated matrices.

1. Configuration m includes word vectors for sentence
words and the words of dependencies (normalized sum
of word vectors). Formally, m = Sn×k ◦ [~rijavg]ij

2. Configuration ml includes word vectors for sentence
words, dependency words, and dependency label rep-
resentations. Formally,ml = Sn×k ◦ [~rijavg ◦depij]ij

3. Configuration mld has full dependency information,
including concatenation of word vectors for depen-
dency words, dependency label, and dependency
depth. Formally, mld = [~rij

c ◦ depij ◦ depthij]ij

Figures 2 (A), 2 (B), and 2 (C) show how dependencies are
represented for configurationsm ,ml , andmld , respectively.

4. Experiments
Tests were performed on an Asus-X556U PC with 16GB
of RAM, 100 GB of PAGE memory, and an Intel Core
I7-7500U 2.70 GHz CPU.

4.1. Tools
The models were implemented with help of the following
tools: (1) Stanford CoreNLP wrapper (Manning et al.,) for
Python (tokenization, sentence boundary detection, and de-
pendency parsing) , (2) gensim (Řehůřek and Sojka, 2010)
(loading word2vec vectors), (3) Keras (Chollet and others,
2015) with Tensorflow (Abadi et al., 2015) as a back-end
(NN models), and (4) Scikit-Learn (Pedregosa et al., 2011)
(evaluation with F1, recall, and precision metrics). All net-
works were trained with batch size 32 and 10 epochs.

4.2. Data
In our work we use the three datasets–WCL, W00 and
WFM–that are described below. For in-domain tests, ev-
ery dataset was evaluated on its own. In cross-domain tests,
a network or a baseline was trained on one of the datasets
andwas tested on another. Additionally, we used jointmulti-
domain dataset that contains themathematicalWFMdataset
with the other two datasets, denoted WCL&W00&WFM.
The number of sentences for each class, total number of
sentences, majority vote values, total number of words, and
number of joint words with two used word embedding mod-
els —Word2Vec and FastText7—are given in Table 1.

7 The self-embedding model, trained on the experimental data
itself, was also evaluated. However, due to a worse performance,
its results are not reported here.

2089

Figure 2: Input configurations
Dataset Definition Non- Total Majority Total Intersection Intersection

sentences definitions sentences vote words with Word2Vec with FastText
WCL 1871 2847 4718 0.603 21843 14368 16937
W00 731 1454 2185 0.665 7478 5307 6077
WFM 811 982 1793 0.548 4939 3379 3972
WCL&W00&WFM 3413 5283 8696 0.608 27822 17013 20590

Table 1: Datasets description

4.2.1. The WCL Dataset
The World-Class Lattices (WCL) dataset (Navigli et al.,
2010), introduced in (Navigli et al., 2010), was constructed
from manually annotated Wikipedia data in English. The
version that we used (WCL v1.2) contains 4719 annotated
sentences, 1,871 of which are proper definitions and 2,847
are distractor sentences, that have similar structures with
proper definitions, but are not actually definitions. This
dataset contains generic definitions in all areas and it is
not mathematically oriented. A sample definition sentence
from this dataset is

American Standard Code for Information Interchange
(TARGET) is a character encoding based on
English alphabet.

and a sample distractor is

The premise of the program revolves around TARGET,
Parker an 18-year-old country girl who moves back
and forth between her country family, who lives
on a bayou houseboat, and the wealthy Brents, who own
a plantation and pancake business.

In this corpus, following parts of definitions are annotated:
(1) the DEFINIENDUM field (DF), referring to the word
being defined and its modifiers, (2) the DEFINITOR field
(VF), referring to the verb phrase used to introduce a def-
inition, (3) the DEFINIENS field (GF) which includes the
genus phrase, and (4) the REST field (RF), which indicates
all additional sentence parts. According to the original an-
notations, existence of the first three parts indicates that a
sentence is a definition.

4.2.2. The W00 Dataset
TheW00 dataset (Jin et al., 2013) was compiled from ACL-
ARC ontology (Bird et al., 2008) and contains 2185 man-
ually annotated sentences, with 731 definitions and 1454
distractors; the style of the distractors is different from the
one used in the WCL dataset. A sample definition sentence
from this dataset is

Our system, SNS (pronounced “essence”), retrieves
documents to an unrestricted user query and
summarizes a subset of them as selected by the user.

and a sample distractor is

The senses with the highest confidence scores are the
senses that contribute the most to the
function for the set.

Annotation of the W00 dataset is token-based, with each
token in a sentence identified by a single label that indicates
whether a token is a part of a term (T), a definition (D),
or neither (O). According to the original annotation, a
sentence is considered to be a definition if every token in it
is labeled D.

4.2.3. The WFM Dataset
The WFM dataset (Vanetik et al., 2019) was created by us
by collecting and processing 2352 articles from Wolfram
Mathworld (Weisstein and others, 2007). The dataset con-
tains 1793 sentences, of which 811 are definitions and 982
are non-definitions. Sentences were extracted automatically
and thenmanually separated into two categories: definitions
and statements (non-definitions). It is freely available for
download from GitHub. A sample statement sentence from
this dataset is

The (7, 3, 2)-von Dyck group, also sometimes termed the
(2, 3, 7)-von Dyck group, is defined as the von Dyck group
with parameters (7, 3, 2).

and a sample non-definition is

Any 2-Engel group must be a group of nilpotency class 3.

4.3. Text preprocessing
With regard to all three datasets described above, we applied
the same text preprocessing steps in the following manner:

• Sentence splitting was derived explicitly from the
datasets, without applying any additional procedure, in
the following manner: WCL and W00 datasets came
pre-splitted, and sentence splitting for the new WFM
dataset was performed manually by our team.

• Tokenization and dependency parsing were performed
on all sentences with the help of the Stanford CoreNLP

2090

package (Manning et al., 2014). Because we filtered-
out the special symbols (and therefore many formulas
and notations) from a text, the sentences with less than
5 words were discarded from our analysis.

• For the WCL and W00 datasets used in (Anke and
Schockaert, 2018) for DE, we replaced parsing by
SpaCy (Honnibal and Johnson, 2015) with the Stan-
ford CoreNLP parser. We found that the latter tool
provided improved precision.

• We have tested two word embeddings options, the
Word2Vec (Google, 2013) with pre-trained vectors
obtained from the Google News corpus and fast-
Text (Grave et al., 2018) with vectors pre-trained on
English webcrawl and Wikipedia (available at (Grave
et al., 2018)).

4.4. Baselines and SOA
Using the WEKA software, we applied the following base-
lines: Simple Logistic Regression (SLR), Support Vector
Machine (SVM) and Random Forest (RF). To use these
methods on complete sentences, we computed vector repre-
sentation for every sentence as an average of word vectors
for all its words, andmarked sentences as belonging to either
’yes’ (a definition) or ’no’ (a non-definition) class. We have
also used the DefMiner system of (Jin et al., 2013), available
at https://github.com/YipingNUS/DefMiner,
as a baseline. Because DefMiner comes pre-trained, we do
not use it for the cross-domain evaluations.
As SOA methods, we applied CNN and LSTM networks on
our representation models. Coming inline with (Anke and
Schockaert, 2018), the best result among SOAmethods was
obtained by CNN on most datasets.

4.5. Results
We tested all network configurations and baselines (where
applicable) in three domain configurations described in fol-
lowing sections. We use the notation Network input nota-
tion for a network of type Network , accepting input of type
input as specified in Section 3.2.2.
In total, we have 4 network types, 3 input configurations,
and two word embedding models for each network, result-
ing in 24 final configurations. Our motivation was to test
the extent to which the order and presence of CNN and
RNN layers affect the results, and how the performance was
affected by the representation of sentence dependency in-
formation and different embedding models. In the tables
containing results, we show accuracy and F1 scores for both
embeddings, with the best scores for each dataset marked in
bold.

4.5.1. In-domain results
The first series of tests was performed for every dataset sep-
arately, using a random 66%-33% split of these datasets into
test and training sets, respectively. Results are given in Ta-
ble 2. Also, the chart in Figure 3 visualizes the performance
of all tested models, in comparison with four baselines. Be-
cause DefMiner does not work with embedding vectors, its
scores for both embeddings are the same. The first ob-
servation that can be seen from the chart on Figure 3 is

that all NN-based models perform much better than four
baselines. From Table 2 it can be seen that CNNml out-
performs other models in most scores and datasets. Other
models having best scores for some evaluation metrics are:
CBLSTMm, CNNmld, CBLSTMml, and CBLSTMmld.
As such, the following conclusions can be made: (1) the
CNN model—pure or integrated with BLSTM—achieves
better performance than RNN; (2) the CNN model gains
better performance with dependency information; (3) CNN
layer followed by a bidirectional LSTM layer is the best
combination of CNN and LSTM models for the DE task
among tested combinations. The superiority of models hav-
ing CNN layer as the first (or only) layer can be explained by
the ability of CNN to learn features and reduce the number
of free parameters in a high-dimensional sentence represen-
tation, allowing the network to be more accurate with fewer
parameters.

4.5.2. Cross-domain results
The second series of tests was performed using one of the
datasets as a training set, and another one as a test set,
where WFM is either test or training dataset. The aim of
these tests was to see how well mathematical definitions
could be located using general datasets as a training set, and
also whether training the system on mathematical defini-
tions improved recognition of general definitions. Results
are given in Table 3. Also, the chart in Figure 4 visualizes
the performance of all tested models in cross-domain exper-
iment, in comparison with three baselines. The outcomes
that are observed in this experiment are very similar to what
was observed in in-domain runs. The deep neural network
models using three representations (see Section 3.2.2.), sig-
nificantly outperformed all the baselines. From Table 3 it
can be seen that CBLSTMm and CBLSTMml outperform
other models in most scores and datasets. Other models
having best scores for some evaluation metrics are: CNNml

and CNNmld. As such, we can get the same conclusions
as for in-domain experiment: (1) the CNN model—pure
or integrated with BLSTM—achieves better performance
than RNN; (2) the CNN model usually gains better perfor-
mance with dependency information; (3) CNN layer fol-
lowed by a BLSTM layer is better combination for DE task
than BLSTM followed by CNN, which can be explained by
the ability of CNN to learn features and reduce the number
of free parameters in a high-dimensional sentence represen-
tation.
Another important observation can be made if we compare
between performance of in-domain and cross-domain ex-
periments. The performance of all models in cross-domain
learning is far below their performance in in-domain learn-
ing.8 As such, we can conclude that all three datasets rep-
resent different domains, and using cross-domain learning
with them is inefficient. As a private case, mathematical
definitions require special treatment. Models trained to de-
tect general definitions are not sufficient for the detection
of mathematical definitions. Likewise, models trained on
mathematical domain are not very helpful (below 80% of
accuracy) for detection of general definitions.

8 The best scores of cross-domain learning in non-mathematical
domain (WCL<->W00) were limited by 0.70− 0.73.

https://github.com/YipingNUS/DefMiner

2091

Figure 3: In-domain and multi-domain performance.
Dataset WCL W00 WFM MULTI
Method W2V FT W2V FT W2V FT W2V FT W2V FT W2V FT W2V FT W2V FT

acc acc F1 F1 acc acc F1 F1 acc acc F1 F1 acc acc F1 F1
RF 0.779 0.807 0.773 0.8 0.717 0.705 0.659 0.637 0.679 0.671 0.679 0.666 0.726 0.74 0.709 0.727
SL 0.817 0.859 0.817 0.859 0.703 0.721 0.677 0.697 0.714 0.703 0.714 0.699 0.750 0.773 0.743 0.770
SVM 0.824 0.756 0.824 0.863 0.707 0.717 0.645 0.665 0.704 0.704 0.701 0.698 0.752 0.779 0.741 0.775
DefMiner 0.797 0.797 0.741 0.741 0.819 0.819 0.644 0.644 0.617 0.617 0.371 0.371 0.766 0.766 0.654 0.654
RNNm 0.920 0.936 0.921 0.936 0.792 0.717 0.671 0.691 0.744 0.755 0.716 0.750 0.861 0.831 0.822 0.833
RNNml 0.931 0.940 0.931 0.940 0.790 0.702 0.682 0.691 0.757 0.733 0.722 0.727 0.852 0.820 0.801 0.828
RNNmld 0.928 0.935 0.928 0.936 0.793 0.688 0.687 0.680 0.754 0.747 0.725 0.746 0.864 0.845 0.826 0.845
CNNm 0.933 0.947 0.933 0.947 0.811 0.731 0.715 0.694 0.767 0.780 0.732 0.778 0.867 0.847 0.826 0.846
CNNml 0.946 0.956 0.946 0.956 0.828 0.755 0.740 0.746 0.800 0.784 0.778 0.783 0.872 0.830 0.832 0.861
CNNmld 0.929 0.947 0.929 0.947 0.797 0.734 0.694 0.726 0.808 0.764 0.783 0.759 0.867 0.846 0.831 0.844
BLSTMCNNm 0.917 0.931 0.917 0.931 0.763 0.696 0.637 0.684 0.760 0.755 0.734 0.755 0.863 0.846 0.826 0.843
BLSTMCNNml 0.935 0.951 0.935 0.951 0.794 0.699 0.693 0.691 0.761 0.747 0.722 0.747 0.816 0.835 0.744 0.840
BLSTMCNNmld 0.927 0.938 0.927 0.937 0.799 0.707 0.694 0.692 0.770 0.747 0.740 0.747 0.859 0.839 0.814 0.837
CBLSTMm 0.940 0.960 0.940 0.960 0.799 0.721 0.696 0.723 0.781 0.774 0.754 0.774 0.866 0.840 0.830 0.838
CBLSTMml 0.938 0.959 0.938 0.959 0.807 0.745 0.712 0.737 0.788 0.787 0.747 0.785 0.856 0.833 0.815 0.847
CBLSTMmld 0.936 0.947 0.937 0.947 0.809 0.745 0.714 0.741 0.791 0.779 0.761 0.778 0.863 0.852 0.825 0.849

Table 2: In-domain and multi-domain performance for all datasets.

4.5.3. Multi-domain results
The third series of tests was performed for the joint dataset
WCL&W00&WFM (denoted by MULTI in Table 2 and
Figure 3) with random 66%-33% split for training and test
data, respectively (keeping the proportions of mixed data).
Results are given in the last four columns of Table 2 and
four last series in Figure 3.
As it can be seen, CNNml and CNNmld outperform other
models in the joint dataset, supporting the same conclusions
as made for in-domain and cross-domain experiments.

4.6. Discussion
As can be observed from the experimental results, the pro-
posed models outperform all baselines in all three scenarios
(in-domain, cross-domain, and multi-domain). Also, com-
paringwith results reported in (Anke and Schockaert, 2018),
we can conclude that our models outperform SOAmethods.
We also can confirm that the use of syntactic information
as a part of input configurations (ml andmld) improves the
results in most of scenarios. Moreover, during experiments
we observe that when dependency encoding is used, keeping
separate information about sentencewords (asword vectors)
has no significant impact on classification results. This
allows us to decrease the model size and achieve better time
complexity without harming performance significantly.

We can conclude that mathematical definitions require spe-
cial treatment.

Finally, we see that generally both CNN and its combina-
tion with RNN is more beneficial than selecting a plain
RNN model. This is probably due to the ability of CNN to
perform abstract feature engineering before computing the
classification model.

Unfortunately, no recommendation can be made about
which word embedding to use for the DE task. Despite
our expectations about better outcome with FastText vectors
(due to its larger word coverage in three datasets), FastText
not always provided better results.

We tried to understand which sentences represent difficult
cases for our models. During annotation process, we found
out that multiple sentences (two of them can be seen below)
got different labels from different annotators. Finally, the
label for such sentences was decided bymajor voting, but all
annotators agreed that the decision was not unambiguous.
We believe that most of false positive and false negative
cases were created by such sentences and intend to explore

2092

Figure 4: Cross-domain performance.
Dataset WCL->WFM W00->WFM WFM->WCL WFM->W00
Method W2V FT W2V FT W2V FT W2V FT W2V FT W2V FT W2V FT W2V FT

acc acc F1 F1 acc acc F1 F1 acc acc F1 F1 acc acc F1 F1
RF 0.628 0.615 0.415 0.562 0.630 0.641 0.446 0.62 0.628 0.662 0.525 0.607 0.728 0.69 0.597 0.639
SL 0.573 0.679 0.415 0.668 0.572 0.669 0.388 0.668 0.654 0.721 0.565 0.71 0.713 0.676 0.578 0.643
SVM 0.625 0.675 0.412 0.654 0.628 0.646 0.404 0.627 0.648 0.722 0.558 0.706 0.726 0.679 0.591 0.623
RNNm 0.713 0.680 0.672 0.676 0.697 0.678 0.651 0.675 0.778 0.676 0.692 0.616 0.773 0.685 0.654 0.621
RNNml 0.724 0.657 0.679 0.633 0.675 0.680 0.634 0.680 0.768 0.688 0.637 0.641 0.769 0.675 0.622 0.613
RNNmld 0.712 0.668 0.681 0.653 0.663 0.632 0.625 0.625 0.785 0.703 0.710 0.674 0.755 0.685 0.629 0.657
CNNm 0.734 0.685 0.705 0.679 0.694 0.651 0.660 0.638 0.778 0.709 0.635 0.670 0.773 0.691 0.627 0.644
CNNml 0.737 0.681 0.708 0.666 0.704 0.676 0.673 0.676 0.792 0.711 0.684 0.674 0.768 0.701 0.640 0.663
CNNmld 0.723 0.643 0.694 0.597 0.676 0.669 0.636 0.668 0.815 0.716 0.761 0.681 0.765 0.692 0.650 0.648
BLSTMCNNm 0.715 0.682 0.680 0.674 0.659 0.651 0.623 0.643 0.789 0.725 0.723 0.710 0.766 0.681 0.645 0.661
BLSTMCNNml 0.722 0.660 0.686 0.635 0.672 0.646 0.635 0.647 0.753 0.707 0.640 0.681 0.765 0.687 0.631 0.660
BLSTMCNNmld 0.718 0.649 0.686 0.619 0.675 0.613 0.639 0.611 0.782 0.727 0.726 0.714 0.740 0.673 0.613 0.652
CBLSTMm 0.748 0.706 0.721 0.693 0.712 0.680 0.676 0.680 0.778 0.745 0.645 0.728 0.777 0.674 0.621 0.657
CBLSTMml 0.748 0.720 0.708 0.710 0.698 0.685 0.666 0.678 0.768 0.698 0.608 0.651 0.783 0.695 0.676 0.647
CBLSTMmld 0.725 0.671 0.689 0.646 0.660 0.646 0.624 0.646 0.799 0.729 0.721 0.703 0.766 0.675 0.643 0.645

Table 3: Cross-domain scores for all datasets.

more about that in our future error analysis.

Sentence 1 (annotated as definition):
An extremum may be local (a.k.a. a relative extremum;
an extremum in a given region which is not the overall
maximum or minimum) or global.

Sentence 2 (annotated as non-definition):
Exponential growth is common in physical processes such
as population growth in the absence of predators or
resource restrictions (where a slightly more general form
is known as the law of growth).

5. Conclusions
In this paper we introduce a framework for DE from math-
ematical texts, using deep neural networks. We propose
a novel representation for text sentences based solely on
the dependency information, and its combination with deep
neural networks, to handle the task. We also introduce a
new annotated dataset of mathematical definitions, called
WFM.
Our experiments demonstrate the superiority of CNN and
its combination with RNN, applied on the syntactically-
enriched input representation.
Also, we concluded that mathematical definitions require

special treatment, and that using cross-domain learning for
detection of mathematical definitions is inefficient.
In our future work, we plan to extend syntactic structure-
based representation from single sentences to the surround-
ing text. We also plan to expand the classic DE task to the
task of finding both definitions and sentences that reference
these definitions in the same text.

Acknowledgment
The authors are grateful to Evgeny Naftaliev for help in the
preparation and the annotation of the WFM dataset.

Bibliographical References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow:
Large-scale machine learning on heterogeneous systems.
Software available from tensorflow.org.

2093

Anke, L. E. and Schockaert, S. (2018). Syntactically aware
neural architectures for definition extraction. In Proceed-
ings of the 2018Conference of theNorthAmericanChap-
ter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 2 (Short Papers),
volume 2, pages 378–385.

Anke, L. E., Saggion, H., and Ronzano, F. (2015). Weakly
supervised definition extraction. In Proceedings of the In-
ternational Conference Recent Advances in Natural Lan-
guage Processing, pages 176–185.

Bird, S., Dale, R., Dorr, B. J., Gibson, B. R., Joseph,
M. T., Kan, M., Lee, D., Powley, B., Radev, D. R., and
Tan, Y. F. (2008). The ACL anthology reference cor-
pus: A reference dataset for bibliographic research in
computational linguistics. In Proceedings of the Inter-
national Conference on Language Resources and Evalu-
ation, LREC 2008, 26 May - 1 June 2008, Marrakech,
Morocco.

Boella, G. and Di Caro, L. (2013). Extracting definitions
and hypernym relations relying on syntactic dependencies
and support vector machines. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), volume 2, pages
532–537.

Borg, C., Rosner, M., and Pace, G. (2009). Evolutionary
algorithms for definition extraction. In Proceedings of
the 1st Workshop on Definition Extraction, pages 26–32.
Association for Computational Linguistics.

Chollet, F. et al. (2015). Keras. https://keras.io.
Edwards, B. S. and Ward, M. B. (2004). Surprises from
mathematics education research: Student (mis) use of
mathematical definitions. The American Mathematical
Monthly, 111(5):411–424.

Edwards, B. and Ward, M. B. (2008). Undergraduate
mathematics courses. Making the connection: Research
and teaching in undergraduate mathematics education,
73:223.

Edwards, B. (1998). Undergraduate mathematics majors’
understanding and use of formal definitions in real anal-
ysis. PhD thesis.

Espinosa-Anke, L. and Saggion, H. (2014). Applying de-
pendency relations to definition extraction. In Interna-
tional Conference onApplications ofNatural Language to
Data Bases/Information Systems, pages 63–74. Springer.

Fahmi, I. and Bouma, G. (2006). Learning to identify def-
initions using syntactic features. In Proceedings of the
Workshop on Learning Structured Information in Natu-
ral Language Applications.

Grave, E., Bojanowski, P., Gupta, P., Joulin, A., and
Mikolov, T. (2018). Learning word vectors for 157 lan-
guages. In Proceedings of the International Conference
on Language Resources and Evaluation (LREC 2018).

Honnibal, M. and Johnson, M. (2015). An improved non-
monotonic transition system for dependency parsing. In
Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1373–1378,
Lisbon, Portugal, September. Association for Computa-
tional Linguistics.

Jin, Y., Kan, M.-Y., Ng, J.-P., and He, X. (2013). Min-

ing scientific terms and their definitions: A study of the
acl anthology. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing,
pages 780–790.

Kim, Y. (2014). Convolutional neural networks for sen-
tence classification. arXiv preprint arXiv:1408.5882.

Klavans, J. L. and Muresan, S. (2001). Evaluation of the
definder system for fully automatic glossary construc-
tion. In Proceedings of the AMIA Symposium, page 324.
American Medical Informatics Association.

Landau, S. I. (2001). Dictionaries: The art and craft of
lexicography. Cambridge University Press, 2nd edition.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.

Li, S., Xu, B., and Chung, T. L. (2016). Definition ex-
traction with lstm recurrent neural networks. In Chi-
nese Computational Linguistics and Natural Language
Processing Based on Naturally Annotated Big Data.
Springer, pp. 177–189.

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard,
S., and McClosky, D. (2014). The stanford corenlp nat-
ural language processing toolkit. In Proceedings of 52nd
annual meeting of the association for computational lin-
guistics: system demonstrations, pages 55–60.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111–
3119.

Navigli, R. and Velardi, P. (2010). Learning word-class
lattices for definition and hypernym extraction. In Pro-
ceedings of the 48th Annual Meeting of the Association
for Computational Linguistics, pages 1318–1327. Asso-
ciation for Computational Linguistics.

Navigli, R., Velardi, P., Ruiz-Martínez, J. M., et al. (2010).
An annotated dataset for extracting definitions and hyper-
nyms from the web. In LREC.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
(2011). Scikit-learn: Machine learning in Python. Jour-
nal of Machine Learning Research, 12:2825–2830.

Řehůřek, R. and Sojka, P. (2010). Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta, May. ELRA. http://is.muni.cz/
publication/884893/en.

Reiplinger, M., Schäfer, U., and Wolska, M. (2012). Ex-
tracting glossary sentences from scholarly articles: A
comparative evaluation of pattern bootstrapping and deep
analysis. In Proceedings of the ACL-2012 Special Work-
shop on Rediscovering 50 Years of Discoveries, pages
55–65. Association for Computational Linguistics.

Robinson, R. (1962). Definitions. Oxford University Press,
1st edition.

Saggion, H. and Gaizauskas, R. J. (2004). Mining on-line

https://keras.io
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

2094

sources for definition knowledge. In FLAIRS Confer-
ence, pages 61–66.

Schuyler, P. L., Hole, W. T., Tuttle, M. S., and Sherertz,
D. D. (1993). The umls metathesaurus: representing
different views of biomedical concepts. Bulletin of the
Medical Library Association, 81(2):217.

Storrer, A. and Wellinghoff, S. (2006). Automated detec-
tion and annotation of term definitions in german text
corpora. In Proceedings of LREC, volume 2006.

Van Dormolen, J. and Zaslavsky, O. (2003). The many
facets of a definition: The case of periodicity. The Jour-
nal of Mathematical Behavior, 22(1):91–106.

Weisstein, E. et al. (2007). Wolfram mathworld. http:
//mathworld.wolfram.com/.

Westerhout, E., Monachesi, P., and Westerhout, E. (2007).
Combining pattern-based and machine learning meth-
ods to detect definitions for elearning purposes. In Pro-
ceedings of RANLP 2007 Workshop “Natural Language
Processing and Knowledge Representation for eLearning
Environments.

Westerhout, E. (2009). Definition extraction using linguis-
tic and structural features. In Proceedings of the 1stWork-
shop on Definition Extraction, pages 61–67. Association
for Computational Linguistics.

Language Resource References
Google. (2013). word2vec. code.google.com/
archive/p/word2vec/.

Grave, E., Bojanowski, P., Gupta, P., Joulin, A.,
and Mikolov, T. (2018). Fasttext word vec-
tors. https://fasttext.cc/docs/en/
crawl-vectors.html.

Jin, Y., Kan, M.-Y., Ng, J.-P., and He, X. (2013).
W00 definitions dataset. https://bitbucket.
org/luisespinosa/neural_de/src/
afedc29cea14241fdc2fa3094b08d0d1b4c71cb5/
data/W00_dataset/?at=master.

Manning, C., Surdeanu, M., Bauer, J., Finkel, J.,
Bethard, S., and McClosky, D.). Python inter-
face to corenlp using a bidirectional server-client in-
terface. https://github.com/stanfordnlp/
python-stanford-corenlp.

Navigli, R., Velardi, P., Ruiz-Martínez, J. M., et al. (2010).
WCL definitions dataset. http://lcl.uniroma1.
it/wcl/.

Vanetik, N., Litvak, M., Shevchuk, S., and Reznik,
L. (2019). WFM dataset of mathematical defini-
tions. https://github.com/uplink007/
FinalProject/tree/master/data/wolfram.

http://mathworld.wolfram.com/
http://mathworld.wolfram.com/
code.google.com/archive/p/word2vec/
code.google.com/archive/p/word2vec/
https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
https://bitbucket.org/luisespinosa/neural_de/src/afedc29cea14241fdc2fa3094b08d0d1b4c71cb5/data/W00_dataset/?at=master
https://bitbucket.org/luisespinosa/neural_de/src/afedc29cea14241fdc2fa3094b08d0d1b4c71cb5/data/W00_dataset/?at=master
https://bitbucket.org/luisespinosa/neural_de/src/afedc29cea14241fdc2fa3094b08d0d1b4c71cb5/data/W00_dataset/?at=master
https://bitbucket.org/luisespinosa/neural_de/src/afedc29cea14241fdc2fa3094b08d0d1b4c71cb5/data/W00_dataset/?at=master
https://github.com/stanfordnlp/python-stanford-corenlp
https://github.com/stanfordnlp/python-stanford-corenlp
http://lcl.uniroma1.it/wcl/
http://lcl.uniroma1.it/wcl/
https://github.com/uplink007/FinalProject/tree/master/data/wolfram
https://github.com/uplink007/FinalProject/tree/master/data/wolfram

