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Abstract
There is a growing interest in creating tools to assist in clinical note generation using the audio of provider-patient encounters. Motivated
by this goal and with the help of providers and medical scribes, we developed an annotation scheme to extract relevant clinical concepts.
We used this annotation scheme to label a corpus of about 6k clinical encounters. This was used to train a state-of-the-art tagging model.
We report ontologies, labeling results, model performances, and detailed analyses of the results. Our results show that the entities related
to medications can be extracted with a relatively high accuracy of 0.90 F-score, followed by symptoms at 0.72 F-score, and conditions
at 0.57 F-score. In our task, we not only identify where the symptoms are mentioned but also map them to canonical forms as they
appear in the clinical notes. Of the different types of errors, in about 19-38% of the cases, we find that the model output was correct, and
about 17-32% of the errors do not impact the clinical note. Taken together, the models developed in this work are more useful than the
F-scores reflect, making it a promising approach for practical applications.
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1. Introduction
Medical providers across the United States are required to
document clinical visits in the Electronic Health Records.
This need for documentation takes up a disproportionate
amount of their time and attention, resulting in provider
burnout (Wachter and Goldsmith, 2018; Xu, 2018). One
study found that full-time primary care physicians spent
about 4.5 hours of an 11-hour workday interacting with the
clinical documentation systems, yet were still unable to fin-
ish their documentation and had to spend an additional 1.4
hours after normal clinical hours (Arndt et al., 2017).
Speech and natural language processing are now suffi-
ciently mature that there is considerable interest, both in
academia and industry, to investigate how these technolo-
gies can be exploited to simplify the task of documenta-
tion, and to allow providers to dedicate more time to pa-
tients. While domain-specific automatic speech recognition
(ASR) systems that allow providers to dictate notes have
been around for a while, recent work has begun to address
the challenges associated with generating clinical notes di-
rectly from speech recordings. This includes inducing topic
structure from conversation data, extracting relevant infor-
mation, and clinical summary generation (Quiroz et al.,
2019). In one recent work, authors outlined an end-to-end
system; however, the details were scant without empirical
evaluations of their building blocks (Finley et al., 2018a).
One of the simplistic approaches uses a hand crafted fi-
nite state machine based grammar to locate clinical entities
in the ASR transcripts and map them to canonical clinical
terms (Happe et al., 2003). This seems to perform well
in a narrowly scoped task. A more ambitious approach
mapped ASR transcripts to clinical notes by adopting a
machine translation approach (Finley et al., 2018b). How-
ever this performed poorly. To address the difficulty in ac-
cessing clinical data, researchers have experimented with
synthetic data to develop a system for documenting nurse-
initiated telephone conversations for congestive heart fail-
ure patients who are undergoing telemonitoring after they
have been discharged from the hospital (Liu et al., 2019).

In their task, a question-answer based model achieved an F-
score of 0.80. This naturally raises the question of how well
state-of-art techniques will perform in helping the broader
population of clinicians such as primary care providers.

One might expect that the task of extracting clinical con-
cepts from audio faces challenges similar to the domain
of unstructured clinical texts. In that domain, one of the
earliest public-domain tasks is the i2b2 relations chal-
lenge, defined on a small corpus of written discharge sum-
maries consisting of 394 reports for training, 477 for test,
and 877 for evaluation (Uzuner et al., 2011). Given the
small amount of training data, not surprisingly, a dispro-
portionately large number of teams fielded rule-based sys-
tems. Conditional random field-based (CRF) systems (Sut-
ton and McCallum, 2011) however did better even with
the limited amount of training data (Uzuner et al., 2010).
Other i2b2/n2c2 challenges focused on coreference resolu-
tion (Uzuner et al., 2012), temporal relation extraction (Sun
et al., 2013), drug event extraction (Henry et al., 2019)
on medical records, and extracting family history (Azab et
al., 2019). Even though the text was largely unstructured,
they benefited from punctuation and capitalization, section
headings and other cues in written domain which are un-
available in audio to the same extent.

With the goal of creating an automated medical scribe,
we broke down the task into modular components, includ-
ing ASR and speaker diarization which are described else-
where (Shafey et al., 2019). In this work, we investigate
the task of extracting relevant clinical concepts from tran-
scripts. Our key contributions include: (i) defining three
tasks – the Medications Task, the Symptoms Task, and the
Conditions Task along with principles employed in devel-
oping the annotation guidelines for them (Section 2.); (ii)
measuring the label quality using inter-labeler agreements
and refining the quality iteratively (Section 3.), (iii) evaluat-
ing the performance of the state-of-the-art models on these
tasks (Section 4.), and (iv) a comprehensive analysis of the
performance of the models including manual error catego-
rization (Section 5.). The corpus we have created in this
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work is based on private, proprietary data that cannot be
publicly shared. Instead, we are sharing the learnings from
our experience that might be useful for the wider commu-
nity as well as the detailed labeling guidelines as supple-
mentary material in the extended version of this paper on
arxiv.org.

2. Corpus Development
The corpus of labeled conversations for this work was de-
veloped in conjunction with providers and medical scribes.
In our first attempt, we annotated all the relevant clinical
information with a comprehensive ontology that was de-
signed for generating clinical notes using a slot-filling ap-
proach. This was found to be an extremely challenging task
for the medical scribe labelers; it required a lot of cognitive
processing, took a long time to label, and the results still
had many discrepancies in quality and inter-labeler agree-
ment.

2.1. Annotation Guidelines
The corpus described in this paper was annotated using cer-
tain guiding principles, described below.
First, the cognitive load on the labelers needs to be reason-
ably low to ensure high inter-labeler agreement. This con-
sideration resulted in labeling each conversation in multiple
passes, where the labelers focused only on a small subset of
clinical concepts in each pass. They were instructed to ig-
nore clinical information unrelated to the task at hand.
Second, the annotation of all the clinical information neces-
sary to generate a clinical note was broken down into modu-
lar tasks, based on the type of entity, specifically, the symp-
toms, the medications, and the conditions. In each task,
labelers focused on annotating the entities along with their
coreferences and their attributes. For example, in the Med-
ications Task, the labelers focused on the medications and
their associated frequencies, dosages, quantities, and dura-
tion. The relationships between them were marked using
undirected links. For simplicity, we ignored attributes of
attributes, for example, taking one dosage of a medication
in the morning and a different dosage in the evening.
Third, the guidelines were refined using a few iterations
of experimentation and feedback to improve inter-labeler
agreement before labeling the task. Finally, the ontol-
ogy was pruned to retain clinical concepts with high inter-
labeler agreement and sufficiently high occurrences so they
could be modeled with the available data.

2.2. Description of the Corpus
The corpus consists of recordings and transcripts of pri-
mary care and internal medicine provider-patient encoun-
ters. The recordings were split into train, development and
test sets consisting of about 5500, 500 and 500 encounters
respectively. For measuring the generalization of the model
results, the development and test splits were created in such
a way that the providers are mutually exclusive. There were
no identifiers associated with patients, thus there may be
patient overlap across the sets.

2.3. Symptoms Task
The Symptoms Task focused on extracting symptoms de-
scribed in the medical encounter so that they could be doc-

umented in the History of Present Illness (HPI), Review of
Symptoms (ROS) and other sections of the clinical note.
Thus, the ontology was designed to mirror the language and
organization of symptoms in the note; the colloquial phras-
ing that patients use to describe symptoms is tagged with a
clinically appropriate entity from the ontology.

Organ System Symptom Entities

Constitutional
Const:Fever
Const:Chills
Const:Difficulty Sleeping

Gastrointestinal
GI:Abdominal Distension
GI:Abdominal Pain
GI:Vomiting

Neurologic
Neuro:Headache
Neuro:Dizziness
Neuro:Seizure

Table 1: An excerpt of the entities in the symptoms task.

As shown by an excerpt in Table 1, the ontology is or-
ganized in a categorical fashion, starting with a coarse-
grained organ system which is further broken down into
finer-grained symptom entity tags. The benefit of this ap-
proach is that the organ system can be used to organize
symptoms into the ROS section of the note, even if the
granular symptom entity isn’t correctly inferred. The full
ontology contains 186 symptom entities mapped to 14 or-
gan systems.
The attributes for the Symptoms Task, illustrated in Table 2,
were chosen based on the HPI elements in the CMS Eval-
uation and Management Service Documentation Guide-
lines (HHS.gov, 2017). After the manual labels were gener-
ated, the set was pruned to remove entities with low counts
and low inter-labeler agreements as these would be hard to
model. This resulted in 88 symptom labels.

Type Attribute

Status Experienced
Not Experienced

Property Duration
Location
Severity/Amount
Frequency

Table 2: The attributes of symptom entities.

The status was marked by adding a second label to the en-
tity. This choice sidestepped the more difficult task of iden-
tifying the words that signal whether a symptom was expe-
rienced or not. Unlike written text, the status is not explic-
itly mentioned. Instead, in a conversation, this is implied
from the context, spread over multiple speaker turns and
not easily associated with specific words.
The example in Table 3 illustrates how a conversation was
labeled using the ontology for the symptoms task. There
were a few challenges in accurately labeling the relevant
content words. The annotators were instructed to assign the
most specific label, but there were times when the context
does not provide sufficient information. In such cases, they
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PT: I’ve been having stomach issues around here
for the last 2 weeks. It’s bad.

DR: Okay, in the upper abdomen. What does it feel
like?

PT: It kind of comes and goes and hurts. Sometimes
I feel queasy.

Content Span Symptom Label
stomach issues GI:Other; Experienced

2 weeks Property:Duration
bad Property:Severity/Amount

upper abdomen Property:Location
comes and goes Property:Frequency

hurts GI:Abdominal Pain; Experienced
queasy GI:Nausea; Status:Experienced

sometimes Property:Frequency

Table 3: An example symptoms task with its labels.

are instructed to assign the coarser system category along
with a default of Other. Following this guideline, “stomach
issues” in the above example would be assigned GI:Other.
In addition, we mapped patients’ layman description of a
symptom to a normalized form. In the illustrative exam-
ple, the patient’s described as feeling “queasy” and that is
mapped to the clinical term Nausea. One advantage of this
mapping is that we avoid an explicit normalization step that
is commonly used in the literature.
Lastly, in provider-patient conversations, gestures and
words are often used to indicate information about the
symptoms, such as using the word “here” to refer to the
part of the body where the symptom is experienced. The
lack of verbalization of this information makes it difficult
for an automated system to fully capture all relevant infor-
mation. However, when providers clarify the location (“up-
per abdomen”), this helped in the ultimate task to automate
the completion of the note.

2.4. Medications Task
The ontology for the Medications Task was designed to
capture information related to all medications ranging from
a patient’s history to future prescriptions. While the symp-
toms could be reduced to a closed set (based on how they
appear in the clinical notes), the list of medications is large
and continually expanding. Therefore, the medication en-
tity was treated as an open set, and the catch all Drug
label was applied to all direct and indirect references to
drugs. This included specific and non-specific references,
such as “Tylenol”, “the pain medication”, and “the med-
ication”. The attributes related to the medication entity
that were annotated include Prop:Frequency, Prop:Dosage,
Prop:Mode, and Prop:Duration.
In the illustrative example in Table 4, the entities
– “diabetes medications”, “Sulfonylurea”, “Amaryl”,
“glimepiride” – are annotated with the Drug label, while
“1 mg”, “pill”, “everyday” are their attributes.
One challenge encountered in this task was choosing a spe-
cific label when other labels are equally valid. For exam-
ple, “90 day sample” could be marked as the total quantity

DR: Are you taking any diabetes medication?
PT: My kidney doc just changed the pill.
DR: Oh, a Sulfonylurea. Like Amaryl?

The generic name is glimepiride.
PT: Yup, she started me on 1mg everyday.
DR: Do you use Insulin?
PT: The shot? Only my brother has to.

Content Span Medications Label
diabetes medication Drug

Sulfonylurea Drug
Amaryl Drug

glimepiride Drug
pill Property:Mode

1mg Property:Dose
everyday Property:Frequency

insulin Drug
the shot Property:Mode

Table 4: An example medications task with its labels.

consumed, or as the duration of the drug treatment. For in-
creasing consistency, the labelers were asked to choose the
labels using the preference in the order – Dose, Frequency,
Quantity, Duration, Mode.
Additionally, patients often referred to their medication us-
ing vague descriptors, such as “the pink pill”. In many
cases, the providers are able to infer the medication from
the context and so the annotators are instructed to label such
mentions.

2.5. Conditions Task
The Conditions Task, like the other two tasks, was designed
based on how the discussed condition shows up in the clin-
ical note. Even though conditions have some overlap with
symptoms, they refer to broader categories and are dis-
cussed typically using clinical terminology. Ambiguities
on whether a mention is a symptom or a condition was re-
solved by relying on the ICD-10 Code database. The con-
dition entities were categorized into – Condition:Patient,
Condition:Family History, and Condition:Other. The at-
tributes of conditions mirror that of symptoms, listed in
Table 2, plus an additional tag to capture the onset of the
condition, Prop:Onset/Diagnosis. An example of this task
is illustrated in Table 5.
One challenge in the Conditions Task is that there were only
a few mentions of conditions in each conversation, causing
labelers to overlook the mentions inadvertently. This was
mitigated with an automated method to improve recall as
discussed in Section 3.2..

2.6. Relations
Once all entities and attributes have been tagged and ex-
tracted from a conversation, the attributes need to be linked
to their associated entities in order for them to be useful
in downstream applications such as filling out sections of a
clinical note.
In this example, the duration and location are associated
with “stomach issues” while the frequency attribute is as-
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DR: Any history of diabetes?
PT: I have diabetes.
DR: When was that diagnosed?
PT: 10 years ago.
DR: OK, and it seems to be well-controlled.

Any history of high blood pressure in the family?
PT: My brother has early onset high blood

pressure.

Content Span Conditions Label
diabetes Condition:Patient

10 years ago Property:Time of Diagnosis
well-controlled Property:Severity

high blood pressure Condition:Family History
early onset Property:Time of diagnosis

Table 5: An example conditions task with its labels.

GI:Other, 
"stomach issues"

2 weeks

upper abdomen

GI:Nausea

sometimes

Figure 1: Illustration of relations for the example on the
Symptoms Task.

sociated with “nausea”. This would allow us to complete
the following information in the note:

Patient experienced stomach issues for 2 weeks
in the upper abdomen. Patient also experienced
nausea sometimes.

One difficulty we encountered in specifying links between
entities and their attributes arose because of synonymous
mentions. In the example illustrated in Table 4, the “1
mg” “pill” is equally related to “Sulfonylurea”, “Amaryl”
and “glimepiride”. The annotators sometimes constructed
an edge between the attributes and each of the drugs, and
at other times chose one drug to be a canonical reference
and create co-references for the other mentions of the drug.
This makes it difficult to estimate the model performance
reliably. The models developed for extracting relations us-
ing these annotations are described elsewhere (Du et al.,
2019b).

3. Task Iteration
3.1. Training & Quality Assurance
Before starting a large scale annotation task, a number of
steps were performed to refine the guidelines.
The process consisted of the following steps:

1. A small set of 3-5 conversations were labeled by a
team of experienced labelers using the guidelines.

2. Differences in their labels were resolved by them in
an adjudication session. In case the differences were

large, steps (1) and (2) were repeated. This resulted in
finalizing the guidelines and creating a reference set
for instructional purposes.

3. The guidelines were then introduced to the larger team
of labelers who were instructed to perform the same
labeling task on the reference set.

4. Labelers were then scored based on agreement with
the reference set. Those who scored well below the
average quality score were given further training be-
fore proceeding to the task.

Additionally, in order to maintain consistently high qual-
ity labels while labeling the training set, we developed a
quality assurance process. The process consisted of the fol-
lowing steps:

1. A team of experienced labelers created a reference set
of labels for 3-5 conversations of varying complexity.

2. The rest of labelers were assigned the conversations
from the reference set.

3. Labelers who scored highly with respect to the refer-
ence were chosen as reviewers.

4. The reviewers then reviewed the output of the other
labelers by correcting the labels and documenting er-
rors.

5. The feedback was sent to the labelers to incorporate
into future labeling efforts.

Ultimately, we found that performing this K-way qual-
ity assurance process helped improve consistency signifi-
cantly.

3.2. Automated Improvements
We explored different techniques to improve label quality.
During the Conditions Task, we noticed that labelers of-
ten overlooked the mention of conditions because they oc-
cur too infrequently in the conversation. Since the condi-
tions are often mentioned in their canonical form, we uti-
lized the Google Knowledge Graph to identify them in the
transcripts (Blog, 2012). The conditions identified by the
knowledge graph were presented to the labelers as optional
annotations that they can choose to use or discard. In or-
der to minimize biasing the labelers, these optional anno-
tations were presented only after the labelers finished their
task and were in the process of submitting their conversa-
tion. In a controlled experiment, we found a 0.10 absolute
improvement in recall from the labelers. Note, to avoid any
potential measurement bias, this assistance was only pro-
vided while labeling the training set and not on the devel-
opment and test sets where we relied labels from multiple
labelers to maintain consistency as described further in Sec-
tion 5.. Standard syntactic parsers were also investigated to
pre-fill numberical values correspodning to dose, duration,
frequency and quantity but was not employed in the label-
ing process.
We also experimented with using previously trained models
to try to highlight numerical or date/time attributes, such as
Dose, Duration, Frequency, or Quantity.
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3.3. Common Challenges
While there were unique challenges for each of the tasks, a
few challenges were common across them.
Despite the refinement of the ontologies and the continual
training of labelers, there were still errors in labeling be-
cause the task is non-trivial and requires considerable at-
tention. Certain residual errors were flagged using task-
specific validation rules. These rules caught the most egre-
gious errors, such as an attribute not being grouped with an
entity, or not double-tagging a symptom or condition with
its status.
A shared difficulty across all tasks was striking a balance
between making the annotations clinically useful (i.e. de-
veloping a path to use the annotations to construct a com-
plete HPI) while also reducing the cognitive burden for an-
notators. Through multiple experiments we uncovered sig-
nificant challenges that could or could not be resolved with
the addition, deletion, or substitution of tags in our ontolo-
gies.
The order in which clinically relevant events are described
is often important in constructing a comprehensible HPI;
for example, chest pain followed by shortness of breath and
lightheadedness has different implications than shortness of
breath followed by lightheadedness and chest pain. How-
ever, capturing this level of detail required expanding the
ontology which was found to be cognitively burdensome
for labelers and was left out to be addressed in future work.
Another challenge we encountered was confusion between
temporal tags – Time of Onset or Duration, or progres-
sion information (e.g. Improving or Worsening). The
words used to describe these attributes were often used
in casual conversation manner. In the early version of
the ontologies, the temporal information was annotated for
each task differently, such as SymProp:Frequency and Med-
sProp:Frequency. This created confusion among the anno-
tators. Subsequently, the temporal tags were defined uni-
formly across the tasks to the extent possible.
Another limitation of the annotation scheme is that they do
not currently capture co-occurrence relationships between
multiple entities although they might be clinically relevant.
For example, “nausea” that a patient may experience along
with “abdominal pain”. The annotations also do not cap-
ture cross-ontology relationships, such as when a medica-
tion could be an alleviating factor for symptom or condi-
tion. This could be facilitated by showing labels from pre-
vious tasks when labeling a new task.
Even after carefully preparing before launching any la-
beling task, the labelers encountered novel situations that
were not considered while developing the ontologies and
the guidelines. This led to further refinements of the tasks
including changing or adding a new tag. As a result, the
portions of the data had to re-labeled, which was expen-
sive. Analysis of the existing labels were used to guide
these decisions, such as ignoring tags that appeared too in-
frequently, focusing on tags where there was a high level of
disagreement, and looking at the distribution of labeled text
for each tag.
While written domain corpora such as i2b2 and n2c2 also
face similar challenges, the difficulty of this task is com-
pounded by targeting a comprehensive ontology and in-

formation being spread across multiple speaker turns with
large variations in how medical concepts are described by
patients in the conversation (Uzuner et al., 2011; Henry et
al., 2019).

3.4. Distributions & Inter-labeler Agreements
The distribution of the occurrences of the labels in the cor-
pus are reported in Figure 2. Among entities, the number
of medications mentioned is the highest. There are more
attributes of symptoms than other tasks. Not surprisingly,
the number of mentions of conditions and their attributes
are the least among the three concepts.
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Figure 2: Numbers of labels and relations per conversation
in three tasks. The unique counts are the number of unique
occurrences accounting for the same highlighted span of
text.

Clinical concepts vary in complexity considerably and in
order to gauge the difficulty of the task and the quality of
the labels, we estimated the inter-labeler agreements for the
different tasks. The inter-labeler agreement was computed
in terms of Cohen’s kappa over the dev set of 500 conversa-
tions using three labelers per conversation. For scoring, we
used a strict notion of a match that required both the label
and the text content to be identical. In the Figure 3, we can
see the inter-labeler agreements are higher for entities com-
pared to attributes or relations. Among the three tasks, the
medication achieves the highest inter-labeler agreement,
followed by conditions and then symptoms.
The analysis of the inter-labeler agreement helped us iden-
tify poor labels and in certain cases modifying the names
of the labels to be descriptive helped improve consis-
tency. For example, replacing Response with Improv-
ing/Worsening/Unchanged was found to be useful.

4. The Span-Attribute Tagging Model
One of the challenges for model development in this task
is the limited amount of training data. To use the data ef-
ficiently, we developed the Span-Attribute Tagging (SAT)
model which performs inference in a hierarchical man-
ner by identifying the clinically relevant span using a BIO
scheme and classifying the spans into specific labels (Du et
al., 2019a). The span is represented using the latent repre-
sentation from a bidirectional encoder, and as such has the
capacity to capture the relevant context information. This
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Figure 3: The inter-labeler agreement for entities, at-
tributes, relations across three tasks.

latent contextual representation is used to infer the entity
label and the status of the symptom as experienced or not.
This is a trainable mechanism to infer status in contrast to
ad hoc methods applied in negation tasks in previous work
in clinical domain (Huang and Lowe, 2007).
For extracting relations, we extended it to Relation-SAT
model which uses a two stage process: in the first stage the
candidate entities are stored in a memory buffer along with
its latent contextual representation and in the second stage a
classifier tests whether the candidate attributes are related to
the entries in the memory buffer (Du et al., 2019b). In both
cases the models are trained end-to-end using a weighted
sum of the losses corresponding to each inferred quantity.

5. Performance Evaluations
5.1. Voted Reference
For a robust evaluation of the models, we created a single
“voted” reference from the 3-way labels mentioned in Sec-
tion 3.4..
Directly applying a standard voting algorithm is not partic-
ularly useful in improving the reference. Consider the BIO
labels from three labelers, shown in Table 6, for the phrase
“The pain medicine”. While all 3 labelers agree that a part
of the phrase should be labeled, they have chosen different
spans. A direct voting on the BIO annotations results in as-
signing “O” to the first token, and randomly choosing the
second and third tokens.

The pain medication
Labeler #1 DrugB DrugI O
Labeler #2 O DrugB DrugI
Labeler #3 O O DrugB

Table 6: An example to illustrate the “voting” algorithm.

We address this issue using a Markov chain, which assigns
the task tags separately from the BIO notation. For each
time point t, let Y 1(t) denote the tag assigned (e.g. Drug,
Frequency, etc.) and Y 2(t) denote the corresponding BIO
notation (e.g. B, I, O). Each token can be represented by
the tuple (Y 1(t), Y 2(t)). We explicitly define the state at
each t as Y 1(t − 1) (with Y 1(−1) defined as the empty

set) and determine Y 2(t) by picking the tags that maxi-
mize P (Y 2(t)|Y 1(t), Y 1(t − 1)), where the probabilities
are estimated empirically from the data. Applying this to
the example above results in the annotation (,O), (Drug, B),
and (Drug,I), which is a more reasonable outcome than the
naive voting method.

5.2. Relaxed F-score
The annotators themselves are not always consistent in the
span of text they label. E.g., “pain medication” vs. “the
pain medication”. To allow a certain degree of tolerance in
the extracted span, the model performance was evaluated
using a weighted F-score.
Let Yi(t) denote the parsed ground truth labels such that
i corresponds to the label index and t corresponds to
the token index within the sentence. We define Ri =
1/|Yi|

∑
Yi

I(Yi(t) = Ŷ 1(t)) to represent the label specific
recall score for label i, where Ŷ 1(t) represents the model
predicted tag for time point t. The overall recall is esti-
mated as R = 1/n

∑n
i=1 Ri where n represents the total

number of ground truth labels. Similarly, label specific pre-
cision is estimated as Pj = 1/|Ŷj |

∑
Ŷj

I(Ŷj(t) = Y 1(t)),

where Ŷj represents the jth constructed label predicted
by the model, and the overall precision is estimated as
P = 1/m

∑m
j=1 Pj , where m represents the total number

of predicted labels. The F1 score is subsequently calculated
using the standard formula 2 ∗ P ∗ R/(P + R). Note that
updating the label specific recall and precision scores to be
the cumulative product (rather than the average) results in
the well known strict scores (as they then enforce that the
entire span to match, rather than just a subset of the span).

5.3. Model Performance Analysis
The performance of the SAT model on the three tasks are
reported in Table 7. Because the Symptoms task involved
a closed set of target classes for the entities, we evaluate
performance by computing metrics at the conversation level
ignoring the duplicates (e.g., symptoms repeated with the
same status). The attributes were modeled using a common
separate model.

Performance F1 (Precision, Recall)
Entities Entities+Status

Symptoms 0.72 (0.78, 0.66) 0.60 (0.65, 0.56)
Conditions 0.57 (0.61, 0.54) 0.52 (0.56, 0.49)
Medications 0.90 (0.94, 0.87) —

Table 7: The performance of the SAT model for entities in
the Symptoms, the Conditions, and the Medications tasks.

5.4. Manual Error Categorization
The key aim of manual error analysis is to supplement
automatic evaluation of model performance by providing
greater insight into the types of errors made by the model,
the clinical relevance of the model errors, and plausible rea-
sons why an error may have occurred. This analysis also
allowed us to tease apart errors easily fixed in future model
iterations with those that will be more difficult to correct.
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Based on expected model output and anomalies in our
dataset, we defined two major categories – ErrorCause and
ErrorImpact. The raters were asked to utilize the context
to provide their best guess on why the model might have
caused the error. If they were uncertain, they could mark
the cause as unknown. Likewise, the ErrorImpact assesses
the relevance the error would have if the extracted infor-
mation were populated into a clinical note. To mark an
error as ‘relevant’, the scribe was asked to judge whether
the error would actually go into the medical note. For each
type of error – Deletion, Insertion, and Substitution – we
asked the raters to attach the labels associated with Error-
Cause and ErrorImpact. The subcategories associated with
these two major categories are listed in Table 8. The list in-
cludes cases such as model being correct, the inferred span
being incorrect, the failure of the model to use the contex-
tual cues, errors that are associated with needing additional
medical knowledge not evident from the context, and at-
tributes that may not be related to any relevant entities.

Category Subcategory

ErrorCause

Agree with model
Incorrect span
Ambiguous tag
Irrelevant attribute
Fail to use context
Need clinical expertise
Break in conversation flow
Clinically equivalent
No clear reason

ClinicalRelevance
Relevant
Not relevant
N/A

Table 8: Categories and subcategories of the model errors.

The errors were categorized by a group of about 10 med-
ically trained raters, including physicians, physician assis-
tants and professional medical scribes. Raters were trained
through self review of guidelines, live instruction with
guided annotation, and practice conversations. Results of
the practice conversations were compared to a conversa-
tion that had been evaluated and adjudicated by a group
of three individuals who had created the task guidelines.
Raters were provided a side by side view of their submis-
sion compared to the adjudicated conversation. Those that
showed major deviation from the adjudicated conversation
were given additional guidance by task managers.
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Figure 4: Proportion of errors relevant to the clinical note.

Among the errors committed by the model, about 17-32%

of the errors do not impact the clinical note, as shown in
Figure 4.
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Figure 5: Proportion of errors attributed to causes.

Human raters found that the prediction from the models
were correct in about 19-38% of the cases and that the
errors were associated with the labels in the reference, as
shown in Figure 5.
In analyzing the cases where the rater agreed with the
model, we noticed that (despite using the voted reference
labels) label quality issues still remained. Specifically,
there was a noticeable amount of occurrences where the
annotator missed or mis-labeled the documents. Taken to-
gether, the output of our model is significantly more useful
in generating the clinical note than what is reflected in the
F-score.
Among the other errors, in about 29-42% of the cases, the
model did not take the context into account as much as hu-
mans do. For example, a patient might be describing the
medication adherence as described in the example below. A
human would understand that the doctor is referring to an-
other medication that the patient is on. However, the model
fails to capture this.

DR: Let’s talk about your medications. How much of
the Levemir are you using now?

PT: 60 units.
DR: And the other one?

About 7-19% of the errors relate to needing medical ex-
pertise beyond what is known from the context. In the
example given below, the patient’s description of their
symptom (“hard to breathe”) would be labeled as Res-
piratory:Orthopnea. However, the model picks Respi-
ratory:Shortness of Breath which would be a reasonable
choice but not sufficiently specific given the context (“when
I’m lying down”) and the medical knowledge relating to it.
Future model improvements need to focus correcting these

PT: It’s really hard to breathe. It’s particularly hard
when I’m lying down in bed.

two categories of errors.

6. Turn Detection Model
Our empirical results show that the model that we devel-
oped performs poorly on attributes compared to entities.
One possible explanation is that unlike entities, the span
boundaries of attributes may be less distinct in a conversa-
tion. We investigated this by relaxing the model require-
ments, from identifying the span of words to detecting
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speaker turns containing the attributes, which happens to be
similar to other previous work (Finley et al., 2018b; Lacson
et al., 2006; Park et al., 2019).
The turn detection model we investigated consists of an en-
coder, similar to the SAT model, which is followed by an
attention layer and a multi-label softmax. The output pre-
dicts the probability of the occurrence of the attribute in the
given input turn.
In the experiment, six attributes were selected as the target
classes: Frequency, Duration, Location, Severity, Alleviat-
ing Factor, and Provoking Factor. These attributes were
selected based on higher frequency and inter-rater agree-
ments. Also, the model was trained and evaluated on the
labels merged across all three ontologies as well as for each
ontology. The model performance is reported as the F1
score, precision, recall along with our SAT model in Fig-
ure 6.
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Figure 6: Comparison of performances on attributes.

The result shows that the turn-based detection approach
achieves better recall (but lower precision) compared to our
tagging-based SAT model. The trade-off shows that when
the nature of the tags does not have distinct span bound-
aries, modeling them at the turn-level results in better per-
formance, especially in the situation when recall is more
crucial. Note, the turn detection model was trained by treat-
ing each speaker turn as an independent input. Clearly, this
can be improved further by encoding the whole conversa-
tion and predicting the class labels for each turn, which
should also improve the per task attribute score.
One potential application of the turn-based model is to as-
sist the human annotation process. For example, the model
predictions can be used to pre-select a set of turns that have
high probability of containing targeted tags in order to help
the annotators narrow down the scope to search. Or the
model predictions can be used to compare against the an-
notators result to help capture potential tags the annotator
missed. Based on our initial experiments, a combination of
the above methods can improve the efficiency and quality
of the human annotations. As aforementioned, such mech-
anism to improve labeling efficiency should not be applied
to evaluation data to avoid introducing bias in performance
measurement.

7. Discussion
To our knowledge this is the first systematic effort in ex-
tracting relevant information from provider-patient conver-
sations with the aim of populating a clinical note. The in-
formal nature of the conversation poses considerable chal-
lenges in extending standard methods of annotating a cor-
pus, as described in Section 2..
The complexity of extracting the relevant clinical concepts
from conversational speech is considerably higher than in

the written domain. For example, in a comparable work, a
standard CRF model was able to achieve an F-score of 0.9
in written clinical documents (Patel et al., 2018), whereas
a simple CRF model performs poorly on our task (Du et
al., 2019a). Similarly, while developing annotation guide-
lines, several examples presented considerable challenge in
deciding how best to annotate them, a reflection of the dif-
ficulty of the task for humans and models.
One might argue that entities such as medication can be ex-
tracted by ad hoc approaches such as relying on dictionaries
and regular expressions, as in (Finley et al., 2018b). How-
ever, such an approach would not generalize to common
place references to medications such as “the shot” which in
certain context may refer to insulin shot and in others may
not be clinically relevant. In contrast, our approach gener-
alizes to rare occurrences of the long-tailed distribution of
medications. For example, our annotators captured 8,613
unique spans of medications in the documents reviewed.
Automatic methods to assist labelers proved to be useful.
The labeling throughput can be further improved using the
output of previously trained models, especially for entities
and attributes where the model performance is sufficiently
high. For example, the medications entities, the symptoms
entities, the locations and the frequencies.
Results from our manual error categorization indicate that
there is room for improving the annotations further. An ex-
ample that we have successfully tested is implementing a
quality assurance stage where randomly sampled conversa-
tions are reviewed by senior labelers and corrected prior to
being submitted for modeling. Additionally, the conversa-
tions could be down-weighted in cases where the manual
annotations are substantially different from cross-validated
model predictions (Wang et al., 2019).
Another promising direction to improve the extraction of
clinically relevant concepts would be to combine the SAT
model and the turn detection model since they have com-
plementary precision and recall trade-offs.

8. Conclusions
This paper describes a novel task for extracting clinical con-
cepts from provider-patient conversations. We describe in
detail the ontologies and the annotation guidelines for de-
veloping a corpus. Using this corpus, we trained a state-
of-the-art Span-Attribute Tagging (SAT) model and report
results that highlight the relative difficulties of the different
tasks. Further through human error analyses of the errors,
we provide insights into the weakness of the current mod-
els and opportunities to improve it. Our experiments and
analyses demonstrate that several entities such as medica-
tions, symptoms, conditions and certain attributes can be
extracted with sufficiently high accuracy to support practi-
cal applications and we hope our results will spur further
research on this important topic.
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