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Abstract 

Entity normalization (or entity linking) is an important subtask of information extraction that links entity mentions in text to categories 

or concepts in a reference vocabulary. Machine learning based normalization methods have good adaptability as long as they have 

enough training data per reference with a sufficient quality. Distributional representations are commonly used because of their capacity 

to handle different expressions with similar meanings. However, in specific technical and scientific domains, the small amount of training 

data and the relatively small size of specialized corpora remain major challenges. Recently, the machine learning-based CONTES method 

has addressed these challenges for reference vocabularies that are ontologies, as is often the case in life sciences and biomedical domains. 

Its performance is dependent on manually annotated corpus. Furthermore, like other machine learning based methods, parametrization 

remains tricky. We propose a new approach to address the scarcity of training data that extends the CONTES method by corpus selection, 

pre-processing and weak supervision strategies, which can yield high-performance results without any manually annotated examples. 

We also study which hyperparameters are most influential, with sometimes different patterns compared to previous work. The results 

show that our approach significantly improves accuracy and outperforms previous state-of-the-art algorithms.  
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1. Introduction 

Entity Normalization, also known as Entity Linking or 
Entity Grounding, is an Information Extraction subtask 
that consists in the assignment of categories or concepts 
from a reference vocabulary to entity mentions in the text 
(i.e. words or sequences of words). Ontologies and 
taxonomies have been frequently used as reference 
vocabularies since the late 1990s (Faure and Nédellec, 
1998; Hwang, 1999). For instance, entity normalization 
with concepts of an ontology could consist in linking the 
textual entity mention “T-cell” to a concept referenced 
by a unique identifier and a label such as: <OBT:001342: 
lymphocyte>. 

Entity Normalization contributes to the reuse of the 
extracted information and to its integration with data in 
reference databases (Nédellec et al., 2009). Entity 
Normalization has recently gained traction in technical 
and scientific domains, especially in Life Sciences and 
Health Sciences. Several benchmark datasets have been 
proposed in these domains (Wei et al., 2015; Roberts et 
al., 2017; Deléger et al., 2016). Entity Normalization 
methods handle the problem as a classification problem. 
They are based either on pattern-matching rules 
(Aronson, 2001) or on Machine Learning (ML) 
algorithms (Leaman et al., 2013). Both are able to 
operate on the surface form of entities (i.e. their sequence 
of characters), on NLP analyses (lemmatization, POS-
tagging, syntactic parsing) (Aronson, 2001), or on 
distributional semantic representations such as word 
embeddings (Limsopatham and Collier, 2016). 

The main limitation of rule-based and entity-form-based 
methods is that they require entity mentions to present 
some similarity with concept labels to be efficient. For 
instance, rule-based methods cannot assign the mention 
“T-cell” to a concept labelled “lymphocyte”, unless a 
similar form of the term “T-cell” is added to the concept 

(Pratt and Yetisgen-Yildiz, 2003). For a real task with 
thousands or millions of concepts, this represents a 
tremendous work, and can quickly introduce some 
ambiguities between concepts (“plant”, vegetal or 
factory entity?), which require additional and special 
processing (Hanisch et al., 2005; Morgan et al., 2008; 
Aronson and Lang, 2010). 

ML and embedding-based methods aim to address this 
limitation. They have also shown a better adaptability to 
various specific normalization tasks. These methods 
yield good results if provided with sufficient training 
data (Sil et al., 2018). However training data in the form 
of manually annotated corpora are costly to produce and 
are generally limited in size (Uschold and King, 1995), 
in particular in specific domains where the level of 
expertise required to annotate training data is high and 
the number of target concepts is large (Lipscomb, 2000; 
McCray, 1989; Nédellec et al., 2018). Learning without 
examples is a problem called zero-data learning (or few-
shot learning) (Larochelle et al., 2008; Ravi and 
Larochelle, 2016), and is a well-known challenge for 
ML. 

CONTES (Ferré et al., 2017) and HONOR (Ferré et al., 
2018) are two recent methods that address training data 
paucity by exploiting ontological subsumption 
information (is_a relation between concepts or 
categories). CONTES uses the subsumption graph of the 
ontology together with word embeddings. HONOR 
combines CONTES and the rule-based method ToMap 
(Golik et al., 2011). HONOR achieves state of the art 
performance on the Bacteria Biotope normalization task 
of BioNLP Shared Task 2016 (BB3) (Deléger et al., 
2016). Nevertheless, both of these methods still need an 
annotated corpus which provides ground truth training 
examples. In this paper we present novel approaches to 
entity normalization, using CONTES and HONOR with 
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no manually annotated corpus, based on a weak 
supervision strategy. 

Moreover, embedding based methods vary depending on 
the representation of examples and algorithm 
hyperparameters (Chiu et al., 2016). We propose an 
experimental setting with the aim of highlighting the 
influence of a wide range of different factors (corpus 
selection, pre-processing, word embedding hyper-
parameters) and finding the optimal configuration for 
adapting a generic normalization method to a specific 
task. Pre-processing still receives too little focus when 
evaluating embedding-based systems (Camacho-
Collados and Pilehvar, 2018), in favour of 
hyperparameter study or the use of general precomputed 
embeddings. 

We evaluated our approach on the Bacteria Biotope 
normalization task of BioNLP Shared Task 2016 (BB3). 
This task illustrates the challenge that we aim to address: 
it is a domain-specific normalization task, well-
recognized in the BioNLP community, and with a small 
amount of training data available compared to the 
number of concepts of the task. 

2. Related Work 

2.1 A Brief History of Entity Normalization 
Methods in Scientific Domains 

Most normalization methods in technical and scientific 
domains rely on the similarity between entity forms and 
concept labels. Due to frequent linguistic variations (e.g. 
noun-phrase inversion, typographic variations, 
synonymy), these methods are dependent on 
comprehensive lexicons. Several strategies are used to 
ensure comprehensiveness: third-party resources (Gerner 
et al., 2010; Lee et al., 2015) inflection generation 
(Hanisch et al., 2005; Tsuruoka et al., 2007; Ghiasvand 
and Kate, 2014), pre-processing (lemmatization, 
stemming or stopword filtering) (Schuemie et al., 2007), 
giving more weight to syntactic heads of mentions and 
labels (Aronson, 2001; Golik et al., 2011). 

To handle domain-specific ambiguities, which notably 
increase with strategies such as third-party resources and 
inflection generation, and simultaneously to specialize 
for the task domain, some methods use a hand-crafted 
blacklist: for instance, the ToMap method (Golik et al., 
2011) has a version adapted to the BB3 task, and the 
Peregrine method (Schuemie et al., 2007) has a version 
adapted to BioCreative II. Another method by Claveau 
(2013) weights tokens with an Information Retrieval 
measure, which aims to automatically mitigate the 
weight of ambiguous words. 

Other methods use vector representations to compute a 
similarity measure between text mentions and concept 
labels. Notably, Tiftikci et al. (2016) and Mehryary et al. 
(2017) estimate the semantic similarity between two 
expressions by computing a cosine similarity between 
TF-IDF bag-of-words representations (Manning et al., 
2009). These representations are based on word forms, 
and fail to link mentions that do not share any common 
token with the correct concept label. To address this 
limitation, the ML-based DNorm method (Leaman et al., 
2013) learns a function that estimates high similarities 

between distant TF-IDF bag-of-words representations of 
mentions and associated concept labels. 

Some advances in NLP have been made through word 
embeddings as built by Word2Vec (Mikolov et al., 
2013), GloVe (Pennington et al., 2014), FastText 
(Bojanowski et al., 2016) or more recently ELMo (Peters 
et al., 2018) or BERT (Devlin et al., 2018), as a way to 
compute and represent the meaning of words from the 
contexts in which they are observed. Word embeddings 
are vectors with the advantage of a smaller number of 
dimensions. However, their acquisition requires large 
amounts of untagged corpora. 

To favour their mapping, text mentions and labels can be 
represented by embeddings in the same space. So, a first 
approach to normalize a mention embedding is to find 
the nearest concept label embedding. For instance, the 
BOUNEL method (Karadeniz and Özgür, 2019) 
computes a cosine similarity between these embeddings 
to find the best concept candidates for a mention. 
Limsopatham and Collier (Limsopatham and Collier, 
2016) also use word embeddings for the representation 
of mentions, and a convolutional neural network 
architecture to learn to classify each mention 
representation by the correct concept. 

The results of word embedding-based methods 
significantly depend on the choice of a large unannotated 
corpus, on the chosen hyper-parameters (Chiu et al., 
2016), and on parameter initialization. Moreover, 
through specialized corpora, domain specialized 
embeddings can increase the performance of methods 
(Roberts, 2016). This specialization can be emphasized 
by exploiting external knowledge (Faruqui et al., 2014; 
De Vine et al., 2014; Celikyilmaz, 2015), such as that 
contained in ontologies (Ferré et al., 2017; Yen et al., 
2018). 

2.2 The CONTES and HONOR Methods 

The word embeddings- and ML-based CONTES method 
(Ferré et al., 2017) differs from these methods by its use 
of concept vectors instead of concept label embeddings 
or concept one-hot vectors. Each concept has a unique 
vector in a vector space that is different from the space 
of mention embeddings. CONTES then performs a 
multivariate linear regression to find a linear projection 
from the vector space of mentions to the vector space of 
concepts. The learning optimization goal is to minimize 
globally the Euclidean distance between each projected 
mention vector and its concept vector(s) (see Figure 1). 

CONTES then uses the learned parameters to project any 
mention vector onto the ontological space. It computes a 
cosine similarity between the projected vector and every 
concept vector. CONTES finally selects the concept with 
the most similar vector as the prediction for 
normalization (see Figure 2). 

The vector space of concepts includes vectors computed 
with ontological information rather than one-hot vectors 
(where all weights are set to zero except the weight 
associated with the current concept, which is set to one), 
as in Limsopatham and Collier (Limsopatham and 
Collier, 2016). Each concept is associated with a vector 
whose size is the number of concepts in the ontology. 
Each dimension is associated with a fixed concept.
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Figure 1: Training step of the CONTES method. 

 

 

Figure 2: Prediction step of the CONTES method. 

 

 

Figure 3: Diagram of the HONOR method, combining the CONTES and the rule-based ToMap methods. 
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The vector is initialized as a one-hot, then each of the 
weights of the dimensions associated with all ancestors 
of the current concept are also set to one. This way, the 
representation encodes the hierarchical information of 
the ontology: when computing cosine similarity between 
ontology concepts, parent/child concepts are always 
nearest to each other. This hierarchical relation is the 
most frequent semantic relation (is_a relation) in existing 
ontologies. 

To compute mention embeddings, CONTES uses word 
embeddings from a large corpus. For each recognized 
mention of a corpus, a mention embedding is computed 
by calculating the barycenter of the vectors of the words 
that compose the entity. Roberts (2016) has shown that 
using word embeddings trained on a specific biomedical 
corpus for a biomedical task obtains better results than 
with a larger out-of-domain corpus. Thus, in order to 
improve the similarity between the two spaces, CONTES 
used specific word embeddings trained on a biomedical 
corpus rather than on large general corpora. 

CONTES authors hypothesize that it is possible to learn 
a structural similarity between a distributional space and 
an ontological space from the same domain. 

Rule-based methods predict correct concepts with a 
better precision whereas ML and embedding-based 
methods usually achieve better recall. To benefit from 
the best of both approaches, the HONOR method 
combines the ML and embedding-based CONTES with 
the rule-based method ToMap (Golik et al., 2011)  in two 
steps. First, ToMap predicts concepts for all mentions it 
can, then CONTES predicts a concept for the mentions 
left out by ToMap (see Figure 3). 

3. Task Data Sets 

In this section, we present the BB3 normalization task 
dataset that we used to evaluate the methods. The task 
consists in linking mentions of bacteria species names to 
a taxonomy, and bacterial habitats to one or more of the 
2,320 concepts of the dedicated ontology OntoBiotope1. 
Each concept can also contain some synonyms of the 
label (0.2 synonyms on average), which gives a total of 
2,739 terms associated to concepts of the ontology. 

The normalization of taxonomic mentions of bacteria is 
not much of a challenge for the BioNLP community 
because the nomenclature is complete, variations are 
relatively standardized, and synonymy is rare (except in 
some special cases such as strain names). Thus string 
matching with basic variations yields decent results 
(Grouin, 2016). Habitat mentions are subject to much 
more variations, and, due to the microscopic nature of 
bacteria, any object or place can be construed as a 
habitat. The normalization of habitat mentions is thus a 
challenging task that has generated many studies.  

The BB3 corpus is made of titles and abstracts from 
PubMed entries annotated with entities. The annotated 
corpus is split into training, development, and test sets. 
The BB3 online evaluation service measures the 

                                                           

1 http://2016.bionlp-st.org/tasks/bb2/OntoBiotope_BioNLP-

ST-2016.obo 

performance of the predictions on the test set. The total 
volume of the annotated corpus is rather small: the whole 
training and development corpus contains around 25 
thousand tokens, around 1,200 mentions of bacterial 
habitats and only 12% of the concepts of OntoBiotope 
occur in this corpus (266 distinct concepts). 

The evaluation metrics is based on a semantic similarity 
between the reference concept and the predicted concept. 
The similarity equals 1 if they are equal, and tends to zero 
if the concepts are farther in the hierarchy. The overall 
score is the mean of the similarity for each mention in the 
test set (Wang et al., 2007).  

4. Methods 

4.1 Weakly Supervised Strategy 

CONTES achieves good results on BB3 with a small set 
of training data but it still needs manually annotated 
examples (Ferré et al., 2017). To address this limitation, 
we developed a weak supervision strategy that exploits 
the lexicalization of the ontology: ontology concepts are 
usually labeled by terms and synonyms. We use these 
labels and synonyms as training examples, instead of, or 
combined with, annotated mentions in the training 
corpus. This gives about twice as many training 
examples as in the training corpus, and at least one 
training example per concept.  

4.2 Preprocessing 

We also extend CONTES by studying the impact of 
linguistic preprocessing as complementary to the study 
of hyperparameters for embeddings calculation that 
embedding-based methods usually focuse on. 
Preprocessing steps such as lemmatization or stemming, 
stop-words filtering and masking (i.e. replacing some 
expressions with a single mnemonic form) have the 
positive effect of decreasing the size of the vocabulary 
and increasing the distributional signal for each token. At 
the same time, lemmatization and stemming can have 
undesirable effects such as merging tokens that have no 
common meaning, and stopword filtering and masking 
can delete useful information. Thus, we study the impact 
of these preprocessing strategies on the performance of 
the CONTES and HONOR methods.  

For stemming, we tested an implementation of the 
Snowball algorithm (Porter, 1980), and for 
lemmatization we used GeniaTagger2, a state-of-the-art 
lemmatizer and POS-tagger for the biomedical domain. 
For stopword filtering, we removed grammatical words 
(determiners, prepositions, conjunctions, “to”), and 
punctuations. For masking, we replaced each numerals 
and species names with a unique token. 

4.3 Word2Vec Parametrization and Corpus 
Selection 

We have extended the study of Word2Vec 
hyperparameters beyond those in CONTES and HONOR 
(Ferré et al., 2017; Ferré et al., 2018). We used the Skip-
Gram architecture of Word2Vec with negative sampling 
(Mikolov et al., 2013) in a similar way as CONTES. We 

2 http://www.nactem.ac.uk/GENIA/tagger/ 

http://2016.bionlp-st.org/tasks/bb2/OntoBiotope_BioNLP-ST-2016.obo
http://2016.bionlp-st.org/tasks/bb2/OntoBiotope_BioNLP-ST-2016.obo
http://www.nactem.ac.uk/GENIA/tagger/
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have screened the hyperparameters, notably the size of 
the contextual window and the size of the word 
embedding vectors. We set the minimum occurrences of 
words to zero in order to consider rare domain words.  

We trained the embeddings on a corpus dedicated to the 
domain of BB3, i.e. microbiology. From the whole 
PubMed collection, we selected entries indexed by 
keywords of the MeSH controlled vocabulary3 indicating 
that the entry’s topic is microbiology (“Bacteria”, 
“Microbiology”, etc.). The resulting corpus contains 
2,333,943 entries (412,240,083 tokens). We refer to it as 
the Microbiology Corpus in the following. This corpus is 
smaller than the usual corpora used to calculate 
embeddings such as Wikipedia or Google News, which 
are still commonly used for biomedical tasks. However, 
it constitutes a relatively large biomedical corpus 
(Roberts, 2016). It allows to generate embeddings in less 
than an hour on a standard server computer. It is 
manageable enough to enable the screening of the 
hyperparameters and of the pre-processing settings in a 
reasonable time. We also compared the results obtained 
with this corpus to publicly available domain-specific 
and general domain word embeddings4.  

5. Results 

All the presented scores are averaged over ten runs on the 
development set, except for the final evaluation (Table 4) 
which contains unique scores on the test set. In all our 
experiments, we observed a maximal standard deviation 
of the score of 0.011, due to the random initialization of 
Word2Vec. 

5.1 Impact of Preprocessing and Word2Vec 
Parametrization 

We observed no impact of the window size (see Table 1). 
Thus, we set a short symmetrical window of two tokens 
in all subsequent experiments. 

We observe however a significant impact of the vector 
size on the performance (see Table 2). Previous work 
with the CONTES method had reported an optimal value 
of 200. We find the same optimal value for the 
supervised version but, surprisingly, we find a different 
optimal value of 1,000 for the weak supervision strategy. 

Pre-processing yields rather mixed results. 
Lemmatization does not significantly improve the 
results, and stemming even degrades them (see Table 3). 
We hypothesize that stemming shortens the token forms 
too aggressively and entails a loss of information in the 
word embeddings. Masking numerals and named entities 
also did not significantly affect the results. In contrast, 
we consistently observe a significant improvement of the 
score when stop words are removed (see Table 3). 

The embeddings calculated with the Microbiology 
Corpus and the pre-processed corpus give consistently 
better scores (0.59) than those obtained with off-the-shelf 
embeddings trained on Wikipedia (0.57) or the whole 
PubMed (0.56). 

                                                           

3 https://meshb.nlm.nih.gov/ 

Window 

size 

Stopword 

filtering 

No 

filtering 

1 0.62 0.59 

2 0.60 0.61 

3 0.61 0.61 

5 0.60 0.59 

8 0.61 0.59 

12 0.64 0.60 

20 0.62 0.60 
 

Table 1: Screening of the window size, with and 
without stopword filtering. CONTES results on the 
BioNLP-ST 2016 Bacteria Biotope normalization 

task, trained on the training set and evaluated on the 
development set. Vector size is set to 200. 

Vector 

size 

CONTES 

(training) 

CONTES 

(labels) 

CONTES 

(training 

and labels) 

25 0.52 0.46 0.49 

50 0.55 0.49 0.53 

100 0.57 0.49 0.58 

200 0.59 0.55 0.62 

250 0.58 0.57 0.65 

300 0.53 0.57 0.65 

500 0.36 0.61 0.67 

1000 0.31 0.63 0.72 

2000 0.37 0.38 0.47 

3000 0.39 0.39 0.46 
 

Table 2: Screening of the vector size. CONTES 
results on the BioNLP-ST 2016 Bacteria Biotope 

normalization task, trained either on the training set 
(“training”), the labels and synonyms (“labels”), or 
both (“training and labels”), and evaluated on the 

development set. The window size is set to 2. 
Stopwords are filtered. 

4 https://vecto.readthedocs.io/en/docs/tutorial/getting_ve
ctors.html 

https://meshb.nlm.nih.gov/
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Token 
normalisation 

No filtering 
Stopword 
filtering 

None 0.578±0.013 0.598±0.011 

Lemmatization 0.582±0.006 0.588±0.013 

Stemming 0.567±0.012 0.569±0.016 
 

Table 3: Screening of token preprocessing. The 
standard deviation is calculated on all masking 

preprocessing. CONTES results on the BioNLP-ST 
2016 Bacteria Biotope normalization task, trained 

on the training set and evaluated on the 
development set. The vector size is set to 200, the 

window size is set to 2. 

5.2 Results for the Weak Supervision and 
Mixed Approaches 

To evaluate the weak supervision strategy, we used word 
embeddings obtained with the following settings: 

● the Microbiology Corpus with stopword 
filtering and no other pre-processing; 

● a window size of 2; 
● a vector size of 1,000. 

The results are shown in Table 4. For comparison 
purposes we also report the score obtained by a baseline 
method. It consists in a strict string matching of concept 
labels and synonyms against lemmatized mentions. We 
also report published results obtained by four other 
systems on the same benchmark: BOUN (Tiftikci et al., 
2016), Turku (Mehryary et al., 2017), BOUNEL 
(Karadeniz and Özgür, 2019), and ToMap (Golik et al., 
2011). We trained, ran, and evaluated CONTES and 
HONOR using the generated embeddings. We trained 
them with three different training sets: 

● BB3 training and development sets (training); 
● concept labels and synonyms (labels) for the 

weak supervision approach; 
● the union of the above (training and labels). 

We observed that both CONTES and HONOR perform 
similarly when trained either on the training and 
development sets, or on concept labels and synonyms. 
These two training sets are yet different: 

● the annotated corpus contains in the order of 
one third of training data compared to the 
ontology,  

● the ontology has at least one training example 
per concept, while the annotated corpus 
contains mentions only from 12% of the 
concepts of the ontology.  

It can mean that the concepts mentioned in the annotated 
corpus (whole training and development set) are largely 
those mentioned in the annotated test corpus. Thus, both 
training sets have the same order of training examples for 
concepts mentioned in the test corpus, which could 
explain the similar performance. We note that we 
reproduced the results previously published for 
CONTES and HONOR. When both training sets are 

combined, the results considerably outperform the state-
of-the-art systems on the BB3 task by 10 points and 
previous HONOR results by 4 points. This can be 
explained by complementary information contained in 
these training sets, or simply by an increase in the 
number of training examples.  

Method 
Similarity 

score 

Baseline 0.54 

ToMap 0.66 

BOUN 0.62 

Turku 0.63 

BOUNEL 0.66 

CONTES (training) – 2017 0.60 

HONOR (training) – 2018 0.73 

CONTES (training) 0.61 

CONTES (labels) 0.62 

CONTES (training and labels) 0.70 

HONOR (training) 0.72 

HONOR (labels) 0.72 

HONOR (training and labels) 0.76 
 

Table 4: Results on the BioNLP-ST 2016 Bacteria 
Biotope normalization task (test set). 

6. Conclusion and Discussion 

We address the Entity Normalization task by concepts of 
an ontology under the conditions of scarce training data. 
This situation is common for technical and scientific 
domains such as Life Sciences. Using the CONTES and 
HONOR methods on the BB3 task, we experimented 
with several strategies and highlighted the relative merits 
of each. 

Both CONTES and HONOR use word embeddings. We 
have shown that training word embeddings on a reduced 
but targeted and adapted corpus yields better results than 
off-the-shelf word embeddings trained on a huge general 
corpus. Moreover, the reduced size of the training corpus 
allows us to screen and optimize hyperparameters. The 
word embeddings vector size has the largest influence on 
the prediction performance. 

We have also shown that token normalization has little, 
and sometimes a negative influence. Indeed 
lemmatization, stemming, numeral masking and entity 
masking did not improve results. On the other hand, stop 
word filtering produces better word embeddings for this 
task. 
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The main result of our experiments is that CONTES 
achieves similar results when trained on annotated entity 
mentions or on concept labels and synonyms. Moreover 
when trained on the union of labels and the annotated 
training corpus, the results improve even more. This 
demonstrates that the use of the concept labels and 
synonyms can overcome the lack of annotated training 
data, or positively complement small training datasets.  

Our hypothesis is that both training sets are 
complementary because they present different 
characteristics. On one hand labels and synonyms cover 
the whole ontology because each concept has at least one 
label. On the other hand annotated corpora represent 
more faithfully mentions in texts. Further study should 
include the performance of the methods specifically on 
mentions of concepts that have not been mentioned in the 
training dataset. This could allow us to see the specific 
contribution of these methods to the problem of zero-data 
learning.  

By exploring parameters and training data, we were able 
to substantially outperform the state-of-the-art. In order 
to draw more general conclusions, we plan to apply the 
approach to other benchmarks, such as BioCreative V 
Chemical-Disease-Relations (Wei et al., 2015) and TAC 
Adverse Drug Reaction Extraction from Drug Labels 
(Roberts et al., 2017), as future work.  

The presented strategies all rely on publicly available 
tools5 and on adequate data preparation and thus they are 
within the reach of non-ML specialists. 
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