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Abstract
We present TableBank, a new image-based table detection and recognition dataset built with novel weak supervision from Word and
Latex documents on the internet. Existing research for image-based table detection and recognition usually fine-tunes pre-trained models
on out-of-domain data with a few thousand human-labeled examples, which is difficult to generalize on real-world applications. With
TableBank that contains 417K high quality labeled tables, we build several strong baselines using state-of-the-art models with deep
neural networks. We make TableBank publicly available and hope it will empower more deep learning approaches in the table detection
and recognition task. The dataset and models can be downloaded from https://github.com/doc-analysis/TableBank!
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1. Introduction

Table detection and recognition is an important task
in many document analysis applications as tables often
present essential information in a structured way. It is a
difficult problem due to varying layouts and formats of the
tables as shown in Figure [T} Conventional techniques for
table analysis have been proposed based on the layout anal-
ysis of documents. Most of these techniques fail to gener-
alize because they rely on handcrafted features which are
not robust to layout variations. Recently, the rapid develop-
ment of deep learning in computer vision has significantly
boosted the data-driven image-based approaches for table
analysis. The advantage of the image-based table analy-
sis lies in its robustness to document types, making no as-
sumption of whether scanned images of pages or natively-
digital document formats. It can be applied to a wide va-
riety of document types to extract tables including PDF,
HTML, PowerPoint as well as their scanned copies. Al-
though some document types may have structured tabular
data, we still need a general approach to detect tables on
different kinds of documents. Therefore, large-scale end-
to-end deep learning models make it feasible for achieving
better performance.

Existing deep learning based table analysis models usually
fine-tune pre-trained object detection models with several
thousand human-labeled training instances, while still diffi-
cult to scale up in real-world applications. For instance, we
found that models trained on data similar to Figure
would not perform well on Figure[Id|because the table lay-
outs and colors are so different. Therefore, enlarging the
training data should be the only way to build open-domain
table analysis models with deep learning. Deep learning
models are massively more complex than most traditional
models, where many standard deep learning models today
have hundreds of millions of free parameters and require
considerably more labeled training data. In practice, the

The paper was finished while the first author was visiting
MSRA.

cost and inflexibility of hand-labeling such training sets is
the key bottleneck to actually deploying deep learning mod-
els. It is well known that ImageNet (Russakovsky et al.,
2015)) and COCO (Lin et al., 2014) are two popular image
classification and object detection datasets that are built in
a crowdsourcing way, while they are both expensive and
time-consuming to create, taking months or years for large
benchmark sets. Fortunately, there exists a large number of
digital documents on the internet such as Word and Latex
source files. It is instrumental if some weak supervision can
be applied to these online documents for labeling tables.

To address the need for a standard open-domain table
benchmark dataset, we propose a novel weak supervision
approach to automatically create the TableBank, which is
orders of magnitude larger than existing human-labeled
datasets for table analysis. Distinct from the traditional
weakly supervised training set, our approach can obtain not
only large scale but also high quality training data. Nowa-
days, there are a great number of electronic documents on
the web such as Microsoft Word (.docx) and Latex (.tex)
files. These online documents contain mark-up tags for ta-
bles in their source code by nature. Intuitively, we can ma-
nipulate these source code by adding bounding boxes us-
ing the mark-up language within each document. For Word
documents, the internal Office XML code can be modified
where the borderline of each table is identified. For La-
tex documents, the tex code can be also modified where
bounding boxes of tables are recognized. In this way, high
quality labeled data is created for a variety of domains such
as business documents, official filings, research papers, etc,
which is tremendously beneficial for large-scale table anal-
ysis tasks.

The TableBank dataset totally consists of 417,234 high
quality labeled tables as well as their original documents in
a variety of domains. To verify the effectiveness of Table-
Bank, we build several strong baselines using state-of-the-
art models with end-to-end deep neural networks. The ta-
ble detection model is based on the Faster R-CNN (Ren
et al., 2015) architecture with different settings. The ta-
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Figure 1: Tables in electronic documents on the web with different layouts and formats. Among them, Figure (a)(b)(c)
come from the latex format documents while Figure (d) comes from a word format document

ble structure recognition model is based on the encoder-
decoder framework for image-to-text. The experiment re-
sults show that the layout and format variation has a great
impact on the accuracy of table analysis tasks. In addition,
models trained on one specific domain do not perform well
on the other. This suggests that there is plenty of room for
advancement in modeling and learning on the TableBank
dataset.

2. Existing Datasets

We introduce some existing publicly available datasets that
we compare as the baselines:

ICDAR 2013 Table Competition. The ICDAR 2013 Ta-
ble Competition dataset (Gobel et al., 2013)) contains 128
examples in natively-digital document format, which are
from the European Union and US Government.

UNLYV Table Dataset. The UNLV Table Dataset (Shahab
et al., 2010) contains 427 examples in scanned image for-
mat, which are from a variety of sources including Maga-
zines, Newspapers, Business Letter, Annual Report, etc.
Marmot Dataset. The Marmot Dataseﬂ contains 2,000
pages in PDF format, where most of the examples are from
research papers.

DeepFigures Dataset. The DeepFigures Dataset (Siegel
et al., 2018) includes documents with tables and figures
from arXiv.com and PubMed database. The DeepFigures
Dataset focuses on the large scale table/figure detection
task while it does not contain the table structure recogni-
tion dataset.

3. Data Collection

Basically, we create the TableBank dataset using two dif-
ferent file types: Word documents and Latex documents.
Both file types contain mark-up tags for tables in their
source code by nature. Next, we introduce the details in
three steps: document acquisition, creating table detection
dataset and table structure recognition dataset.

lhttp ://www.icst.pku.edu.cn/cpdp/data/
marmot_data.htm

3.1. Document Acquisition

We crawl Word documents from the internet. The docu-
ments are all in ‘.docx’ format since we can edit the in-
ternal Office XML code to add bounding boxes. Since we
do not filter the document language, the Word documents
contain English, Chinese, Japanese, Arabic, and other lan-
guages. This makes the dataset more diverse and robust to
real applications.

Latex documents are different from Word documents be-
cause they need other resources to be compiled into PDF
files. Therefore, we cannot only crawl the ‘.tex’ file from
the internet. Instead, we use documents from the largest
pre-print database arXiv.org as well as their source code.
We download the Latex source code from 2014 to 2018
through bulk data access in arXiv. The language of the La-
tex documents is mainly English.

3.2. Table Detection

Tables with

bounding boxes
(special color) .
Documents Annotations

(.docx and .tex) \ / by color difference

Figure 2: Data processing pipeline

Tables with
bounding boxes
(white color)

Intuitively, we can manipulate the source code by adding
bounding boxes using the mark-up language within each
document. The processing pipeline is shown in Figure [2]
For Word documents, we add the bounding boxes to ta-
bles through editing the internal Office XML code within
each document. Actually, each ‘.docx’ file is a compressed
archive file. There exists a ‘document.xml’ file in the de-
compressed folder of the ‘.docx’ file. In the XML file, the
code snippets between the tags ‘<w:tbl>’ and ‘</w:tbl>’
usually represent a table in the Word document, which is
shown in Figure 3] We modified the code snippets in the
XML file so that the table borders can be changed into a
distinguishable color compared to other parts of the docu-
ment. Figure[3|shows that we have added a green bounding
box in the PDF file where the table is perfectly identified.
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Figure 3: The tables can be identified and labeled from “<w:tbl>"" and “</w:tb]>" tags in the Office XML code

Finally, we get PDF pages from Word documents that con-
tain at least one table on each page.

For Latex documents, we use a special command in the
Tex grammar ‘fcolorbox’ to add the bounding box to ta-
bles. Typically, the tables in Latex documents are usually
in the format as follows:

\begin{table }[]
\centering
\begin{tabular }{}

\end{tabular}
\end{table}

We insert the ‘fcolorbox’ command to the table’s code as
follows and re-compile the Latex documents. Meanwhile,
we also define a special color so that the border is distin-
guishable. The overall process is similar to Word docu-
ments. Finally, we get PDF pages from Latex documents
that contain at least one table on each page.

\begin{table }[]
\centering
\setlength {\fboxsep }{1pt}
\ fcolorbox{bordercolor }{white }{
\begin{tabular }{}

\end{t.a.ll')ular}}
\end{table}

To obtain ground truth labels, we extract the annotations
from the generated PDF documents. For each page in the
annotated PDF documents, we also add the bounding boxes
to the tables in the original page with the white color so
that the two pages align in the same position. Then, we
simply compare two pages in the pixel-level so that we
can find the different pixels and get the upper left point of
the tables as well as the width and height parameters. In
this way, we totally create 417,234 labeled tables from the
crawled documents. We randomly sample 1,000 examples
from the dataset and manually check the bounding boxes of
tables. We observe that only 5 of them are incorrectly la-
beled, which demonstrates the high quality of this dataset.
We give several typical weak supervised labeled errors in

Figure 4

3.3. Table Structure Recognition

Table structure recognition aims to identify the row and col-
umn layout structure for the tables especially in non-digital

document formats such as scanned images. Existing table
structure recognition models usually identify the layout in-
formation as well as the textual content of the cells, while
textual content recognition is not the focus of this work.
Therefore, we define the task as follows: given a table in the
image format, generating an HTML tag sequence that rep-
resents the arrangement of rows and columns as well as the
type of table cells. In this way, we can automatically cre-
ate the structure recognition dataset from the source code
of Word and Latex documents. For Word documents, we
simply transform the original XML information from doc-
uments into the HTML tag sequence. For Latex documents,
we first use the LaTeXML toolkiﬂ to generate XML from
Latex, then transform the XML into HTML. A simple ex-
ample is shown in Figure [5] where we use ‘<cell_y>" to
denotes the cells with content and ‘<cell_n>’ to represent
the cells without content. After filtering the noise, we cre-
ate a total of 145,463 training instances from the Word and
Latex documents.

In the process of inferring, we get the row and column
structures from table structure recognition results, as well
as the content and bounding boxes of all the closely ar-
ranged text blocks from OCR results. Assuming a table
contains NV rows, row gaps between OCR bounding boxes
are detected by a heuristic algorithm to split the table con-
tent blocks into N groups. Finally, we fill the blocks in the
‘<cell_y>’ tag of N lines with the order from left to right.
For example, the table in Figure [ has two rows accord-
ing to table structure recognition result, e.g. the HTML tag
sequence. According to the row gap between text block
“1” and text block “3”, we divide them into two groups:
(1, 2) and (3). The first group corresponds the first row
containing two ‘<cell_y>’ tags, and the second group cor-
responds the second row containing a ‘<cell_y>’ tag and a
‘<cell_.n>’ tag.

4. Baseline

4.1. Table Detection

We use the Faster R-CNN model as the baseline. Due to the
success of ImageNet and COCO competition, the Faster R-
CNN model has been the de facto implementation that is
widespread in the computer vision area. In 2013, the R-
CNN model (Girshick et al., 2013) was first proposed to
solve the object detection problem. After that, (Girshick,

https://dlmf.nist.gov/LaTeXML/
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Figure 4: Figure (a): Miss a table; Figure (b): Two tables are annotated as one; Figure (c): One of the annotations is

incomplete; Figure (c): Some annotations are overlapped.

4

<tabular> <tr> <cell_y> <cell_y> </tr> <tr> <cell_y> <cell_n> </tr> </tabular>

Figure 5: A Table-to-HTML example where ‘<cell_y>’
denotes cells with content while ‘<cell.n>" represents
cells without content
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Figure 6: The Faster R-CNN model for table detection

2015) also proposed the Fast R-CNN model that improves
training and testing speed while also increasing detection
accuracy. Both two models use selective search to find out
the region proposals, while selective search is a slow and
time-consuming process affecting the performance of the
network. Distinct from two previous methods, the Faster R-
CNN method introduces a Region Proposal Network (RPN)
that shares full-image convolutional features with the detec-
tion network, thus enabling nearly cost-free region propos-
als. Furthermore, the model merges RPN and Fast R-CNN
into a single network by sharing their convolutional fea-
tures so that the network can be trained in an end-to-end
way. The overall architecture of Faster R-CNN in shown in

Figure [f]
4.2. Table Structure Recognition

We leverage the image-to-text model as the baseline. The
image-to-text model has been widely used in image cap-

tioning, video description, and many other applications. A
typical image-to-text model includes an encoder for the im-
age input and a decoder for the text output. In this work,
we use the image-to-markup model (Deng et al., 2016)) as
the baseline to train models on the TableBank dataset. The
overall architecture of the image-to-text model is shown in

Figure[7]

encoder decoder

<tabular> —» <tr> — <tdn> —> ... —» </tabular> \

e + -

attention

\
\<tabular>  <tr> <tdn>  <tdn>

Figure 7: Image-to-Text model for table structure recogni-
tion

5. Experiment

5.1. Data and Metrics

The statistics of TableBank is shown in Table[Il To evalu-
ate table detection, we sample 2,000 document images from
Word and Latex documents respectively, where 1,000 im-
ages for validation and 1,000 images for testing. Each sam-
pled image contains at least one table. Meanwhile, we also
evaluate our model on the ICDAR 2013 dataset to verify
the effectiveness of TableBank. To evaluate table structure
recognition, we sample 500 tables each for validation and
testing from Word documents and Latex documents respec-
tively. The size of the training set for table detection and
table structure recognition is 415,234 and 144,463 respec-
tively. The entire training and testing data have been made
available to the public. For table detection, we calculate
the precision, recall, and F1 in the same way as in (Gilani
et al., 2017), where the metrics for all documents are com-
puted by summing up the area of overlap, prediction and
ground truth. The definition is defined as follows:

Area of Ground truth regions in Detected regions
Area of all Detected table regions

Area of Ground truth regions in Detected regions

Area of all Ground truth table regions

Precision = )

Recall =

2 x Precision x Recall

F18 =
core Precision + Recall
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For table structure recognition, we use the 4-gram BLEU
score as the evaluation metric with a single reference. The
4-gram BLEU score has the advantages of fast calculation
speed, low cost, and being easy to understand.

\ Task | Word | Latex | Word+Latex |
Table detection 163,417 | 253,817 417,234
Table structure recognition | 56,866 88,597 145,463

Table 1: Statistics of TableBank

5.2. Settings

For table detection, we use the open source framework De-
tectron (Girshick et al., 2018]) to train models on the Table-
Bank. Detectron is a high quality and high-performance
codebase for object detection research, which supports
many state-of-the-art algorithms. It is written in Python
and powered by the Caffe2 deep learning framework. In
this task, we use the Faster R-CNN algorithm with the
ResNeXt (Xie et al., 2016) as the backbone network ar-
chitecture, where the parameters are pre-trained on the Im-
ageNet dataset. All baselines are trained using 4xP100
NVIDIA GPUs using data parallel sync SGD with a mini-
batch size of 16 images. For other parameters, we use the
default values in Detectron. During testing, the confidence
threshold of generating bounding boxes is set to 90%.

For table structure recognition, we use the open source
framework OpenNMT (Klein et al., 2017) to train the
image-to-text model. OpenNMT is an open-source ecosys-
tem for neural machine translation and neural sequence
learning, which supports many encoder-decoder frame-
works. In this task, we train our model using the image-to-
text method in OpenNMT. The model is also trained using
4xP100 NVIDIA GPUs with the learning rate of 0.1 and
batch size of 24. In this task, the vocabulary size of the
output space is small, including <tabular>, </tabular>,
<thead>, </thead>, <tbody>, </tbody>, <tr>, </tr>,
<td>, </td>, <cell_y>, <cell_.n>. For other parameters,
we use the default values in OpenNMT.

5.3. Results

The evaluation results of table detection models are shown
in Table We observe that models perform well on
the same domain. For instance, the ResNeXt-152 model
trained with Word documents achieves an F1 score of
0.9166 on the Word dataset, which is much higher than
the F1 score (0.8094) on Latex documents. Meanwhile,
the ResNeXt-152 model trained with Latex documents
achieves an F1 score of 0.9810 on the Latex dataset, which
is also much higher than testing on the Word documents
(0.8863). This indicates that the tables from different types
of documents have different visual appearance. Therefore,
we cannot simply rely on transfer learning techniques to ob-
tain good table detection models with small scale training
data. When combining training data with Word and Latex
documents, the accuracy of larger models is comparable to
models trained on the same domain, while it performs bet-
ter on the Word+Latex dataset. This verifies that model

trained with larger data generalizes better on different do-
mains, which illustrates the importance of creating a larger
benchmark dataset.

In addition, we also evaluate our models on the ICDAR
2013 table competition dataset shown in Table [3] Among
all the models trained with TableBank, the Latex ResNeXt-
152 model achieves the best F1 score of 0.9625. Further-
more, we compare our model with models trained with IC-
DAR, UNLV, Marmot, and DeepFigures, which demon-
strates the great potential of our TableBank dataset. This
also illustrates that we not only need large scale training
data but also high quality data. We also compare with the
open source Tesseracf| and Camelof] toolkits, which are
based on line information. The results show that image-
based deep learning models are significantly better than
conventional approaches.

The evaluation results of table structure recognition are
shown in Table[d We observe that the image-to-text models
also perform better on the same domain. The model trained
on Word documents performs much better on the Word test
set than the Latex test set and vice versa. Similarly, the
model accuracy of the Word+Latex model is comparable to
other models on Word and Latex domains and better on the
mixed-domain dataset. This demonstrates that the mixed-
domain model might generalize better in real-world appli-
cations.

5.4. Analysis

For table detection, we sample some incorrect examples
from the evaluation data of Word and Latex documents for
the case study. Figure[§] gives three typical errors of detec-
tion results. The first error type is partial-detection, where
only part of the tables can be identified and some infor-
mation is missing. The second error type is un-detection,
where some tables in the documents cannot be identified.
The third error type is mis-detection, where figures and
text blocks in the documents are sometimes identified as ta-
bles. Taking the ResNeXt-152 model for Word+Latex as
an example, the number of un-detected tables is 164. Com-
pared with ground truth tables (2,525), the un-detection rate
is 6.5%. Meanwhile, the number of mis-detected tables is
86 compared with the total predicted tables being 2,450.
Therefore, the mis-detection rate is 3.5%. Finally, the num-
ber of partial-detected tables is 57, leading to a partial-
detection rate of 2.3%. This illustrates that there is plenty
of room to improve the accuracy of the detection models,
especially for un-detection and mis-detection cases.

We observed that some experiments show inferior accuracy
during cross-domain testing. The precision of the Latex
model is not satisfactory when tested on the Word dataset
and the Word+Latex dataset. Meanwhile, the recall of the
Word model is poor on all the test dataset, and the recall
of the mixed model is also under-performed on the Word
dataset and Word+Latex dataset. It shows that there is still
a lot of room to improve on the TableBank dataset, as well
as some bad cases to be investigated especially under cross-
domain settings.

*https://github.com/tesseract-ocr/
tesseract
*https://github.com/socialcopsdev/camelot
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Models Word Latex Word+Latex
Precision [ Recall [ F1 Precision [ Recall [ F1 Precision [ Recall [ F1
ResNeXt-101 (Word) 0.9496 0.8388 | 0.8908 0.9902 0.5948 | 0.7432 0.9594 0.7607 | 0.8486
ResNeXt-152 (Word) 0.9530 0.8829 | 0.9166 0.9808 0.6890 | 0.8094 0.9603 0.8209 | 0.8851
ResNeXt-101 (Latex) 0.8288 0.9395 | 0.8807 0.9854 0.9760 | 0.9807 0.8744 0.9512 | 09112
ResNeXt-152 (Latex) 0.8259 0.9562 | 0.8863 0.9867 0.9754 | 0.9810 0.8720 0.9624 | 0.9149
ResNeXt-101 (Word+Latex) 0.9557 0.8403 | 0.8943 0.9886 0.9694 | 0.9789 0.9670 0.8817 | 0.9224
ResNeXt-152 (Word+Latex) 0.9540 0.8639 | 0.9067 0.9885 0.9732 | 0.9808 0.9657 0.8989 | 0.9311

Table 2: Evaluation results on Word and Latex datasets with ResNeXt-{101,152} as the backbone networks

‘ Models ‘ Precision ‘ Recall ‘ F1 ‘ ‘ Length ‘ 0-20 ‘ 21-40 ‘ 41-60 ‘ 61-80 ‘ >80 ‘ All ‘
ICDAR 2013 (train) 0.9748 0.7997 | 0.8786 #Total | 4,027 | 44,811 | 36,059 | 19,757 | 40,809 | 145,463
UNLV 0.9185 | 0.9639 | 0.9406 Ratio | 0.028 | 0.308 | 0248 | 0.136 | 0281 | 1.000
Marmot 0.7692 | 0.9844 | 0.8636
DeepFigures 0.8527 0.9348 | 0.8918 . c o . . s
TableBank (ResNeXt-152, Word) 0.9725 | 0.8528 | 0.9087 Table 6: Length distribution in training data
TableBank (ResNeXt-152, Latex) 0.9658 | 0.9594 | 0.9625
TableBank (ResNeXt-152, Word + Latex) | 0.9635 | 0.9039 | 0.9328
Tesseract 09439 | 0.7144 | 0.8133 to the early 1990s. (Itonori, 1993)) proposed a rule-based
Camelot 0.9785 | 0.6856 | 0.8063

Table 3: Evaluation results on ICDAR 2013 dataset

\ Models | Word | Latex | Word+Latex |
Image-to-Text (Word) 0.7507 | 0.6733 0.7138
Image-to-Text (Latex) 0.4048 | 0.7653 0.5818

Image-to-Text (Word+Latex) | 0.7121 | 0.7647 0.7382

Table 4: Evaluation results (BLEU) for image-to-text mod-
els on Word and Latex datasets

For table structure recognition, we observe that the model
accuracy reduces as the length of output becomes larger.
Taking the image-to-text model for Word+Latex as an ex-
ample, the number of exact match between the output and
ground truth is shown in Table[5] We can see that the ra-
tio of exact match is around 50% for the HTML sequences
that are less than 40 tokens. As the number of tokens be-
comes larger, the ratio reduces dramatically to 8.6%, indi-
cating that it is more difficult to recognize big and complex
tables. In general, the model totally generates the correct
output for 338 tables. In order to avoid the influence of the
length distribution deviation in the training data, we also
count the length distribution in the training data in Table|[6]
We believe enlarging the training data will further improve
the current model especially for tables with complex row
and column layouts, which will be our next-step effort.

\ Length \ 0-20 \ 21-40 \ 41-60 \ 61-80 \ >80 \ All \
#Total 32 293 252 145 278 | 1,000
#Exact match 15 169 102 28 24 338
Ratio 0.469 | 0.577 | 0.405 | 0.193 | 0.086 | 0.338

Table 5: Number of exact match between the generated
HTML tag sequence and ground truth sequence

6. Related Work

6.1. Table Detection

Table detection aims to locate tables using bounding boxes
in a document. The research of table detection dates back

approach that leverages the text block arrangement and
ruled line position to detect table structures. At the same
time, (Chandran and Kasturi, 1993)) designed a structural
table detection method based on horizontal and vertical
lines, as well as the item blocks. Following these works,
there is a great deal of research work (Hirayama, 1995;
Green and Krishnamoorthy, 1995} [Tupaj et al., 1996; |Hu
et al., 1999; |Gatos et al., 2005; |Shatait and Smith, 2010)
focus on improving rule-based systems. Although these
methods perform well on some documents, they require ex-
tensive human efforts to figure out better rules, while some-
times failing to generalize to documents from other sources.
Therefore, it is inevitable to leverage statistical approaches
in table detection.

To address the need for generalization, statistical machine
learning approaches have been proposed to alleviate these
problems. (Kieninger and Dengel, 1998) was one of the
first to apply unsupervised learning method to the table de-
tection task back in 1998. Their recognition process dif-
fers significantly from previous approaches as it realizes
a bottom-up clustering of given word segments, whereas
conventional table structure recognizers all rely on the de-
tection of some separators such as delineation or signif-
icant white space to analyze a page from the top-down.
In 2002, (Cesarini et al., 2002)) started to use supervised
learning method by means of a hierarchical representation
based on the MXY tree. The algorithm can be adapted to
recognize tables with different features by maximizing the
performance on an appropriate training set. After that, ta-
ble detection has been cast into a set of different machine
learning problems such as sequence labeling (Silva and e.,
2009), feature engineering with SVM (Kasar et al., 2013)
and also ensemble a set of models (Fan and Kim, 2015)
including Naive Bayes, logistic regression, and SVM. The
application of machine learning methods has significantly
improved table detection accuracy.

Recently, the rapid development of deep learning in com-
puter vision has a profound impact on the data-driven
image-based approaches for table detection. The advan-
tage of the images-based table detection is two-fold: First,
it is robust to document types by making no assumption of
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Figure 8: Table detection examples with (a) partial-detection, (b) un-detection and (c) mis-detection

whether scanned images of pages or natively-digital docu-
ment formats. Second, it reduces the efforts of hand-crafted
feature engineering in conventional machine learning. (Hao
et al., 2016) first used convolutional neural networks in
table detection, where some table-like areas are selected
first by some loose rules, and then the convolutional net-
works are built and refined to determine whether the se-
lected areas are tables or not. In addition, the Faster R-CNN
model has been also used in table detection. (Schreiber et
al., 2017) presented a system that is totally data-driven and
does not need any heuristics or metadata to detect as well as
to recognize tabular structures on the ICDAR 2013 dataset.
At the same time, (Gilani et al., 2017) achieved state-of-
the-art performance using the Faster R-CNN model on the
UNLYV dataset. Despite the success of applying deep learn-
ing models, most of these methods fine-tune pre-trained
models on out-of-domain data with just a few thousand
human-labeled examples, which is still difficult to be prac-
ticable in real-world applications. Till now, there is not any
standard benchmark training dataset for both table detec-
tion and recognition. Therefore, we make the TableBank
dataset publicly available and hope it can release the power
of many deep learning approaches.

6.2. Table Structure Recognition

Table structure recognition aims to identify the row and
column layout information for a table. The research of
table structure recognition also includes rule-based ap-
proaches, machine learning approaches, and deep learning
approaches. (Ramel et al., 2003)) developed a method using
the analysis of the graphic lines to detect and extract tables.
After that, (Yildiz et al., 2005) used the ‘pdftohtmﬂ’ tool
that returns all text elements in a PDF file and computed
horizontal overlaps of texts to recognize columns. (Has-
san and Baumgartner, 2007) grouped tables into three cat-
egories by the principle if a table has horizontal or vertical
ruling lines, and they developed heuristic methods to detect
these tables. Unlike other methods designing rules for spec-
ified tables, (Shigarov et al., 2016)) presented a more general
rule-based approach to apply to different domains. For ma-
chine learning-based approaches, (Hu et al., 2000) identi-
fied columns by hierarchical clustering and then spatial and
lexical criteria to classify headers, and also addressed the

Shttp://pdftohtml.sourceforge.net/

evaluating problem by designing a new paradigm “random
graph probing”.

Recently, (Schreiber et al., 2017) used the deep learning-
based object detection model with pre-processing to recog-
nize the row and column structures for the ICDAR 2013
dataset. Similarly, existing methods usually leveraged no
training data or only small scale training data for this task.
Distinct from existing research, We use the TableBank
dataset to verify the data-driven end-to-end model for struc-
ture recognition. To the best of our knowledge, the Table-
Bank dataset is the first large scale dataset for both table
detection and recognition tasks.

7. Conclusion

To empower the research of table detection and structure
recognition for document analysis, we introduce the Table-
Bank dataset, a new image-based table analysis dataset built
with online Word and Latex documents. We use the Faster
R-CNN model and image-to-text model as the baseline to
evaluate the performance of TableBank. In addition, we
have also created testing data from Word and Latex doc-
uments respectively, where the model accuracy in differ-
ent domains is evaluated. Experiments show that image-
based table detection and recognition with deep learning is
a promising research direction. We expect the TableBank
dataset will release the power of deep learning in the table
analysis task, meanwhile fosters more customized network
structures to make substantial advances in this task.

For future research, we will further enlarge the TableBank
from more domains with high quality. Moreover, we plan to
build a dataset with multiple labels such as tables, figures,
headings, subheadings, text blocks and more. In this way,
we may obtain fine-grained models that can distinguish dif-
ferent parts of documents.
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