
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 1849–1857
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

1849

An In-Depth Comparison of 14 Spelling Correction Tools
on a Common Benchmark

Markus Näther
University of Freiburg

79110 Freiburg, Germany
naetherm@cs.uni-freiburg.de

Abstract
Determining and correcting spelling and grammar errors in text is an important but surprisingly difficult task. There are several reasons
why this remains challenging. Errors may consist of simple typing errors like deleted, substituted, or wrongly inserted letters, but
may also consist of word confusions where a word was replaced by another one. In addition, words may be erroneously split into two
parts or get concatenated. Some words can contain hyphens, because they were split at the end of a line or are compound words with
a mandatory hyphen. In this paper, we provide an extensive evaluation of 14 spelling correction tools on a common benchmark. In
particular, the evaluation provides a detailed comparison with respect to 12 error categories. The benchmark consists of sentences from
the English Wikipedia, which were distorted using a realistic error model. Measuring the quality of an algorithm with respect to these
error categories requires an alignment of the original text, the distorted text and the corrected text provided by the tool. We make our
benchmark generation and evaluation tools publicly available.

Keywords:Benchmark, Evaluation, Spelling Error Correction, SEC, GEC

1. Introduction
Text continues to be one of the most popular formats for
publishing information and knowledge, either in electronic
or non-electronic form. Huge amounts of text are created
every day and the variety of writing styles, formatting, struc-
tures, and publishing types are almost unlimited. Due to the
fact that language is normallywritten by humans, it might be
the case that different kinds of spelling and grammar errors
occur within those written texts. For example, consider this
sentence: As an artist, Francis Bacon was a late starter and
this slightly distorted version: As an artist, Framcis Bcon
was a late starter. The distorted version includes typical er-
rors like hitting the key m instead of n and omitting a letter.
While the human brain is quite good at fixing such errors
during reading, the task is surprisingly difficult for comput-
ers. If one knows Francis Bacon, one would clearly identify
the tokens Framcis Bcon as him. If one does not know him,
one would probably detect that the token Framcis is not cor-
rect, since Francis is more familiar. The latter token Bcon
could also stand for a wearable1 and would hence be con-
sidered correct by many spelling correction tools although
it does not make much sense in the given sentence.
Spelling correction is a fundamental problem in the field of
natural language processing. Most algorithms and tools in
the field simply assume that the given text is free from errors
such as the above and they fail if this is not the case. In par-
ticular, this is true for basic problems such as POS-tagging,
sentence parsing and entity recognition, as well as for more
complex problems such as question answering (QA). For
example, the QA system Aqqu (Bast and Haussmann, 2015)
fails to produce an answer for the simple question Who is
Framcis Bacon unless the typo in the question is corrected.
The entity extraction tool Dandelion2 suggests the entity

1 https://bcon.zone
2 https://dandelion.eu/semantic-text/
entity-extraction-demo

bacon instead of the person Francis Bacon.

1.1. Overview
In Section 3. we give an overview of the benchmark, the
occuring error categories, and how those errors are gener-
ated. In Section 4. we describe how the alignment between
a given prediction and the groundtruth information is built
and which metrics are evaluated. In Section 5. the results
for all tools are presented and discussed.

1.2. Contributions
This paper is about the evaluation of existing spelling error
correction tools and about the non-trivial tasks of construct-
ing a benchmark, developingmeaningful measurements and
solving the underlying alignment problems. We consider the
following as our main contributions.

• The construction of a benchmark of arbitrary size with
detailed error category information, given arbitrary
correct text.

• A set of criteria that allows us to measure not only the
correction capabilities of a given tool but also whether
a given error was detected but not corrected adequately.

• An extensive evaluation of 14 spelling error correc-
tion tools on our benchmark, according to our criteria.
For each tool we provide a concise description of its
strengths and weaknesses.

• We make the source code of our evaluation
tools publicly available at https://github.
com/naetherm/SpellingBenchmark and
the visualisation results of the alignments ac-
cessible at http://nsec.informatik.
uni-freiburg.de/benchmark.

• We discuss the steps which are necessary to build a
fully satisfactory tool for spelling error detection and
correction.

https://bcon.zone
https://dandelion.eu/semantic-text/entity-extraction-demo
https://dandelion.eu/semantic-text/entity-extraction-demo
https://github.com/naetherm/SpellingBenchmark
https://github.com/naetherm/SpellingBenchmark
http://nsec.informatik.uni-freiburg.de/benchmark
http://nsec.informatik.uni-freiburg.de/benchmark

1850

2. Related Work
There has been extensive research on the problem of er-
ror correction, but we know of no widely used common
benchmark. Each individual publication uses its own bench-
mark and compares to a (usually small) subset of methods
(Tetreault et al., 2017; Lichtarge et al., 2019; Ghosh and
Kristensson, 2017; Li et al., 2018). While (Ghosh and Kris-
tensson, 2017) used the IMDB dataset and induced errors
from the Twitter Typo Dataset3, (Li et al., 2018) created a
modified version of JFLEG (Tetreault et al., 2017), a dataset
for grammar error correction. Brill et al. used a 10,000-
word corpus (Brill andMoore, 2000) and other datasets like
the ones of Roger Mitton4 and Peter Norvig5 only contain-
ing isolated errors, missing the context they occur in. This
makes it hard to compare new approaches with already ex-
isting ones and to determine the kind of spelling errors an
application is capable of correcting and the ones which it
has problems with. The main motivation behind this paper
and the benchmark was to evaluate the different approaches
in a common framework. We developed a general method
for the generation of benchmarks that has knowledge about
specific error categories and how to create them. Through
this we can generate the input source and the corresponding
groundtruth files as JSON, with the input source and tools
for transformation being available for download.
There exists a large number of spelling error correction
tools. A simple search provides countless hits for either
standalone applications, browser plugins and addons, or
online services, either as free or paid service. The variety in
available tools is confusing and there does not seem to be a
clear winner, especially because the normal tool description
lacks information about which kind of errors can be detected
and fixed at all. So far, there has been no benchmark for
this problem and no comprehensive evaluation of existing
systems is available at all, which is surprisingly, given the
practical importance of the problem. Due to that this paper
wants to bring some clarity into the jungle of available tools
and provides a clear measurement for different types of
errors.

3. Benchmark
This section is about the generation of a benchmark test set
from a given text source. In the subsequent sections we will
deal with (1) the error categories that can be distinguished
in Section 3.1., (2) the used source dataset which will be
induced with errors in Section 3.2., and (3) how spelling
errors are induced in the datasets in Section 3.3..

3.1. Error Categories
To the best of our knowledge no publication about spelling
error correction has knowledge about the underlying errors
within the used datasets and benchmarks. We build our
evaluation with the existence of different error categories
in mind and made it possible to not only measure when an
error was adequately corrected but also when an erroneous

3 http://luululu.com/tweet/
4 https://www.dcs.bbk.ac.uk/~ROGER/aspell.
dat

5 http://norvig.com/ngrams/spell-errors.txt

word was detected as such and was tried to be corrected,
independent of the actual correction. As a starting point we
came up with the following error categories.
NON_WORD. Can be divided in pseudo words, represent-
ing a sequence of letters following the graphotactic and
phonotactic rules of a particular language with no mean-
ing in that language, and non words which violate those
rules like “taht”. We do not distinguish between those two
categories and simply mark them as NON_WORD.
REAL_WORD. Real-words represent words that were re-
placed by other words of the current language, like “form”
instead of “from”.
HYPHENATION. Words in visual text can be hyphenated,
which is frequent for formats with multiple columns. This
case deals with hyphens within a word, through wich tokens
are "broken up" in two parts at different positions within a
text, e.g “hy-phenation”.
COMPOUND_HYPHEN. Some words are compositions
of two words, making a hyphen mandatory. For those words
it is uncommon to either remove that hyphen or split such
a compound word in two subsequent words, e.g. “high
quality” instead of “high-quality”.
CAPITALISATION. Some words in visual text contain
more context and meaning, like organisation names like
Apple™ which should not be confused with the fruit apple.
For this case the capitalisation is a crucial indication of
whether a word represents a noun or a proper noun.
ARCHAIC. Some languages like German and French had
spelling reforms during the last decades, changing the way
words are written. In some reforms the grammar was
changed too, e.g. in the french spelling reform of 1990.
Although the used benchmark has no archaic words we
wanted to include it here for the sake of completeness.
SPLIT. A word can, due to several reasons, get split up in
two distinct words. Theword can thereby get split according
to rules of syllables or randomly at any position.
REPEAT. Double words are uncommon in some languages
like english, where only a hand full of different cases of
doubled words exists, e.g. the form “had had” and a double-
is. Nevertheless, they are more common in other languages
making it an important error category.
CONCATENATION. Concatenation errors are a popular
source of errors, not only by a user who does not hit the
space key but also by e.g. OCR tools or pdf text extraction
tools. Thereby two words are combined to a single word,
either resulting in a non existing word or a changed context.
PUNCTUATION. Punctuation describes the arrangement
of marks among words in a sentence, enabling comprehen-
sion. Problems with punctuation are starting with wrong
sentence endings (e.g. a point instead of question mark for
questions) and go other to misplaced commas, which can
change the meaning of a sentence.
MENTION_MISMATCH. Whenever a personal pronoun
is used there exists the possibility that, due to various rea-
sons, the correct personal pronoun is replaced by another
one, e.g. instead of he on types she.
TENSE. Verbs occur with different tenses, including regu-

http://luululu.com/tweet/
https://www.dcs.bbk.ac.uk/~ROGER/aspell.dat
https://www.dcs.bbk.ac.uk/~ROGER/aspell.dat
http://norvig.com/ngrams/spell-errors.txt

1851

lar and irregular tenses for a small subset of verbs. Espe-
cially for the conjugation of verbs it is hard to distinguish
between grammar and spelling errors. On one hand one
may apply the wrong conjugation rules on an irregular verb,
e.g. split, splitted.

3.2. Dataset
To receive a huge and diverse set of written language we
decided to take the English Wikipedia6 as text source.
Wikipedia is an online encyclopedia containing many ar-
ticles about diverse topics. From the received compressed
archive of Wikipedia we extract the single articles and re-
move unnecessary content like images, links, templates, and
markdown notations. In the end we have a cleaned up cor-
pus which just contains sentences. For the extraction of
the downloaded Wikipedia Dumps we are using the already
available toolWikiExtractor7 and extended it with function-
ality serving our needs.

3.3. Error Generation
The generation of noised sequences is driven by a set of
different generators each containing an equally distributed
calling probability. Basic generators are responsible for
introducing random insertions, deletions, replacements, or
swapping of single characters within a randomly chosen
word. With those strategies being very uncommon we fur-
ther added a Gaussian keyboard, simulating typos occuring
during the process of typing, e.g. by hitting a key in the local
neighbourhood. Hyphenation errors occur in three scenar-
ios, either through syllabification integrated by the hyphen-
ation algorithm of Liang (Liang, 1983), creating compound
words like high-tech, or creating two separate words instead
of the compound one, e.g. high quality instead of high-
quality. The wrong usage of quotation marks for citations,
missing commas, or wrong placement of those all belong to
the categories of punctuation errors. Wrongly placed com-
mas can typically occur before conjunction words, like and,
while, if, for which an own generator was introduced. Men-
tion mismatches were introduced by replacing occurences
of pronouns like shewith their counterparts, e.g. he, which,
although also representing a REAL_WORD error too, are
marked as MENTION_MISMATCH. Tense errors are gen-
erated by identifying verbs and - if available - replacing them
with another tense of that particular verb. Capitalisation
errors are introduced by swapping the case of the first char-
acter of the currently observed word, in conjunction with
the casing of the remaining word. For all of the above men-
tioned strategies, especially the basic generators, we further
have to distinguish whether the created word is either of
type NON_WORD, REAL_WORD, CAPITALISATION,
and HYPHENATION done by analysing the created noised
token. For the introduction of REAL_WORD errors we ad-
ditionally introduced a language dictionary, populated with
all words of the Oxford Dictionary8, which has knowledge
about the neighbouring words according to the Levenshtein
edit distance and phonetic similarity. This neighbourhood
is defined as neighbours(wi, wj) in Equation 1, with wi

6 https://en.wikipedia.org
7 https://github.com/attardi/wikiextractor
8 https://oed.com

and wj representing words of a language domain L, ED()
is representing the Levenshtein distance, and SIM() repre-
sents the usage of the double metaphone phonetic encoding
algorithm (Philips, 2000). τ and σ are constant thresholds
set during the generation of the language dictionaries, with
τ = 2 and σ = 3.

neighbours(wi, wj) =


T ED(wi, wj) <= τ ∨

SIM(wi, wj) <= σ

F else
(1)

4. Evaluation
4.1. Prediction Format
Although it would be possible providing corrections as raw
text we favoured a structured format, allowing us to add
additional information each of the evaluated tool can pro-
vide like the detected error type or a sorted list of correction
suggestion candidates. For each token the format provides a
unique id (containing an article, sentence, and word identi-
fier representing the position), the most probable corrected
token, and optional information about the detected error and
further correction candidates.

4.2. Token Alignment
Aligning source, groundtruth, and prediction sequences is
split up in two seperate stages, the compiling and linking
which will be discussed in detail in the subsequent sec-
tions. For better understanding of how tokens are aligned
one may follow the visualised alignment in Figure 1. A
token is usually more than raw text as presented in Figure
1, a token is a tuple τ = (text, idx, err, PPos,
SPos, GPos), with text being the text, idx the position
index within the groundtruth sequence, err describes the
error category, and PPos, SPos,GPos being the indices
of the prediction, source, and groundtruth tokens associated
with this token. The groundtruth token representing the
a from the example in Figure 1 would have the following
form: (“a”, 4, REPEAT, [], [4, 5], [4]), with the indices
information for PPos being empty at that point.

The 20-yearold Julia becmme a a lawyer in1976 .

The 20 year old Julia become a lawyer in 1976 .

The 20-year-old Julia became a lawyer in 1976 .

S

P

G

Figure 1: The tokenised input sequences for source (S),
prediction (P), and groundtruth (G); for simplicity we only
visualise the text of the tokens.

4.2.1. Alignment Compiling
Sequence compilation is done separately for each pair of
(prediction, source) and (prediction, groundtruth). The pur-
pose is the identification of identical blocks occuring in both
sequences, using a distance-sensitive n-gram approach to
find the longest common subsequences (LCS), and the re-
maining blocks of unmatched tokens, which are also the
results of this operation. For each sentence pair of the input
sequences we add the tuple of tokenised, lower-cased sen-
tences (S, T) to a queueQ and repeat the following untilQ
is empty:

https://en.wikipedia.org
https://github.com/attardi/wikiextractor
https://oed.com

1852

1. Given two sequences S = (s1, s2, . . . , sg) and T =
(t1, t2, . . . , th) by Q, with si, tj representing the to-
kens of the sequences, define the maximum distance
between both sequences as d = |g − h| and the length
of the starting n-gram with n = min(g, h).

2. Build the set of all n-grams Ŝ =
{[s1:n], [s2:n+1], . . . , [sg−n+1:g]} and T̂ respec-
tively, with [xa:b] being the list of tokens xa to
xb.

3. ∀ŝk ∈ Ŝ check if ∃t̂l ∈
[
t̂k−d, . . . , t̂k+d

]
⊆ T̂ so that

ŝk = t̂l, where ŝk = t̂l := ∀e ∈ {1, . . . , n}| ŝke = t̂le
is a comparison of the raw text of these tokens.

4. (a) If two identical n-grams ŝk and t̂l were found
the tokens of these n-grams defining the block
are added to the list of identical blocks and
the tuples of the remaining unmatched tokens
([s1:k−1, t1:l−1]) and ([sk+n:g, tl+n:h]) are added
to Q, if the tuple is not empty.

(b) If no identical n-grams were found set n = n− 1
and start over at (2), until n = 1 and no alignment
was found. In this case all tokens of S, and T are
added to the set of unmatched blocks.

After this operation was performed on both sets we have the
alignment information and the remaining unmatched tokens
as visualised in Figure 2. With this alignment information
we can build cross-links due to the connectivity-knowledge
between groundtruth and source. Iterating over both sets of
tokens, the groundtruth and source, we validate whether the
corresponding tokens contains assignment information not
present for the currently observed token.

The 20-yearold Julia becmme a a lawyer in1976 .

The 20 year old Julia become a lawyer in 1976 .

The 20-year-old Julia became a lawyer in 1976 .

S

P

G

CONCATREPEAT

12 3

12 34

A B

Figure 2: Tokens shaded in light blue are aligned blocks.
The blocks are labeled in the order in which they were found
is. We will refer to the unmatched groups as A and B during
the linking step. Tokens which are connected by a green
arrow are resolved by the connectivity-knowledge between
groundtruth and source. The remaining areas, shaded in red,
represent the still unaligned tokens between the sequences.

4.2.2. Alignment Linking
Before continuing we group the lists of unmatched tokens
between (prediction, groundtruth) and (prediction, source)
to (prediction, groundtruth, source) triples, as it is visualised
in Figure 2, but keep track about (prediction, groundtruth)
and (prediction, source) asGPG andGPS respectively. For
each group within GPG and GPS there are three different
cases with |x| and |y| > 0: (1) x-to-y, (2) x-to-zero, and
(3) x-to-none.
x-to-y. This is one of the most common cases and is the
first case for both A and B of Figure 2. For two given

sequences S = (s1, s2, . . . , sg) and T = (t1, t2, . . . , th)
the following checks are performed and two tokens si and
tj are only aligned if one of the 9 conditions hold, with
λ = 1, mL = min(si, tj). sim in Equation 2 calculates a
similarity score between 0−1 of the tokens ti and tj with jw
being the Jaro-Winkler similarity and ED the Levenshtein
edit distance. |ti| will return the number of characters of
that token.

sim(ti, tj) =

(
jw(ti, tj) +

(
1− ED(ti,tj)

max(|ti|,|tj |)

))
2

(2)

We used a combination of both due to the stability of Jaro-
Winkler regarding typos in small words, e.g. when calcu-
lating the similarity between taht and that jw will return a
value > 0.9 while ED will be 2, resulting in a value of 0.5
for the corresponding normalisation term. Tokens in bc are
the lower-cased variants, $ the index of the last character of
a token, and si;k:l is the notation for the substring of si from
position k to l, with k < l:

1. sim(bsic, btjc) > 0.7

2. tj = si;0:$−λ

3. si = tj;0:$−λ

4. sim(bsic, btj;0:$−λc) > 0.7

5. sim(bsi;0:mLc, btj;0:mLc) > 0.7

6. tj = si;$−λ:$

7. si = tj;$−λ:$

8. sim(bsi;$−λ:$c, btj;$−λ:$c) > 0.7

9. sim(bsi;$−mL:$c, btj;$−mL:$c) > 0.7

x-to-zero. x tokens of S cannot be aligned to any tokens
of T . Though we know where the gap in T exists to whose
index position i we refer to as ťi. For the left-most token of
x and ťi−1 evaluate (1) and (6-9), respectively evaluate (1-5)
for the right-most token of x and ťi+1. If no correspondence
was found the investigated tokens of x are unmatchable at
the current state.
x-to-none. The tokens x are not aligned to either a token

The 20-yearold Julia becmme a a lawyer in1976 .

The 20 year old Julia become a lawyer in 1976 .

The 20-year-old Julia became a lawyer in 1976 .

S

P

G
A

Figure 3: The token of B and the two outer ones of A inP
are aligned, except the token year. This one has no tokens
or empty gaps in S nor in G. The last possibility is that it
occurs within already aligned tokens, check by x-to-none.
nor an empty gap within the other sequence. An example of
that can be seen in Figure 3 were the token year inP has no
connection to any other token, nor is assignable to an empty
gap. We refer to the tokens surrounding the tokens x as

1853

x−1 and x$+1. For these tokens we collect the groundtruth
and source indices in Ǧpos = {x−1;GPos, x$+1;GPos} and
Špos = {x−1;SPos, x$+1;SPos}. Then check ∀xi ∈ x if
∃ǧj ∈ Ǧpos so that xi ⊂ ǧj , with xi ⊂ ǧj := xi = ǧj;k:l
for k < l.

1. If that holds for a pair xi, ǧj those tokens are aligned,
xi is removed from the set, and the cross-links are
updated.

2. Otherwise xi is unmatchable to any token.

The same is done for Špos respectively.

4.3. Benchmark
Two separate test sets were created, with the first one con-
taining no error and the second one all of the previous
mentioned errors.
Stability Test. Checking how tools act on error free se-
quences we only evaluated the word and sequence accuracy
for this test set. The set consists of 241 sentences with 6362
words in total.
Test set. Due to the limitations of some tools to just a few
sentences per day or in total we limited the set to ≈ 800
sentences, while tools that can be evaluated automatically
used a test set of ≈ 9060 sentences. Only 2,263/19,950
tokens are assigned to one of the previously mentioned error
categories, so that approx. 11%/8% of the tokens contain
one error. Setting the random seed to 42 it is guaranteed to
always generate the same subset, containing the exact same
errors, when using the same Wikipedia dump files.

4.4. Evaluation Metrics
Through the evaluation we are collecting a wide range of
information which will be described in more detail below
and how those values are determined.
Word Accuracy. For the tokens T of a sequence si the
word accuracy is given byWA : ∀ti ∈ T : c(ti)|T | , with

c(i) =


1 |ti;GPos| = |ti;PPos| ∧
∀j ∈ |ti;GPos| ⇒ ti;GPos j = ti;PPos j

0 else

where ti;PPos are the prediction indices of token ti and
ti;PPos j the access to the text of the prediction token at
position j, and respectively for GPos.
Sequence Accuracy. The sequence accuracy for all se-
quences S is given by SA : ∀si ∈ S : s(si)|S| , with

s(si) =

{
1 WA(si) = 1

0 else

Error Category Detection. Although most of the deter-
mined tools do not have an evaluation of the underlying
error category the measurements for the detection can be
determined indirectly by the correction itself. Prediction
is measured as the proportion of adequately detected errors
of each error category by a tool over all articles. Recall as
the proportion of the errors of each error category marked

in the groundtruth of all articles that were detected during
the correction. F-Score is defined as the harmonic mean
of precision and recall. With the majority of tools not sup-
porting error categories we measure the detection through
their error correction. If a token was changed with respect
to the groundtruth it cannot be NONE anymore. If it was
adequately corrected we assume that the error category was
correctly detected. Otherwise the proposed corrected token
is analysed to investigate which category is the most proba-
ble, e.g. investigate whether the character of the first letter
was changed indicating capitalisation errors.
Error Category Correction. We further evaluate inde-
pendently whether a given token was adequately corrected.
Precision is therebymeasured as the proportion of corrected
errors for an error category by a tool in all articles. Recall
is measured as the proportion of the errors of each error
category marked in the groundtruth of all articles that were
adequately corrected. F-Score is defined as the harmonic
mean of precision and recall. Unaligned prediction tokens
after linking will be counted as REAL_WORD errors at this
point.
Suggestion Adequacy (SA). SA measures the adequacy
of the proposed suggestions, if provided by the tool. In
accordance to (Starlander and Popescu-Belis, 2002) we are
using the following metric SA for measuring the adequacy,
with t being the current token and s a list of the predicted
token and further suggestions, if provided:

SA(t, s) =


0 s = ∅
1 t = s[0]

0.5 t ∈ s
−0.5 else

The overall suggestion adequacy S̄A is determined by nor-
malising the sum of all scores by the number of tokens.
With T being the set of predicted tokens defined as (predict,
sugg=[], err=[]), where predict is the predicted tokens, sugg
a list of alternative predictions, and err the proposed error
category.

S̄A =

T∑
k=1

SA(sk;predict)

|T |

Overall Performance. In general one is interested in a
single-valued overall performance measure of a tool when
compared to others. A first approach was made by (Starlan-
der and Popescu-Belis, 2002) who measured the predictive
accuracy (PA) of a spelling correction tool as the likelihood
of a token, correct or incorrect, being handled accurately
by the spelling checker. This metric does not make any
prediction about the performance of a spelling error correc-
tion tool, as it rather reflects the performance of a spelling
checker in a given evaluation. Although this measurement
gives a good overall measurement for the competency of a
spelling correction system, the problem with this type of
measurement is that the difference between an adequate and
an inadequate spelling correction system is relatively small.
Due to that (Starlander and Popescu-Belis, 2002) refined the
measurement, using the harmonic mean between recall and

1854

precision, entailing that tools making use of trivial strate-
gies, for example, scoring all tokens as correct to obtain high
lexical recall, will be penalised in terms of the error recall.
The mean score is a measure which calculates an average
that is lower than the normal average score. The mean tends
to be more severe on lower scores, awarding a score which
is closer to the lower score than the normal average score
would be. As pointed out, these measures are especially
valuable to detect trivial strategies. These metrics does not
take information about specific error categories into consid-
eration, which leads to a general integration of evaluation
metrics taking the general correction performance over all
error categories into consideration, which can be seen in
Equation 3 and 4. EScore is an averaged correction per-
formance over all error categories, including the category
NONE which represents that no error is present. PScore
uses the correction of those NONE as a penality parame-
ter. N represents a list of error categories, starting with
NONE as the first entry for simplicity. cj is the number
of adequately corrected errors of error category j and tj
is total amount of errors for the category j. For PScore
the correction performance of NONE is multipled with the
averaged performance over all error categories, due to the
fact that we want a changed output for all error categories
instead of the NONE category where we explicitely do not
want any changed output. Therefore the correction param-
eter for NONE can be interpreted as a penality parameter.

EScore =

∑|N |
i=0

ci
ti

|N |
(3) PScore =

∑|N |
i=1

ci
ti

|N | − 1

c0
t0

(4)

5. Results
Within this section we shortly introduce all tested tools and
then show and dicuss the results on the previously in Section
4.3. introduced benchmarks.

5.1. Tools
We evaluated the following 14 spelling error correction
tools. An overview and comparison of their features, ac-
cording to available information, is given in the description.
Tools that are marked with + are paid services which can
include a short/free trial version with possibly limited fea-
tures, while all other tools and library are available for free.
Tools marked with * were only able to process the input
token-wise.
BingSpell+ is part of theMicrosoft Cognitive Toolkit, being
capable of correcting word breaks, slang words, homonyms,
names, and brand names (Microsoft Corp., 2019).
LanguageTool+ is capable of detecting grammar errors,
general spelling errors, capitalisation errorss, words breaks,
and hyphenation errors as well as slang words (Language-
Tool.org, 2019).
GrammarBot+ is a dictionary based approach for correct-
ing found spelling errors (GrammarBot, 2019).
JamSpell is a spell checking library, that checks the sur-
rounding of a given word to make better predictions and
can process up to 5,000 words per second (Ozinov, Filipp,
2019).
TextRazor+ is capable of detecting typos in real world en-
tities like people, places, and brands, although they were

never seen by the algorithms behind TextRazor. Addition-
ally it is capable of identifying incorrect homophones and
the surrounding context of words to advance the correction
capabilities and correction accuracy (textrazor.com, 2019).
PyEnchant is a Python package, providing binding to the
Enchant spellchecking library (Ryan Kelly, 2019).
HunSpell* is one of the default spelling error correction
tools that is also used in tools like LibreOffice, OpenOffice,
Firefox, etc. (László Németh, 2019).
Aspell* is the default spelling error correction tool for all
GNU operation systems, designed to replace Ispell (Kevin
Atkinson, 2017).
Google contains a spelling correction tool for all services.
For evaluation we usedGoogle Docs as pipeline for correct-
ing errors within the given source files (Google, 2019).
Grammarly+ is a web service capable of checking grammar
and spelling. Thereby it can detect grammar, spelling, punc-
tuation, word choice, and style mistakes following common
linguistic prescription (Grammarly Inc., 2019).
Long-Short-Term-Memory (LSTM) is not a tool by itself
but belongs to the toolset of machine and deep learning and
it especially used for sequence to sequence tasks (Hochreiter
and Schmidhuber, 1997). We used a network with 2 LSTM
layers for an unidirectional encoder and decoder each, both
with en embedding dimension of 256.
Transformer is a specific sequence to sequence neural net-
work architecture, as described in (Vaswani et al., 2017).
For our purposes we retrained Transformer on a character-
level using our training set, with the network configuration
proposed by (Vaswani et al., 2017).
Two baselines were included: (1) a dictionary based
approach based on Peter Norvig9 (Norvig*) and (2)) a
character-level n-gram (N-Gram*) approach with n = 3.
The training set for LSTM and Transformer, both imple-
mented using fairseq10 – generated through the previously
described generator – does not include any of the articles
used for the benchmark and used different error generators
than those used for the test set generation.

5.2. Evaluation Results
Stability Test
The results on the stability testset are reported in Table
1. For completeness we reported the performance ofWA,
SA, and EScore. Tools with the best word accuracy (WA)
are Google, BingSpell, and Grammarly although the used
LSTM and Transformer implementations are performing
equality good. For the sequence accuracy good results are
given by Google and BingSpell, the implementations of
LSTM and Transformer are slightly worse than these tools
but performing better than all others. The drop in the se-
quence accuracy for Grammarly is due to a comma analysis
that is trying to solve comma errors, e.g. before conjunc-
tions. Norvig is performing very poor in both categories
which is due to the poor handling of capitalised words and
numbers within the text, which results in the introduction of
errors in every sentence. The bad sequence accuracy results
for HunSpell and Aspell are due their limited punctuation

9 http://norvig.com/spell-correct.html
10https://github.com/pytorch/fairseq

http://norvig.com/spell-correct.html
https://github.com/pytorch/fairseq

1855

support and, as it seems, a limited word dictionary, where
e.g. iTunes is corrected to I Tunes. For the neural network
implementations LSTM and Transformer a drop for the se-
quence accuracy can be seen. This drop could be explained
by the tendency of neural networks of being plagued by
false positives when no actual error is present. The same
behaviour can be seen for TextRazor and, as mentioned,
Grammarly.

Acc. (in%)

Tool E W S

Norvig 63.61 63.61 0.00
N-Gram 81.94 81.94 7.88

BingSpell 99.56 99.53 97.10
Google 99.91 99.86 97.51
Grammarly 98.90 99.12 75.10
TextRazor 98.33 98.33 69.29
LanguageTool 94.29 96.77 68.05
GrammarBot 98.71 98.60 77.18
PyEnchant 94.80 94.29 28.22
HunSpell 84.38 83.93 06.64
Aspell 89.09 88.18 18.67
JamSpell 97.91 97.88 60.17

LSTM 99.72 99.73 93.36
Transformer 99.78 99.78 94.19

Table 1: Overview of the metrics EScore (E), word (W)
and sequence accuracy (S) of all 14 spelling error correction
tools when considering error-free sequences. Best scoring
tools are highlighted in bold red.

Accuracy
The results for the word (W) and sequence accuracy (S) can
be seen in Table 2. Although showing good results regard-
ing the word accuracy, one may remember that ≈ 11%/8%
of all tokens are error prone. Best word accuracy results
are reported for BingSpell, Google, Grammarly, and the
two neural network reference implementations LSTM and
Transformer. The sequence accuracy represents the amount
of sentences that were corrected so that it matches the
groundtruth information. Here the best performing tools are
BingSpell, Grammarly, LSTM, and Transformer. Although
the toolsBingSpell, Google, LanguageTool, andGrammarly
also provide a confidence sorted list of alternative correc-
tion candidates there were several reasons we were not able
to provide those here. On the one hand services like Gram-
marly and Google provided no API, just a web service,
through which such information could be returned, on the
other hand BingSpell had a very limited amount of free re-
quests, which left us with using the account-free services.
When taking a look at the results forEScore and PScore one
may see that the results for PScore are always lower than the
results of EScore meaning that all tools are falsely correct-
ing NONE tokens. According to these scorings Grammarly,
BingSpell, and the two neural network implementations per-
form best.
Error Categories
Table 3 gives an overview of the detection and correction
F-Scores for each tool and error category and the number

Acc. (in%)

Tool E P SA W S

Norvig 17.06 8.12 0.45 57.08 00.00
N-Gram 12.49 5.05 0.66 73.17 00.25

BingSpell 46.98 41.89 0.93 92.17 20.55
Google 39.98 34.36 0.93 91.14 13.33
Grammarly 49.58 44.45 0.93 91.62 16.94
TextRazor 24.46 17.37 0.89 87.72 04.23
LanguageTool 41.20 34.64 0.89 87.80 09.22
GrammarBot 27.95 21.00 0.89 88.06 06.57
PyEnchant 23.07 15.61 0.84 84.54 03.55
HunSpell 21.11 12.88 0.70 75.51 00.50
Aspell 26.97 18.92 0.76 79.54 01.87
JamSpell 20.47 13.11 0.89 88.00 04.85

LSTM 55.11 50.77 0.93 93.00 22.67
Transformer 62.24 58.42 0.94 93.79 30.26

Table 2: Overview of the overall performance metrics
EScore (E) and PScore (P), suggestion adequacy (SA), and
word (W) and sequence accuracy (S) of all 14 spelling error
correction tools. Best scoring tools are highlighted in bold,
without marking the baseline methods.

of errors per category and test set in the first two rows. As
mentioned, the greater the difference between EScore and
PScore in Table 2 the lower the F-Score for NONE has to
be, which can be seen in the first column. All tools are good
at detecting and (not-)correcting tokens that are assigned as
NONE, with BingSpell, Grammarly, and TextRazor provid-
ing the best results. Norvig and N-Gram are performing
lower on that category, which could be due to the usage
of a limited set of documents for Norvig and N-Gram and
the preference for the more probable word. All tools are
fairly good at detection and correction words assigned to
NON_WORD, with BingSpell performing best. For the
detection and correction of REAL_WORD BingSpell also
provides the best result among all tools. Although SPLIT
errors are detected by many tools only some tools are ca-
pable of correcting those errors, with Google performing
best. HYPHENATION errors are corrected by almost any
tool, with Google yielding the best results. CONCATENA-
TION error get corrected well by BingSpell, interestingly
followed by Aspell, which could be explained by the usage
of a good word dictionary for Aspell. For CAPITALISA-
TION one can see the trend of nearly all tools leaving the
capitalisation of words as it is if the first letter is a cap-
ital one, only Grammarly is fixing some of these words
beside the neural network approaches LSTM and Trans-
former. REPEAT errors are only handled by Grammarly,
BingSpell, and LanguageTool, with the latter one perform-
ing best on that error type. All other tools are either not
detecting any of those words as wrong (e.g. Grammar-
Bot), or are detecting the repeated tokens but correcting
them to other tokens (e.g. Aspell). LSTM and Transformer
performing best, but it could also be the case that both net-
works have simply learned that two times the same word
in a row should be merged to one. PUNCTUATION errors
are, besides LSTMand Transformer, only handled byGram-
marly, BingSpell, Google, and LanguageTool, with the first

1856

Tool NONE NW RW SP HY CO CA RE PU MM TE CHY

TinySet 7,568 2,889 868 1,202 4,476 2,409 2,603 225 1,093 2,216 400
SmallSet 660 285 89 100 349 200 237 20 108 185 30

Norvig D
C

0.72
0.72

0.44
0.17

0.08
0.01

0.77
0.00

0.68
0.52

0.08
0.06

0.13
0.07

0.35
0.00

0.01
0.01

0.30
0.00

0.03
0.02

0.00
0.00

N-Gram D
C

0.85
0.85

0.37
0.03

0.05
0.01

0.68
0.00

0.57
0.13

0.06
0.01

0.13
0.05

0.29
0.00

0.62
0.47

0.00
0.00

0.03
0.02

0.00
0.00

BingSpell D
C

0.97
0.97

0.77
0.72

0.37
0.34

0.91
0.89

0.62
0.60

0.93
0.93

0.15
0.14

0.93
0.93

0.71
0.71

0.07
0.03

0.18
0.18

0.00
0.00

Google D
C

0.96
0.96

0.75
0.71

0.31
0.29

0.94
0.92

0.78
0.77

0.91
0.91

0.01
0.01

0.03
0.03

0.71
0.71

0.00
0.00

0.13
0.13

0.00
0.00

Grammarly D
C

0.97
0.97

0.76
0.71

0.26
0.23

0.87
0.83

0.70
0.68

0.87
0.87

0.31
0.31

0.80
0.80

0.71
0.71

0.29
0.23

0.34
0.34

0.28
0.28

TextRazor D
C

0.98
0.98

0.56
0.34

0.15
0.10

0.70
0.00

0.75
0.64

0.16
0.16

0.03
0.01

0.07
0.00

0.67
0.58

0.00
0.00

0.09
0.09

0.35
0.35

LanguageTool D
C

0.95
0.95

0.56
0.46

0.24
0.17

0.85
0.61

0.71
0.68

0.87
0.86

0.23
0.21

0.94
0.93

0.61
0.56

0.07
0.00

0.13
0.13

0.00
0.00

GrammarBot D
C

0.95
0.95

0.62
0.49

0.26
0.17

0.78
0.00

0.64
0.61

0.72
0.71

0.20
0.15

0.01
0.00

0.71
0.67

0.04
0.00

0.13
0.15

0.00
0.00

PyEnchant D
C

0.93
0.93

0.58
0.41

0.18
0.10

0.80
0.00

0.28
0.01

0.83
0.82

0.16
0.10

0.10
0.00

0.68
0.60

0.00
0.00

0.03
0.02

0.00
0.00

HunSpell D
C

0.89
0.89

0.63
0.46

0.09
0.09

0.73
0.00

0.00
0.00

0.76
0.76

0.14
0.08

0.20
0.00

0.02
0.00

0.00
0.00

0.00
0.00

0.00
0.00

Aspell D
C

0.91
0.91

0.57
0.41

0.12
0.12

0.76
0.00

0.76
0.72

0.91
0.91

0.10
0.08

0.26
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

JamSpell D
C

0.94
0.94

0.58
0.50

0.33
0.27

0.56
0.00

0.00
0.00

0.14
0.14

0.02
0.01

0.04
0.00

0.70
0.66

0.03
0.03

0.11
0.10

0.00
0.00

LSTM D
C

0.98
0.98

0.71
0.64

0.44
0.37

0.95
0.87

0.94
0.93

0.16
0.16

0.76
0.76

0.98
0.98

0.67
0.67

0.05
0.00

0.14
0.14

0.21
0.21

Transformer D
C

0.98
0.98

0.75
0.69

0.58
0.54

0.97
0.95

0.96
0.95

0.23
0.23

0.83
0.82

1.00
1.00

0.71
0.71

0.20
0.13

0.28
0.28

0.22
0.22

Table 3: Detailed information about the F-Score performance of each of the 14 state-of-the-art spelling error correction
tools and the two baselines. For all tools and all previously described error categories the F-Score of the detection and
correction is listed. NONE: Words without error; NW: NON_WORD errors; RW: REAL_WORD errors; SP: SPLIT errors;
HY: HYPHENATION errors; CA: CAPITALISATION errors; RE: REPEAT errors; MM:MENTION_MISMATCH errors;
TE: TENSE errors; CO: CONCATENATION errors; CHY: COMPOUND_HYPHEN errors. D represents the Detection,
C represents the Correction. Best scoring tools are highlighted in bold, without marking the baseline methods.

three ones performing equality good. All other tools seem
not to be capable of indicating wrong usages of brackets
and other punctuation errors like wrong comma usage. The
same holds forMENTION_MISMATCHerrors, where only
Grammarly is capable of detecting and correcting at least
some errors. Interestingly, although the used training set
for LSTM and Transformer does not contain any error of
that category, Transformer is also capable of detecting and
correcting some of the occuring errors. For the error cate-
gory TENSE only BingSpell, Google, and Grammarly were
able to fix at least some errors, with Grammarly performing
best. The generated training set for LSTM and Transformer
does not contain TENSE errors, but both implementations
were able to detect and fix some of those errors. The er-
ror category COMPOUND_HYPHEN can only be detected
by Grammarly and TextRazor, with TextRazor performing
best. The last three error categories can also be seen as the
hardest to find and correct because they require not only
an understanding of the current and previous sentences but
also knowledge about mentioned entities.

6. Conclusion
We presented the generation of a test set containing sen-
tences from Wikipedia, distorted using realistic error mod-
els. We further presented an algorithm through which we
can build the alignments between the erroneous source,
groundtruth, and proposed correction. With these align-
ments we evaluated 14 tools, based on the generated test
sets, and collected metrics to measure their detection and
correction performance on several error categories. As seen
in the results and discussion, all tools are good at correcting
non-words, but error categories that are difficult to detect
like real-word, mention-mismatch, or tense errors require
knowledge about the sentence and occuring entities. They
further need a conceptional representation and understand-
ing of the whole document for finding long dependency
errors like mention mismatches. Fetching errors that are
based on inadequate knowledge would further need the in-
troduction of knowledge bases and knowledge graphs, mak-
ing it possible to add additional information about identified
entities to the correction of the sentence.

1857

7. References
7.1. Bibliographical References
Bast, H. and Haussmann, E. (2015). More accurate
question answering on freebase. In Proceedings of the
24th ACM International Conference on Information and
Knowledge Management, CIKM 2015, Melbourne, VIC,
Australia, October 19 - 23, 2015, pages 1431–1440.

Brill, E. andMoore, R. C. (2000). An improved errormodel
for noisy channel spelling correction. In 38th Annual
Meeting of the Association for Computational Linguis-
tics, Hong Kong, China, October 1-8, 2000.

Ghosh, S. and Kristensson, P. O. (2017). Neural networks
for text correction and completion in keyboard decoding.
CoRR, abs/1709.06429.

Google. (2019). Google. https://www.google.
com/drive.

GrammarBot. (2019). GrammarBot. http:
//grammarbot.io/.

Grammarly Inc. (2019). Grammarly. https://www.
grammarly.com.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-
term memory. Neural Computation, 9(8):1735–1780.

Kevin Atkinson. (2017). Aspell. http://aspell.
net/.

LanguageTool.org. (2019). LanguageTool. https://
languagetool.org/.

Li, H., Wang, Y., Liu, X., Sheng, Z., and Wei, S. (2018).
Spelling error correction using a nested RNN model and
pseudo training data. CoRR, abs/1811.00238.

Liang, F. M. (1983). Word hy-phen-a-tion by com-put-
er. Technical report, Calif. Univ. Stanford. Comput. Sci.
Dept.

Lichtarge, J., Alberti, C., Kumar, S., Shazeer, N., Parmar,
N., and Tong, S. (2019). Corpora generation for gram-
matical error correction. In Proceedings of the 2019Con-

ference of theNorthAmerican Chapter of theAssociation
for Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers), pages
3291–3301.

László Németh. (2019). Hunspell. http:
//hunspell.github.io/.

Microsoft Corp. (2019). BingSpell. https:
//azure.microsoft.com/de-de/services/
cognitive-services/spell-check/.

Ozinov, Filipp. (2019). JamSpell. https://github.
com/bakwc/JamSpell.

Philips, L. (2000). The double metaphone search algo-
rithm. C/C++ users journal, 18(6):38–43.

Ryan Kelly. (2019). PyEnchant. https://github.
com/rfk/pyenchant.

Starlander,M. and Popescu-Belis, A. (2002). Corpus-based
evaluation of a french spelling and grammar checker.
In Proceedings of the Third International Conference on
Language Resources and Evaluation, LREC 2002, May
29-31, 2002, Las Palmas, Canary Islands, Spain.

Tetreault, J. R., Sakaguchi, K., and Napoles, C. (2017). JF-
LEG: A fluency corpus and benchmark for grammatical
error correction. In Proceedings of the 15th Conference
of the European Chapter of the Association for Compu-
tational Linguistics, EACL 2017, Valencia, Spain, April
3-7, 2017, Volume 2: Short Papers, pages 229–234.

textrazor.com. (2019). TextRazor. https://www.
textrazor.com.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017).
Attention is all you need. In Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 De-
cember 2017, Long Beach, CA, USA, pages 6000–6010.

https://www.google.com/drive
https://www.google.com/drive
http://grammarbot.io/
http://grammarbot.io/
https://www.grammarly.com
https://www.grammarly.com
http://aspell.net/
http://aspell.net/
https://languagetool.org/
https://languagetool.org/
http://hunspell.github.io/
http://hunspell.github.io/
https://azure.microsoft.com/de-de/services/cognitive-services/spell-check/
https://azure.microsoft.com/de-de/services/cognitive-services/spell-check/
https://azure.microsoft.com/de-de/services/cognitive-services/spell-check/
https://github.com/bakwc/JamSpell
https://github.com/bakwc/JamSpell
https://github.com/rfk/pyenchant
https://github.com/rfk/pyenchant
https://www.textrazor.com
https://www.textrazor.com

