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Abstract
Current intelligent systems need the expensive support of machine learning experts to sustain their performance level when used on
a daily basis. To reduce this cost, i.e. remaining free from any machine learning expert, it is reasonable to implement lifelong (or
continuous) learning intelligent systems that will continuously adapt their model when facing changing execution conditions. In this
work, the systems are allowed to refer to human domain experts who can provide the system with relevant knowledge about the task.
Nowadays, the fast growth of lifelong learning systems development rises the question of their evaluation. In this article we propose a
generic evaluation methodology for the specific case of lifelong learning systems. Two steps will be considered. First, the evaluation
of human-assisted learning (including active and/or interactive learning) outside the context of lifelong learning. Second, the system
evaluation across time, with propositions of how a lifelong learning intelligent system should be evaluated when including human
assisted learning or not.
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1. Introduction

Today’s intelligent systems are used in many fields to pro-
cess data for various tasks amongst which classification
and regression (Prince, 2012; Bishop, 2006). Intelligent
systems make use of a representation of the world around
them, a model, that is initially learnt in laboratories un-
der supervision of machine learning (ML) experts whose
role is threefold. First, they select and label the so-called
training data required to learn the model used by the sys-
tem. One can expect the ML experts to select training data
that is representative of what the system will be exposed
to in the real world in a near future. Second, they set the
numerous meta-parameters inherent to the system architec-
ture and train the model by using development data in order
to define the meta-parameters of the system and their opti-
mal value. Third, before releasing it in the real world they
benchmark the performance of the system on a third data
set referred to as test data that is used to assert the general-
isation of the system performance (in order to avoid over-
fitting). In this paper we will use the term ”initialisation
data” to refer to the set of training, development and test
data together.
Once in the real world, intelligent systems are exposed to
new incoming data. The life-cycle of those standard auto-
matic systems, which will be referred to as static learning
or isolated learning systems (Chen and Liu, 2016), is de-
scribed in Figure 1-a.
At first, one can expect incoming data to be similar to the
initialisation data but, across time, the distribution of this
data might move away from the one of the initialisation
data. This effect is known as the data set shift and causes
severe performance degradation (Quionero-Candela et al.,
2009) that can only be solved by requesting machine learn-
ing expert to adapt or retrain a new model. To avoid the
costly need of ML experts, a trend is to develop systems
that can improve themselves across time without the help
of ML experts but by continuously adapting on all available
data and with the possible help of a human domain expert.

Such systems are referred to as lifelong learning intelligent
systems (LLIS).1 LLIS differ from static systems as they
implement adaptation steps to sustain performance across
time by continuously learning on new data. The life-cycle
of LLIS is described by Figure 1-b.
LLIS can adapt in two modes: online and offline. In this
work we define online adaptation as the action of a system
which updates its knowledge (model) by learning on the in-
coming data it has to process. In other words, whenever
asked to process new data to provide a hypothesis (or out-
put), the LLIS takes benefits of this data to update its model.
In this case, the LLIS receives the exact same amount of
data than a static learning system.
When adapting offline, LLIS have access to additional
adaptation data to learn from. This adaptation data can in-
clude the initialisation data for the system to process again,
additional data provided by the domain expert, data auto-
matically collected by the LLIS from various accessible
sources and even already processed real world data that
could be internally memorised by the LLIS. During offline
adaptation, the LLIS is not asked to provide any hypothesis
(or output) to the end-user and can possibly benefit from
more computational resources and time. In this work we
assume that online adaptation data come without any label
while offline adaptation data might include labeled or unla-
beled data.
Both offline and online adaptation processes can rely on
unsupervised learning or human-assisted learning, includ-
ing active learning (AL) with system initiative or interactive
learning (IAL) with user initiative. Unsupervised learning
is used to adapt the model with the incoming new unla-
belled data. AL allows the system to ask the human do-
main expert for a correction of its hypothesis, which can in
turn be used to improve the model. IAL allows the human
domain expert to provide additional knowledge given the
existing model and the current context.

1Sometimes referred to as continuous or sequential learning
systems.
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Figure 1: Comparison of static (a) and lifelong learning (b) systems life cycles. (a) Static systems use initialisation data to
learn an initial model that is then deployed to process the sequence of real world incoming data. (b) For Lifelong Learning
Intelligent Systems, the training data is used to learn an initial model that is then deployed to process the sequence of real
world incoming data. Across time, the model used in the system can be updated via an offline adaptation process making
use of adaptation data and/or an online adaptation process that learns directly from the real world incoming data.

Any system (static or LLIS) must be evaluated before be-
ing deployed for a real world application. Most of the time,
this is done by running a benchmark evaluation of different
systems in order to select the best one for the targeted busi-
ness. Note that this work focuses only on system evaluation
and not on proposing any new system architecture.
Evaluating a static system is a well known process that re-
quires an unseen evaluation data set, a metric specific to
the considered task and an evaluation protocol. For many
tasks, evaluation of LLIS lacks those three elements (data
set, metric and protocol) and the modification of those ex-
isting for static systems is not straightforward. The evalua-
tion of LLIS must allow the evaluation of the overall system
across time as well as the performance of the AL and IAL
individual modules. Additionally, the evaluation of LLIS
differs from static ones as it must take into account the data
chronology. Indeed, an LLIS can be used to process new in-
coming data or data from the past; performance of the sys-
tem in those two cases might not have the same importance
for the end-user. We further introduce this as a user policy
that must be taken into account by the evaluation metric.
In this paper, we propose generic metrics and protocols for
the evaluation of human assisted learning for the case of
both offline and online adaptation (see Section 2.1. and
Section 2.2. respectively). We also propose a metric to
evaluate LLIS that use unsupervised learning together with
a user policy (see Section 3.). A metric for evaluation of
LLIS that integrate human assisted learning is described in
Section 3.2.. Aware that evaluation metrics and protocols
are always limited and do not allow to evaluate all aspects
of automatic systems we conclude this article with a discus-
sion on our different propositions, their benefits and limita-
tions (Section 4.).
This paper considers that static systems are evaluated with
a metric similar to an error rate (lower is better), but one
should notice that the proposed solutions also apply to any
scalar metric without loss of generality.

2. Evaluating human-assisted learning
In the process of freeing intelligent systems from the
support of machine learning experts, one can call upon

human domain experts (HDE). We do not consider here
any evaluation of the systems across time as this section
deals with the evaluation of human assisted learning (HAL)
only. HAL evaluation across time will be discussed in the
context of lifelong learning in Section 3.2..

The interaction between an LLIS and a HDE can take place
in two modes: offline and online.

In offline mode, a HDE interacts with the LLIS on data
available to the system without time constraint, i.e. the
LLIS does not have to provide a hypothesis (output) within
a limited time range. In this context LLIS systems are
free to learn from any available unlabelled data and might
have the opportunity to ask the HDE a limited number of
questions regarding this data. During this active learning
process (AL), a LLIS must select the questions to ask
in order to maximize the generalisation of the answer.
Section 2.1. describes a way to evaluate offline active
learning.

In online mode, the HDE is part of the production line in
the sense that the interaction with the LLIS takes place dur-
ing the time lapse between the input of the data to process
and the output of the hypothesis. Although it is not manda-
tory, we consider in this work that in online mode, an LLIS
only interacts with the HDE regarding the incoming data
to process, i.e., the data for which an output hypothesis is
currently expected. In online mode, given a batch, X , of
data to process, the LLIS is also allowed to perform ac-
tive learning (i.e. ask questions to the HDE). Additionally,
it is also possible for the HDE to monitor the hypothesis
generated by the LLIS and to provide corrections on this
hypothesis to the LLIS in order for it to learn from the cor-
rection, re-process the same batch X and hopefully output
a better hypothesis. This adaptation process, called inter-
active learning (IAL) is really beneficial if the system is
able to generalise a small amount of information provided
by the HDE. In the case of IAL, evaluation of LLIS con-
sists of evaluating the ability of the system to ask relevant
questions to the HDE, to generalise the received informa-
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tion and eventually evaluating the final performance of the
LLIS. Section 2.2. introduces a novel method to evaluate
online HAL
In order to guarantee the fairness of evaluation, a human
domain expert simulator is used in order to allow repro-
ducibility of both offline and online adaptation processes.

2.1. Evaluating offline human-assisted learning

The efficiency of human assisted learning lies in its ability
to improve the performance of the system while minimiz-
ing the cost of human interactions.
In the literature, many documents advise to measure the
quality of this adaptation process by considering the depen-
dence between cost of interactions and performance of the
system (Krogh and Vedelsby, 1995; Siddhant and Lipton,
2018; Drugman et al., 2019; Beluch et al., 2018; Pérez-
Dattari et al., 2018; Celemin and Ruiz-del Solar, 2019).
This approach is popular and we do not propose any new
proposal, but only report here this measure as a way to
evaluate offline human assisted learning. Given an initial
model, an iterative questions/answer interaction is initiated
by the system with the goal of reducing the error rate on
a given dataset. The system can potentially ask questions
related to any document it has access to: the adaptation set,
and its performance is evaluated on a dataset it is not aware
of and that can be different from this adaptation set. In this
context, there is no certainty that the error rate on the eval-
uation set will reduce and reach zero along the active learn-
ing process. For this reason, a maximum cost of interaction
must be defined for evaluation purpose in order to trigger
the end of active learning when reached (cf. Figure 2-a).

(a) Active learning metric (b) Interactive learning met-
ric

Figure 2: Example of evolution of the error rate obtained by
automatic systems during an active or interactive learning
process (a and b respectively) as a function of the quantity
of interactions with the human domain expert. The area un-
der the curve can be use as a metrics to evaluate the quality
of the human assisted learning.

Note that during offline adaptation, the system is not
explicitly asked to produce hypotheses on specific data.
Therefore we consider in this work that all offline interac-
tions with the Human Domain Expert (HDE) are confined
in active learning. The case where the HDE initiates an
interaction could be seen as a case of supervised or lightly
supervised learning.

2.2. Evaluating online human-assisted learning
During online learning a system has to process a sequence
of real world data and return the corresponding hypothe-
ses (outputs). Depending on the scenario, the two types of
human/system interactions are possible. On one hand, the
LLIS might be allowed to initiate an active learning ses-
sion before providing its final hypothesis while on the other
hand, the human domain expert (HDE) might initiate an
interactive learning session by feeding the system with cor-
rections of the current hypothesis in an iterative process.
The curves from Figure 2 can be used to evaluate the qual-
ity of those two human assisted learning (HAL) processes.
In the case of IAL, it is reasonable to assume that the HDE
can provide corrections until the system produces a 100%
correct hypothesis. According to this, IAL can be evalu-
ated by the Minimal Supervision Rate (MSR) (Geoffrois,
2016), i.e. the overall cost of error correction needed to get
a correct output.
Different systems will allow different interaction modali-
ties. The cost of human interactions can thus be estimated
in many ways that depends on the user interface (e.g. time
of interaction, amount of simple actions like mouse clicks,
etc.) (Broux et al., 2018). An ideal performance measure
must provide a fair comparison of multiple systems using
different types of user interfaces. For this reason, we pro-
pose to take into account the cost of HAL as a scalar metric
given in the same unit as the performance score (error rate).
This penalisation can be equally applied to AL or IAL and
allows comparing systems that have different types of hu-
man/system interfaces. Moreover, measuring the cost of
interaction in the same unit as the performance of the sys-
tem allows summing the score and the cost of interactions
in order to provide with a unique measure the combine the
evaluation of the final performance of the system together
with the cost of human assisted learning.
A first idea could be to compute the cost of interaction ac-
cording to the quantity of information given by the user.
However, some evaluation functions (for example BLEU
(Papineni et al., 2002) for machine translation) are not lin-
ear. In this case it is not possible to estimate the cost of
interaction as a function of the quantity of data provided
by the user. We propose to compute a penalisation as the
quantity of score that corresponds to the data corrected by
the human expert during the process. For this purpose, it
is proposed to compute two intermediate values: the cor-
rected (Scor) and the impaired (Simp) scores. Computation
of those scores is described on Figure 3
Let’s assume that the system produces a first hypothesis
(see Figure 3-A) and obtains the score Sbase before apply-
ing any online AL/IAL. Starting the human assisted learn-
ing, the human domain expert (HDE) corrects (or is asked
to correct) part of the current hypothesis. This corrected
part of the hypothesis is shown in Figure 3-B and the re-
sulting hypothesis obtains a score Scor. Depending on the
task, the part of the hypothesis that is corrected by the HDE
might not be entirely wrong. For instance, in a speech tran-
scription task, the HDE might correct a whole sentence
while the current transcription of this sentence might in-
clude both correct and wrong words. The difference be-
tween Sbase and Scor corresponds to the decrease of score
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Figure 3: An hypothesis (a) produced by the system contains correct parts (green) ans errors (red) and obtains a score Sbase.
During human assisted learning, the human applies (or is asked to apply) corrections on a part of the hypothesis that might
be partially correct. To penalise the system, we introduce a first score, Scor, computed on the corrected hypothesis (b) and
a second score, Simp, computed when the human corrected part of the hypothesis is replaced by a wrong hypothesis (c).
After the system receives the human correction, it is allowed to generate a final hypothesis (d) by taking into account the
correction. Hopefully, the system will generalise the knowledge learnt from the correction to other parts of the data and
improve to obtain a score Sadapt.

(improvement on error rate) resulting from the corrections
provided by the HDE only.
This difference, Sbase − Scor, does not reflect the cost of
interaction as it is only related to the part of the corrected
data for which the hypothesis was wrong. This is why we
compute another score, Simp, that is obtained on another
version of the current hypothesis shown on Figure 3-C and
where the hypothesis corresponding to the corrected part
of the data has been modified with strictly incorrect val-
ues. The difference between the impaired score Simp and
the score obtained with the user correction (Scor) gives the
quantity of score that corresponds to the whole corrected
part of the data and that could be considered somehow cor-
related to the cost of interaction. Eventually, the corrected
hypothesis is fed into the system that reprocesses the data
with regard to this correction and generates a new hypoth-
esis simulated on Figure 3-D where the system takes into
account the correction and might leverage this new knowl-
edge to generalise on other parts of the data to obtain a score
Sadapt. The penalised score is then computed according to
Equation 1

Spen = Sadapt + (Simp − Scor) (1)

Note that a system which does not take the correction into
account or ask for already known information may be pe-
nalised twice: once in a sub-optimal Sadapt and once by the
second term of Equation 1.
The effect of penalisation is illustrated in Figure-4. The
score, Sbase, illustrated by column A is obtained before on-
line AL/IAL. Columns B, C and D illustrate the penalised
scores, Spen, obtained for different cases of adaptation of
the initial model (A). The plain part of columns B, C and D
is the score, Sadapt, obtained after applying HAL. By na-
ture, it is supposed to be lower than score A. The hatched
part of those columns represent the penalisation, computed
as in Equation 1. The difference between score Sbase and
Spen is the gain obtained when the system is able to gener-
alise the corrections provided by the HDE to correct other
parts of the data.

A B C D

Effect of 
generalisation Score after adaptation

Penalisation added to take 
into account the human effort

Figure 4: Illustration of the effect of the penalisation
method for different cases. Score (A) is the score obtained
on the system hypothesis returned before human assisted
learning, Sbase, while the three other columns represent
scores Spen obtained on final hypotheses generated after
performing human assisted learning with three different
methods and using the proposed penalisation policy (note
that lower scores are consider better). Plain parts of the
columns B, C and D correspond to the score obtained af-
ter adaptation, Sadapt while the hatched area is the part
added to penalise according to the cost of human interac-
tion. Score (B) illustrates the case of a system that takes a
limited benefit from a limited amount of user interaction,
for (C) a great score reduction is obtained with a strong hu-
man interaction and (D) illustrates the case where a limited
interaction strongly benefit the system adaptation. Note that
the difference between Sbase and Spen (illustrated for score
D on the figure) corresponds to the gain obtained by the
system when generalising on the human corrections.

Penalisation helps to figure out the optimal model based
on two parameters, final score and cost of interactions. In
general the optimal system is a system with the largest gen-
eralisation effect, but it can depend on the end-user needs.
Examples of penalisation applied to the BLEU score, an
automatic evaluation of machine translation, as well as the
Diarization Error Rate (DER) for speaker diarization are
presented in Annex A and B, respectively.
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3. Evaluation across time
The evaluation of LLIS across time requires taking the life
cycle of such a system into account (illustrated by Figure 1-
b). At initialisation time, the LLIS will be trained to gen-
erate a first version of its model. From then on, the LLIS
receives a sequence of time-labelled data, {Xli}i=1...T , re-
ferred to as lifelong set where li is the time at which data
Xli has been produced. The LLIS processes this sequence,
producing a new version of the model after adapting on
each input Xli . Let’s denote as M0 the initial version of
the model and as Mi the version of the model obtained af-
ter processing the input Xli . The performance of the LLIS
is evaluated on each batch, Xli , of lifelong data, producing
a sequence of scores {S(Mi, li)}i=1...T .

3.1. Evaluating with respect to a user policy
Because the nature of incoming data evolves across time,
LLIS have to continuously update their model to sustain
their performance level. However, it might happen that
incoming data looks more like data from the past than to
contemporary data. In this case, systems could suffer from
a catastrophic forgetting (French, 1999) and thus perform
poorly on this ” data from the past ” while they would per-
form well on contemporary data.
Whether this forgetting effect is critical or not for the end-
user depends on the application and this information, we’ll
call user policy in the remaining, of this paper, is part of
what the end-user must define before deploying the sys-
tem. For some applications, the end-user might want a pol-
icy where the LLIS remembers about the past in order to
perform equally well on past and contemporary data, but
for other applications, the end-user might prefer a policy
where the LLIS focuses more on contemporary data or keep
a strong memory about the past without adapting much.
Those three policies are illustrated on Figure 5.
Now as an external system evaluator, it is important to eval-
uate the ability of the system to adapt accordingly to the
chosen user policy. For this purpose, another time-labelled
sequence of data, {Ytj}j=1...N , is used for test. Time la-
bels for the test data must spread over the same period of
time than the lifelong set. In other words: l1 < t1 <
lT < tN . Each version Mi of the model is then evalu-
ated on all test data Ytj to get a new sequence of scores
{s(Mi, tj)}j=1...N . Note that this sequence is computed
using the exact same version, Mi, of the model. Com-
puting this sequence of scores on test data that have been
produced in the past allows exhibiting whether the system
suffers from catastrophic forgetting or not.
An example of such a score sequence is given on Figure 5-
1 where a version Mi of the model obtained after adapting
until li is used to process a sequence of test data. This fake
example illustrates the scores of a system that is performing
well on contemporary data (data produced at li) but which
performance degrades on past data due to the forgetting
effect. The same figure shows three different user policy
functions:

(A) expects the system to perform well on contemporary
data and progressively forget about the past;

(B) expects the system to perform equally well on past and
contemporary data;

(C) expects the system not to learn aggressively on new
data in order to sustain performance on past data.

Given the raw score sequence, {s(Mi, tj)}j=1...N , ob-
tained by the LLIS with a fixed model Mi, (Figure 5-1) the
evaluator weighs those scores according to the chosen user
policy. Those weighted scores are shown on Figure 5-2 for
all three policies. By summing all weighed scores, one can
obtain a single value that represents the performance of the
system with fixed model Mi across time for a given user
policy, P .

SMi

P =
∑

tj∈[l1;li]

s(Mi, tj) · Ptj (2)

One can observe in Figure 5-3 that the fake system obtains
a lower error rate for the (A) policy focusing more on con-
temporary data, which is consistent with the fact that raw
error rates of the system are lower for contemporary data.

3.2. Evaluating human assisted learning across
time

Evaluating LLIS including human assisted learning (HAL)
across time requires considering the cost of human inter-
action for all adaptation steps of the LLIS life-cycle (cf.
Figure 1-B). When deploying a LLIS system, the cost
of human interaction for offline and online learning are
definitely different as online learning requires a human
expert dedicated to the task in order not to slow down the
service while offline learning can be done on the expert
spare time.

The paradigm of offline learning defined in this work as-
sumes that the system can learn and ask questions related to
any data available to it while being evaluated on a different
set of data. In this context, one can not compute the penal-
isation value described in Section 2.2. as its computation
requires to work with labeled data while in the scope of our
work, offline learning can also make use of unlabeled data.
The cost of HAL must then be computed using ergonomic
factors (time, number of actions, etc.) and is thus dependent
of the human/system interface and out of the scope of our
generalised framework. Consequently, this aspect will not
be taken into account during the evaluation of HAL across
time.
Online learning, as defined in this work, considers that
the system is adapted using the sequence of incoming real
world data. This process can be penalised the way intro-
duced in Section 2.2.. The scores obtained on each dataset
can thus be weighed using the user policy as described in
Section 3.1. and the user policy weighed score across time
is now given by Equation 3 where Mi is the model version
after offline adaptation on data Xli .

SMi

P =
∑

tj∈[l1;li]

Spen(Mij , tj) · Ptj (3)
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Figure 5: LLIS scores across time along with 3 different user policies (1). User policy weighted scores across time (2).
Average score of the system when weighted by the 3 different user policies (3).

4. Discussion
This article proposes three contributions for the evaluation
of lifelong learning intelligent systems. First we propose a
new way to take into account the cost of human interactions
in a human assisted learning process (active or interactive
learning). This measure of interaction is given in the same
unit as the system score and allows a wider use of this pe-
nalisation for system comparison. Second we introduce the
concept of user policy in order to evaluate the ability of a
lifelong learning system to forget past data according to a
policy defined by the end-user. Third we combine those ap-
proaches in order to provide a complete evaluation frame-
work for lifelong learning intelligent systems. Our proposal
considers the general task of evaluating lifelong learning
automatic systems, using an error-rate type of metric (lower
is better) but it can similarly be applied to any scalar metric
that is bounded from one side.
The proposed penalisation of system performance has been
designed to take into account the cost of human interactions
regardless of the interaction modality and in the same unit
of measurement as the performance itself in order to be di-
rectly combined and offer a unique performance indicator.
This penalisation measure can be used to evaluate the abil-
ity of the systems to generalise the information provided
by the human expert to other parts of the data. However,
the generality of this measure does not allow to express the
cost of human interaction in terms of concrete units such
as time spent by the operator, onerousness, strenuousness,
etc.. For some specific cases, the computation of impaired
scores rises questions related to the definition of wrong hy-
pothesis. For instance, for the case of a binary classifica-
tion task, the impaired hypothesis consists of allocating the
wrong label to an element. The case of machine translation
evaluated by the Translation Edit Rate (TER, (Snover et
al., 2006)) is problematic. Because it is always possible to
worsen the score by inserting words, then the worst transla-
tion cannot be identified. A simple way to deal with such a
case is to bound the maximum error to the sequence length,
which sounds a reasonable compromise. In appendix, we
illustrate the penalised evaluation for the cases of another
machine translation metric (BLEU) and a speaker diariza-
tion metric (Diarization Error Rate).
The proposed computation of penalisation assumes that the
answer provided by the human expert (or the correction in
case of interactive learning) can be directly applied to the
hypothesis in order to compute a new score, Scor. This as-

sumption might not be always realistic depending on the
type of question the system ask. For instance, a human
expert providing the only information that a class label is
wrong for the case of multi-class classification problem
does not allow the system to get the correct answer. In this
case the system just knows its answer is wrong and this
information can not be used to compute a corrected score.
Our penalisation computation is thus only applicable for the
case where the human provides an information that can be
used to correct part of the hypothesis.
In order to assert a fair and reproducible evaluation of sys-
tems including human assisted adaptation, one must imple-
ment a human-expert simulation module that could simu-
late the interaction process between the system and the hu-
man domain expert. Different simulations might affect the
evaluation and all systems to be compared have to make use
of the same human-expert simulation. Ideally, and depend-
ing on the task, several human-expert simulation could be
used but the development of those simulations for evalua-
tion purpose is a completely different research topic that is
not addressed in this work.
As a second contribution, we introduced a user-policy that
enables the human expert to define the model adaptation
policy depending on his/her empirical knowledge of the
real world data. This policy enables the user to set the
system adaptation for tasks where future data will never
look like the past one or to plan for cyclic evolution of the
data for instance. On the positive side, the introduction of
this policy allows the system to benefit from the domain
expert’s empirical knowledge. On the other side, defining
such a policy could be a difficult task that assumes a good
knowledge of the field and a good understanding of the per-
formance measure. This aspect of the evaluation process
would require a careful design of the system parameter in-
terface.
In this work, our goal has been to define the most general
framework possible that would fit a variety of tasks, sys-
tems and performance measures. As it is the case for many
well known evaluation metrics or protocols the proposed
ones suffer from limitations and have to be combined or
completed in order to render satisfactory information to the
evaluator. Moreover, we didn’t address all possible system
architectures in order not to complicate our proposal too
much, considering that more complex architectures would
require an extended work that could follow this one.
The proposed metric are being derived for the tasks
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of speaker diarization and machine translation and will
be used in two open evaluations, namely the AL-
LIES/ALbayzin 2020 evaluation and WMT2020. At the
end of the evaluations, implementations of the metrics, pro-
tocols as well as new data collected to evaluate lifelong
learning systems for those two modalities will be publicly
released.
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Pérez-Dattari, R., Celemin, C., Ruiz-del Solar, J., and
Kober, J. (2018). Interactive learning with corrective
feedback for policies based on deep neural networks.
arXiv preprint arXiv:1810.00466.

Prince, S. J. (2012). Computer vision: models, learning,
and inference. Cambridge University Press.

Quionero-Candela, J., Sugiyama, M., Schwaighofer, A.,
and Lawrence, N. D. (2009). Dataset Shift in Machine
Learning. The MIT Press.

Siddhant, A. and Lipton, Z. C. (2018). Deep bayesian
active learning for natural language processing: Re-
sults of a large-scale empirical study. arXiv preprint
arXiv:1808.05697.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and
Makhoul, J. (2006). A study of translation edit rate with
targeted human annotation.

https://projets-lium.univ-lemans.fr/allies/
https://projets-lium.univ-lemans.fr/allies/
https://lium.univ-lemans.fr/capdiff/
https://lium.univ-lemans.fr/capdiff/


1840

A Penalizing BLEU
Let’s assume we have a sentence S of length lS along with a human generated reference sentence of length rS . BLEU
score calculation for a corpus C is given by the following:

log BLEU = min
(
1− r

c
, 0
)
+

N∑
n=1

wn log pn

where N is the maximum n-gram length (generally set to 4), pn the clipped precision score for n-grams of length n and wn

the corresponding weight (generally 1/N ). rC and cC are the total lengths of the references and hypotheses, respectively.
The clipped precision are computed as follows:

pn =

∑
S∈C

∑
n-gram∈S

Count clip(n-gram)∑
S′∈C

∑
n-gram’∈S′

Count(n-gram’)

This metric is computed on a whole corpus (and not a single sentence).
BLEU is a precision measure, this means that the score mostly depends on the system output (modified n-gram precision).
In order to calculate a lower bound of the BLEU score regarding a particular sentence, we propose to consider that the
translation process provided an entirely wrong sentence (not a single correct 1-gram). In consequence:

• Count clip(n-gram) are 0 for this particular sentence

• total n-gram counts in the hypothesis remain unchanged

As an example, let’s assume that a toy corpus is composed of 10 sentences.

NAME Correct n-grams BP hyp. len. ref. len. %BLEU
1g / 2g / 3g / 4g

BASE 140 / 77 / 41 / 25 0.975 233 239 25.81
IMPAIRED 133 / 73 / 40 / 25 0.975 233 239 24.99
CORRECTED 144 / 83 / 49 / 33 0.957 229 239 29.70
ADAPTED 151 / 89 / 54 / 37 0.953 228 239 32.25

Penalised scores
NO LEARNING 21.10
NO GENERALISATION 24.99
GENERALISATION 27.54

Table 1: Statistics for the %BLEU evaluations under several conditions. BP is the brevity penalty, hyp. len. and ref. len.
correspond respectively to the hyopothesis and reference length.

The statistics for the BLEU evaluations under the different conditions (BASE, IMPAIRED, CORRECTED and ADAPT)
are presented in Table 1. The sentence considered for correction contains 15 tokens. The BLEU score associate with this
sentence is given by the difference between CORRECTED and IMPAIRED scores, namely 4.71% BLEU. The ADAPT
output has been simulated by correcting several n-grams in the CORRECTED output.

B Penalizing DER
Traditionally, the performance of diarization systems are given in terms of Diarization Error Rate (DER). The DER is
computed as the fraction of speaker time that is not correctly attributed to its speaker. This score will be computed over
the document collection to be processed; including regions where more than one speaker is present (overlap regions). This
score will be defined as the ratio of the overall diarization error time to the sum of the durations of the segments that are
assigned to a speaker label. Given the data set to evaluate, each document is divided into contiguous segments at all speaker
change points found in both the reference and the hypothesis, and the diarization error time for each segment n is defined
as:

E(n) = T (n)[max(Nref (n), Nsys(n))−NCorrect(n)] (4)

where T (n) is the duration of segment n, Nref (n) is the number of speakers that are present in segment n of the reference
file, Nsys(n) is the number of system speakers that are present in segment n and NCorrect(n) is the number of reference
speakers in segment n correctly assigned by the diarization system.

DER =

∑
n∈Ω E(n)∑

n∈Ω(T (n)Nref (n))
(5)
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In order to calculate a lower bound of the DER score regarding a particular audio recording, we propose to consider that the
diarization process provided an entirely wrong hypothesis there is no intersection between hypothesis and human generated
reference. For simulation of totally wrong hypothesis it is proposed to keep the non-speech part of the hypothesis as non-
speech and to allocate the speech part to a non-existent speaker. This is equivalent to setting E(n) to zero for the segment
corrected by the human in the loop.
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