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Abstract
As the demand for explainable deep learning grows in the evaluation of language technologies, the value of a principled grounding for
those explanations grows as well. Here we study the state-of-the-art in explanation for neural models for NLP tasks from the viewpoint of
philosophy of science. We focus on recent evaluation work that finds brittleness in explanations obtained through attention mechanisms.
We harness philosophical accounts of explanation to suggest broader conclusions from these studies. From this analysis, we assert the
impossibility of causal explanations from attention layers over text data. We then introduce NLP researchers to contemporary philosophy
of science theories that allow robust yet non-causal reasoning in explanation, giving computer scientists a vocabulary for future research.

Keywords: philosophy of science, explainability, causal reasoning, attention mechanisms.
* denotes equal contributions.

1. Introduction
In the natural language processing community, we’ve
reached a consensus that explainability in trained models
is a positive attribute. When performing model selection,
the less complex and more explainable model should be pre-
ferred (holding all else - for instance, classification accuracy
or training time - equal). Part of this is purely intuitive and
based on logistic ease for software developers; the prefer-
ence for explainable models is also spurred on by regula-
tion, led by the European Union’s “right to explanation” in
the 2016 enactment of the GDPR (Goodman and Flaxman,
2017). Yet so far, most researchers in NLP that describe their
models as explainable have treated explanation the way that
U.S Supreme Court Justice Potter Stewart famously treated
obscenity: “I know it when I see it” (Stewart, concurring,
1964). It is challenging to evaluate the success of an explain-
able neural model without defining a criterion for evaluating
what counts as an explanation, and moreover what counts
as a good explanation.
This may be because the phenomenon of giving, receiving,
and incorporating explanations is like the breathed air of the
process of scientific reasoning: explanation is how knowl-
edge is transmitted, how mechanisms and causal processes
are learned, how experimental design problems are solved,
and how publications and presentations are assembled. Be-
cause it appears everywhere, its value and form is assumed.
However, like air, explanation can vary dramatically in dif-
ferent situations, and assuming that its structure and function
in one setting can be automatically exported in another can
be as dangerous as mistaking oxygen for nitrogen.
Research in philosophy of science has produced decades of
results on the nature of scientific explanations across fields,
and related those findings to case studies across scientific
disciplines. In the NLP community, some of this research
has been anticipated by, and recapitulated in, parallel work
on explainable neural networks. But many of the distinc-
tions that philosophers have discovered have gone unnoticed
in our field. Even when machine learning publications aim

to characterize or define explanation by distinguishing it
from other logical and psychological phenomena, their au-
thors tend to begin by assuming that there is some singular
thing that is an explanation, and that other researchers will

“know it when they see it” in the same way that the paper’s
authors do. Moreover, they assume that explainability can
be measured against other measurable quantities in machine
learning models, in the context of tradeoffs and holistic as-
sessment of model quality. There is a long list of explanain-
able AI overview articles proposing desirable characteristics
of what an explanation should look like (Lipton, 2016). But
a central contention of philosophy of science is that no such
obvious and univocal phenomenon exists.
This paper seeks to introduce contemporary philosophy of
science debates to the explainable NLP community, and we
make several contributions to build a theoretical grounding
for use in explanation of deep neural models. First, in sec-
tion 2. we walk through the progression of explanations
in machine learning, stepping from rule-based systems to
linear models and most recently to deep models. We end that
section with a description of one widespread and highly pop-
ular approach for explaining neural networks, particularly in
tasks using text or speech inputs: the use of attention mecha-
nisms as a functional basis for generating explanations. We
then give a detailed summary of two recent findings on the
limitations of attention mechanisms for explainable NLP.

1. Jain and Wallace (2019), which finds that attention
layers in neural networks can be subject to adversarial
reweightings, undermining their use for explanation.

2. Serrano and Smith (2019), which finds that a very large
number of attention weights can be zeroed out entirely,
again undermining the use of these layers for identi-
fying the importance of intermediate representations
within a deep neural classifier.

We follow this with an overview of philosophical theories
of scientific explanation in section 3., including brief sum-
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maries of multiple competing and complementary perspec-
tives. This overview is itself a new contribution, both in
the taxonomy of theories it develops and in its presentation
for computer scientists in the explainable NLP community.
Next, in section 4. we provide a more robust introduction of
one theory of explanation in particular, the interventionist
account of causal explanation. Due to its emphasis on causal
reasoning via counterfactual analysis and its historical devel-
opment at the interface of computer science and philosophy
of science, this account is a good tool for analyzing a class
of recent findings on explanation of neural networks through
causal reasoning. With an established background from both
philosophy of science and deep learning, in section 5. we
apply the interventionist account to the study of attention
mechanisms for explaining neural network behavior. We
focus on three primary research questions:

Q1. Is it appropriate to analyze these studies
using the interventionist account?
Q2. The account requires that interventions be
surgical in order to make causal claims. Do the
studies succeed at surgical intervention?
Q3. If attention weights cannot be manipulated
surgically, what are the consequences for expla-
nation through attention?

Yet the interventionist account deals only in causal explana-
tion in the sciences. An important corollary of our analysis
is that when a network will not and cannot produce causal
explanations, it can still render alternate, non-causal types of
explanations. We will argue that these types of explanations
should be sought in the production of explainable neural
models. In section 6. we summarize these alternate types of
explanation, which leads us to the key claim of this work:
that non-causal explanations are the only types of explana-
tion that can be derived from neural models where surgical
intervention fails. We walk through the implications of these
findings, concluding that NLP researchers developing neural
models must template the success conditions for explain-
ability on the types of explanation that philosophers have
identified as non-causal. We end the paper by pointing the
NLP community in the direction of explanatory accounts
that fit these conditions.

2. Explainable Machine Learning
In machine learning, it is generally accepted that rule-based
systems are easier to interpret by both amateurs and ex-
perts compared to linear models (Lakkaraju et al., 2017);
that linear models are in turn easier to interpret relative to
generalized additive models (Lou et al., 2012) or Bayesian
networks (Lacave and Dı́ez, 2002); and so on until reach-
ing the almost entirely black-box behavior of deep neural
models (Miller, 2018). There is room for translation, for
instance by extracting simpler proxies that can mostly repli-
cate more complex model behavior with simple rules (Han
et al., 2014); but in general, explanation in machine learning
has only gotten harder over the last more than forty years
(Biran and Cotton, 2017). While this hierarchy is rudimen-
tary and fails to account for all the various dimensions of
model interpretability (Lipton, 2016), it is broadly perceived

to be accurate in practice. Nevertheless, a lack of explain-
ability is rarely a barrier to implementation and widespread
use. Neural models’ performance continues to outpace other
approaches to machine learning, and where they fall short
in explanation, they make up for in performance.
But just because explanation of neural models has been dif-
ficult has not stopped researchers from trying. Much work
has tried to grasp the structure of a network and what aspects
of language are encoded where (Tenney et al., 2019; Clark
et al., 2019). Others aim to measure how predictions change
incrementally with new added information, evaluating the
impact of each particular new input token in a text (Li et
al., 2016). Additionally, in human-computer interaction re-
searchers have worked to determine what users want from
explanations (Lim and Dey, 2009), for instance by showing
uses only a subset of text highlighted as important (as a
simplifying step) (Bastings et al., 2019). This use of ratio-
nales, also known as attributions, can also be used directly at
training time to encourage models to focus on or selectively
ignore particular subsections of text (Dixon et al., 2018;
Liu and Avci, 2019). This approach can be used without
supervised span annotations, instead observing how a model
responds to word deletion (Woods et al., 2017; Nguyen,
2018), and the results can be visualized using heatmaps that
perform highlighting or live editing (Liu et al., 2018); gener-
ated plaintext, partially or entirely independent of the actual
classification or factual content but facially plausible (Xu et
al., 2015b; Liu et al., 2019); or direct exposure of structure
in the underlying model, such as traversals through a graph
(Yang et al., 2018; Moon et al., 2019).
In recent years, much of the hope for explanation has been
pinned on attention mechanisms. This innovation, first intro-
duced by Bahdanau et al. (2015), allows neural models to
be trained to automatically focus on small portions of inputs,
like individual sentences or even words, while making pre-
dictions. This focusing allows neural models to outperform
the state-of-the-art (Yang et al., 2016) and has led to sophis-
ticated modern architectures like the Transformer, which
has currently produced the most accurate models on a wide
range of tasks (Vaswani et al., 2017; Dai et al., 2019). In
addition to performance gains, these layers appear to be
providing human-interpretable explanations of model be-
havior “for free.” Because the model was being trained to
focus on specific subsets of information at inference time,
the logic goes, it was reasonable to assume those dimensions
are “most important” for the rationale of the resulting output.
This approach resulted in a variety of visualizations and
other attempts at model explanation being explored based,
in part or in whole, on attention weights (Xu et al., 2015a;
Mullenbach et al., 2018; Yang et al., 2019).

2.1. Highlighted Studies
The past year has seen skepticism emerge about this indi-
rect, downstream use of attention. The layer was designed
to facilitate increased accuracy of models — in fact, the
original paper makes no claims of its human interpretability
— but the field saw wide proliferation of attention’s use for
explanatory purposes. In this section we briefly describe the
two parallel studies, and one response paper, that serve as a
foundation for our analysis.
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Figure 1: Researchers often use attention weights (top atten-
tion layer) to generate explanations. Jain & Wallace (middle)
scramble weights and show that output remains stable; a sim-
ilar result is obtained by Serrano & Smith (bottom) omitting
highly-weighted nodes entirely.

“Attention is not Explanation” is an application of adversarial
learning to the problem of explanation in machine learn-
ing systems. Jain and Wallace (2019) take issue with the
widespread direct extraction of attention weights into visual-
ization tools like heatmaps. They show that counterfactual
attention weights can be discovered for a given, trained
neural network. First as a proof-of-concept, the authors
show that attention weights can, in some cases, be randomly
scrambled without loss of performance, suggesting that “ex-
planations” derived from those weights have little meaning.
They then demonstrate an optimization problem that moves
attention weights as far as possible away from the orig-
inal attention weights of a model, without changing the
model’s output behavior. The authors’ critique of the use
of attention for explanation describes these counterfactual
configurations as equally plausible, from a modeling per-
spective, compared to other configurations which present
far more intuitive explanations. Further, they assert a strong
conclusion: because there exists the possibility that these
adversarial configurations can be created without changing
the outputs for given inputs, we cannot rely upon attention
as a means of explanation.

“Is Attention Interpretable?”, written independently and con-
temporaneously, makes similar claims. Here, Serrano and
Smith (2019) test attention mechanisms by manipulating the
layer’s weights, and show that these weights do not impact
output of the model. Rather than alter weights adversarially,
the authors omit nodes entirely. They show that a surprising
number of attention weights can be zeroed out (in some
cases, more than 90% of nodes), without impacting perfor-
mance of the model itself. The authors test this approach
with a variety of ranking methods, from random choice to
sophisticated sorting based on the gradient of nodes with

respect to the classifier’s decision boundary. Though their
results show sensitivity to these different approaches, the
core finding remains: Neural models are highly robust to
change at the supposedly crucial attention layer, produc-
ing identical outputs in a large fraction of cases even after
significant alterations to the model.
But the picture is not simple. In “Attention is not not Ex-
planation” Wiegreffe and Pinter (2019) produce several
empirical results limiting the scope of the claims from the
first two papers. The first result of that work shows that
some of the classification tasks in the initial work are simply
too easy for attention to matter — eliminating the layer by
setting all values uniformly does not result in loss of perfor-
mance. This suggests one practical boundary for attention
by explanation, for any task where the additional complexity
of an attention layer is wholly unnecessary to achieve state-
of-the-art performance. For those tasks where attention is
valuable for performance, the authors show that part of the
vulnerability of manipulation to the attention layer comes
from holding the rest of the model fixed. Attention as ex-
planation, they argue, only makes sense in the context of a
model that has jointly trained inner representation layers and
the final attention layer. By constraining the adversary from
Jain & Wallace to model-consistent behavior, they show
that the resulting attention weights have much less room for
modification without resulting in changes to the output.
As this debate goes on with additional empirical results, we
find that computer science researchers are hampered by a
lack of shared vocabulary and lack of a theoretical basis
for success criteria of explanation (Lipton, 2016; Corbett-
Davies and Goel, 2018). In the remainder of this paper,
we advance the discussion by leaning explicitly on philos-
ophy of science to build a more rigorous vocabulary and
re-evaluate these results.

3. Philosophy and Theories of Explanation
Philosophy of science research identifies and analyzes the
conceptual and logical foundations of scientific reasoning us-
ing methodology including conceptual analysis, simulation
modeling, formal methods, ethnography, and case studies on
historical and contemporary instances of scientific research.
The nature of scientific explanation has long been a topic of
central concern in philosophy of science. Philosophical re-
search on explanation seeks to identify what explanations are
— whether they are instantiated patterns of logic inference,
generators of a psychological sensation of understanding,
ways of encoding similar patterns of information observed
in disparate systems, traces of causes and effects, or some-
thing else entirely. Along with research on laws of nature,
the structure of scientific theories, the aims of science, and
the role of causation in the sciences, research on scientific
explanation is one of the central subdisciplines within the
philosophy of science.
The aim of philosophy is not consensus-building, so a wide
variety of philosophical theories of explanation continue to
coexist. Some are in direct competition with one another,
while others serve as complements or limiting cases of one
another. This brief review, summarized in Table 1, high-
lights a few of the most common sorts of theories of expla-
nation, with emphasis on the varieties that are most central
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Table 1: Philosophical Theories of Explanation

Theory Explananda (things to be explained) Explanantia (things doing the explaining)

L
og

ic
al Deductive-

Nomological
Observed phenomenon or pattern of phenom-
ena

Laws of nature, empirical observations, and deduc-
tive syllogistic pattern of reasoning

Unification Observed phenomenon or pattern of phenom-
ena

Logical argument class

C
au

sa
l Transmission Observed output of causal process Observed or inferred trace of causal process

Interventionist Variables representing output of causal process Variables representing input of causal process and
invariant pattern of counterfactual dependence be-
tween variables

Fu
nc

tio
na

l Pragmatic Answers to why-questions True propositions defined by their relevance re-
lation to the explanandum they explain and the
contrast class against which the demand for expla-
nation is made

Psychological Observed phenomenon or pattern of phenom-
ena

True propositions defined by their relation to the
user’s knowledge base and to the explanandum

to explainability in neural models. A more comprehensive
overview is available in Woodward (2017).
Generally, theories of explanation may be understood as
either logical, causal, or functional. Logical theories aim
to characterize the logical structure of a cogent scientific
explanation and typically emphasize the relations between
explanation, laws of nature or scientific theory, and specific
empirical observations. Causal theories aim to character-
ize explanation as an accounting of observed or expected
patterns of cause and effect and are often accompanied by
philosophical theories of causation itself. Functional the-
ories, which typically focus on either the psychological
or pragmatic functions of explanation, aim to characterize
explanation in virtue of the function it accomplishes in scien-
tific reasoning, rather than identifying the logical or causal
structure of an explanation.
Some basic tenets of canonical theories of explanation are
summarized below. Standard philosophical vocabulary for
the parts of an explanation are employed: the explanandum,
pl. explananda, is the thing to be explained, i.e. the target
or object of an explanation; the explanans, pl. explanantia,
is the thing doing the explaining.

• Deductive-Nomological Theories (Hempel and Op-
penheim, 1948; Braithwaite, 1953; Popper, 1959;
Hempel, 1967; Railton, 1978), one of the oldest logical
theories of explanation, hold that explanations are de-
ductive syllogisms. The explanantia are the premises of
the syllogism, and the explanandum is the conclusion.
Among the explanantia, laws of nature are always taken
as the major premise, and specific empirical conditions
as the minor premise.

• Unification Theories (Friedman, 1974; Kitcher, 1981),
another logical theory, hold that explanations are
not syllogistic; instead, they inhabit a more finely-
structured logical space in which disparate phenomena
exhibit the similar patterns of behavior. In this account,
explanation consists in identifying the classification of
a given argument pattern from among the accepted pat-
terns of argument. The argument class is an explanans.
Classes typically align with systems of natural laws.

• Transmission Causal Theories (Salmon, 1984;
Dowe, 1992) characterize explanantia not as logical
structures but as causal processes. These processes gen-
erate a product, which is the explanandum. Distinguish-
ing genuine from merely apparent causal processes is a
central concern of these theories and is accomplished
by tracking the transmission of a signal, impulse, or
mark over the course of the explanation.

• Interventionist Theories of causation introduce graph
theory to the representation of causal relations and em-
phasize the identification of invariance relations be-
tween causes and effects as the target of causal claims
(Woodward, 1994; Pearl, 1995; Spirtes et al., 1983;
Pearl, 2000)1. Applied to explanation, the interven-
tionist account (Woodward, 1997; Woodward, 2000;
Woodward, 2001; Woodward, 2005) produces theo-
ries of causal explanation in which explananda and ex-
planantia are connected via patterns of counterfactual
causal dependence, which indicate invariant relations
between purported causes and effects. This theory will
be our focus in the next section.

• The Pragmatic Theory (Van Fraassen, 1977;
Van Fraassen, 1980) contrasts itself with logical theo-
ries by characterizing explanation not as generation of
a particular logical argument structure, and with trans-
mission theories by not requiring the relay of a causal
mark. Instead, the theory defines explanation function-
ally as answering a why-question about a phenomenon.
Explanantia consist of meta-level logical structures that
index explananda to an explanatory context and define
relevance relations to contrasting phenomena.

• Psychological Theories (Trout, 2002; De Regt, 2009;
Khalifa, 2012) and their critics investigate explanation
not as the satisfaction of any particular argumentative
structure, but rather as acts or pieces of information

1An additional motivation of interventionist approaches, and
a challenge to causal theories of explanation, is the problem of
modeling statistical patterns of dependence. For the sake of space,
we do not discuss this issue further here.
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that generate a sense of understanding in the agents
(real or ideal) who interact with them. Significant at-
tention is then given to characterizing what constitutes
understanding. Like some of the work on explanation
in neural models (Miller et al., 2017), this approach has
significant overlap with the social sciences including
psychology and behavioral science.

The classification system we present here is meant to capture
commonly-acknowledged divisions within philosophical re-
search on explanation. Each of the theories identified above
has benefits and drawbacks, and some are more appropriate
than others for capturing the sort of explanation sought in
the construction of explainable neural models. This paper
was initially motivated by the observation that a significant
source of confusion and potential for error in constructing
explainable neural models arises from failing to clarify what
sort of explanation is being generated by the AI. For instance,
an explanation for a model’s output designed as causal fails
if it only generates non-causal, nomological explanations.

4. The Interventionist Account
For philosophers, an account is an application of a philo-
sophical theory to a scientific process, making explicit the
set of assumptions and worldviews that are embedded in
the actions, writing, or conclusions of the scientists under
scrutiny. In computer science it is often the case that causal
theories of explanation are preferenced. The mantra that

“correlation is not causation” looms over scientific inquiry,
description, and discussion of neural model behaviors. For
this reason, deep learning explanations have narrowly fo-
cused on causal explanation. To study this, we apply the
interventionist account of Woodward (2005).
This account focuses on those phenomena which can be
explained in terms of the relationship between particular
outcomes and the factors which gave rise to those outcomes.
An explanation in this account relies on establishing the
existence of manipulability through intervention. Some key
features distinguish this account from others, such as logical
explanations. First, the relationships between circumstances
and outcomes are empirical, subject to data-driven verifi-
cation through manipulation of those circumstances and
collection of evidence. Next, that evidence is evaluated for
causality - the dependence of the outcomes on additional
variables is not merely conceptual but a direct relationship.
The challenge here in explanation lies in concretely deter-
mining the existence of such a causal relationship.
In order to do so, the relationship between relevant vari-
ables in a system must be subjected to manipulation, where
the values of those variables are changed. The theory thus
lends itself well to explanations of systems which have quan-
tifiable components, such that the quantity or value of the
component can be easily denoted and modified as a variable.
Performing a quantitative manipulation on a variable and
then observing the changes in the output of the system as a
whole, recording the overall changes through observed cause
and effect, is called an intervention. If manipulation of quan-
tifiable components leads to similarly quantifiable changes
in output, researchers have established the first necessary,
though not sufficient, elements of causal explanation.

A B

C

D E F

GH

Figure 2: Network diagrams of causal systems. The system
on the right resists surgical intervention between D and H.

The last piece of a successful causal explanation for a sys-
tem requires that an intervention on system components is
surgical. To define this, philosophers lean on one final con-
cept: invariance. In a multivariate system, it is frequently
the case that a single effect has multiple causes. In Figure
2, the diagram on the left demonstrates a simple toy system
with three variables: variable A is a causal factor for both
B and C. B is also a causal factor in C. To perform a
surgical intervention explaining the relationship between A
and C, holding B invariant is necessary. But the system on
the right, with only a handful of variables and relationships,
demonstrates that some cases resist surgical intervention.
The only path from D to H , for instance, is indirect, passing
through other causal factors. We cannot hold those variables
all invariant while intervening on D and still cause a change
in H . According to Woodward, a surgical intervention is
an intervention that makes strategic use of invariance; a
successful explanation, finally, is only one that is generated
empirically through the use of surgical interventions. The
relationship between D and H cannot be explained through
surgical intervention.
The interventionist account is fundamentally modal: it relies
upon counterfactuals in order to work:

”...an explanation ought to be such that it can
be used to answer what I call a what-if-things-
had-been-different question: the explanation must
enable us to see what sort of difference it would
have made for the explanandum if the factors cited
in the explanans had been different in various
possible ways.” (Woodward, 2005)

What the outcome of a manipulation would be, were it to oc-
cur, is what matters for a successful explanation: a pattern of
counterfactual dependence between elements of the system
of variables and the output of the system. In cases where
we cannot track the pattern of counterfactual dependence
among variables, no amount of manipulation is sufficient to
successfully explain behavior. This has clear implications
for neural models, which can have hundreds of millions of
parameters, interdependent in complex ways.
The interventionist account is a good fit for probing the
boundaries of causal explanation in machine learning, where
inputs and outputs are quantifiable as vectors, tensor el-
ements in neural models, or probability distributions in
Bayesian models. Indeed, this definition of a successful
causal explanation will be familiar to researchers with expe-
rience in Bayesian statistical machine learning. Woodward’s
philosophical account was entwined with the development of
Bayesian networks under his colleague Judea Pearl (Geiger
et al., 1990), and their shared research agenda led to mathe-
matical definitions like d-separation of variables in machine
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learning. But while Pearl-style approaches to causality have
been applied extensively in Bayesian models, their applica-
tion remains daunting in the context of deep neural models.
Overall, the interventionist account has a great deal of appeal
for computer scientists. Causal relationships are intuitive
and aligns to how humans learn to interact with the world;
if successful explanation requires human understanding on
some level, there is great potential in an account that lever-
ages natural inclinations to modify and test existing systems.
But as we shall see, causality cannot always provide ade-
quate explanatory power for large and complex systems.

5. Applying the Interventionist Account
In what follows we will recast the findings from adversarial
attention experiments from our highlighted papers in terms
of Woodward’s interventionist account, using the research
questions introduced at the beginning of this paper.

5.1. Does the Account Apply?
Woodward’s interventionist framework may be a useful way
to analyze attention mechanisms in NLP; but not every philo-
sophical theory is an appropriate fit for every scientific ex-
periment. Before proceeding we confirm that the problem
fits the conditions of a manipulation-based approach. In
this case, we are looking for experiments that (1) produce
empirical data, (2) hinge on causality as the core of their
explanatory argument, and (3) rely on reasoning via coun-
terfactual dependence to make causal claims.
In fact, adversarial attention configurations fit Woodward’s
description of intervention well. Woodward calls for modi-
fying targeted variables in order to observe the changes to
the output of the whole system, and adjustments to weights
in the attention layer attempt just that: precisely shifting
the focus of the algorithm to a particular segment of the
input data in order to cause changes in the output, with the
intent of measuring a causal effect (the outputs changing).
When the system of variables represented by the attention
configuration is manipulated, if there is a causal relation, the
prediction generated by the model should change.
Jain & Wallace show that a vastly different attention layer
which results in the same output can be found by either
searching through weights for nodes, or even by scrambling
the weights of the network at random. The work from Ser-
rano & Smith is similar. Here, rather than reweighting to
create an adversarial layer, an enormous number of nodes in
the attention layer can be zeroed out entirely, functionally
removing them from the network. Again, they test whether
outputs of the model differ based on this process. Both ex-
periments evaluate the quantitative outputs of their models
on a large corpus of data, meeting the requirement for em-
pirical evidence as part of the explanation. Both also reason
about counterfactuals to develop causal claims: the develop-
ment of adversarial configurations of attention weights, or
adversarially zeroed-out attention nodes, both are directly
evaluated for explanatory value compared to the attention
layer that was actually learned from data (the base, to use
Wiegreffe & Pinter’s terminology).

A1. Yes, these studies are attempting to make
arguments that fit the interventionist account.

5.2. Is Attention Manipulation Surgical?
Jain & Wallace’s central proposition is clear from their title:
attention is not explanation. They make a causal argument,
discovering an adversarial attention configuration which pro-
duces the same effect, resulting in a loss of uniqueness of
explanation. Furthermore, the resulting adversarial weights
contradict intuitions about the sources of a model’s judg-
ment. Similarly, Serrano & Smith ask whether attention
is interpretable. By showing that highly-ranked attention
weights can be zeroed out without affecting model perfor-
mance, they argue that the answer is no. These processes
initially appear to be surgical intervention: researchers as-
sert that the initial configuration is a plausible explanation,
and after manipulation, the new configuration is implausible.
Two major philosophical problems appear here.
First, it is possible that there actually is a true causal rela-
tionship in both the adversarial and non-adversarial attention
configurations, and the model predictions. In this case, the
original scientists would be right to conclude that attention
is not explanation: a surprising, counterintuitive causal link
between two variables that should not be linked is perplex-
ing to users. In the colloquial sense, it explains nothing. On
the other hand, an explanation of a causal relationship is
not necessarily non-explanatory just because it is unintu-
itive. If manipulations reveal the existence of adversarial
attention configurations that nevertheless produce accurate
predictions, it may be the result of another causal relation-
ship between inputs and the output class being predicted. If
such a causal relationship does exist but was not discovered
through the model’s original training, then yes, the counter-
intuitive attention weights raise additional challenges and
questions for researchers, who must then determine how and
why these two variables are linked in this way. But this does
not mean the adversarial explanation is wrong.
To get at the deeper problem, the interventionist account
offers a second and more problematic observation on the ex-
periments. In both original studies, attention is only one part
of a larger system of variables; in fact, it is the final layer,
receiving as input the result of a complex series of calcula-
tions on the initial inputs. But invariance in all non-target
variables is what makes manipulations qualify as surgical.
Both highlighted papers show an unsteady relationship be-
tween input tokens and the corresponding attention weights;
the relevant variables for targets of manipulation lie outside
of the attention layer. The relevant system in this case is not
attention alone, but attention in addition to and in connec-
tion with the neural model’s prior layers. If the generation
of adversarial attention configurations is possible, the inter-
ventionist account argues, then there is more at work than
attention in the learned model. This is quite a big problem to
overcome, as the scope of the changes to network output of
the network may not match the scope of attempted interven-
tions. Additionally, engaging in interventions on selected
weights does not result in continuous, smooth changes to
model outputs, especially in discrete classification tasks.
Only some manipulations are surgical, and these example
studies do not meet that standard; only some sets of variables
are held invariant. Wiegreffe & Pinter make this argument
implicitly in their response paper, arguing that severing the
attention layer from the broader training of the overall model
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renders the experiment less meaningful; they argue that
similar interventions on the remainder of the system are
only possible with joint training between the attention layer
and the rest of the model. Their critique is appropriate, and
can be strengthened with philosophical vocabulary. Surgical
interventions require explanations that depend on variables
that must be held constant. Woodward’s conditions for
successful explanation cannot be met.
Failing this requirement has major consequences. The iden-
tification of causal relationships allows researchers to infer
important details about the nature of the system which can
serve in an explanation. But as the interventionist account
cannot be meaningfully applied to systems which resist
surgical interventions, causal explanations of the type that
Woodward describes are not possible. Consequently, we will
agree that attention is not explanation, but for reasons apart
from, and broader than, the intuition-based arguments from
Jain & Wallace. Instead we must argue that, by definition,
attention is not explanation. The manipulation of attention
manipulations cannot meet preconditions laid out as part of
the boundaries of successful causal explanation.

A2. No, manipulating attention weights fails to
meet the conditions of surgical intervention.

5.3. Consequences of failed causal explanation
So we cannot trace the causal chain through a neural model
at the level of complexity in modern NLP. Woodward’s
framework demands the establishment of a pattern of coun-
terfactual dependence through the elements of a system, and
this can only be demonstrated through the use of surgical
interventions while tracking changes in output. Without
surgical intervention, we cannot determine if a pattern of
counterfactual dependence exists in the first place, or if it
does, how it is constituted. Two options present themselves:

• For some reason, Woodward’s causal theory is inap-
plicable to attention-based manipulations, and the ap-
proach is not causally problematic.

• Woodward is correct, and the absence of the possibil-
ity for surgical intervention on attention mechanisms
means that a causal link between attention and model
output cannot be established.

In the first case, NLP researchers are faced with a diffi-
cult question: what distinguishes our circumstances from
other quantitative systems of interacting variables in sci-
ence, which are adequately explained by the intervention-
ist account? But if we choose the latter, a more practical
problem emerges: In order to be explainable, an algorithm
must be manipulable via surgical intervention. The results
of these papers suggest a failure in principle of modern
NLP networks to allow for the testing of counterfactual
manipulations. This categorically renders judgment that
attention-based causal explanations are destined to fail on
neural models. We do not have the ability to engage in surgi-
cal intervention on attention systems at all, and consequently
cannot determine the nature of the causal relationships be-
tween attention layers and the output of the system. Though
we cannot determine these relationships, we can still con-
clude that attention is not explanation — but only due to the

broader claim that without access to and the ability to inten-
tionally manipulate (or hold constant) all relevant system
variables, explanation is ruled out entirely.

A3. Attention weights alone cannot be used as
causal explanations for model behavior.

A constant in computer science, from calculating π with
greater precision to mathematically complex but determin-
istic tasks like cryptography, has been that programs are
constrained by the logic of their code, reliant on underlying
notions of cause and effect. Deep learning cannot generate
these causal explanations. But methods based in attention
mechanisms will generate apparently causal explanations
even where such reasoning is not possible.
Philosophical research has a grounding for these types of
explanations: the psychological account. The success cri-
teria for such explanations is not grounded in explanantia
based in cause and effect, but in whether they produce a
sense of understanding in the researcher or user of a system.
The apparently causal nature of these explanations is in fact
a hindrance to scientific understanding. In the context of
manipulation where surgical intervention is not possible and
psychological accounts take priority, the apparent causal
stories are not reliable; they are causal fake news.
This undermines the central goals of explainable machine
learning: to provide justification of why and how an algo-
rithm made a decision, to hold the algorithm and its devel-
opers accountable for decisions that violate laws, and to
give the subjects of those decisions actionable steps to alter
the decision that the algorithm has made. If causal explana-
tion is based in a failed methodology, all of the protections
of explainability are suspect. Laws to protect members of
marginalized classes will be enforced based on false un-
derstanding of model behavior; users seeking recompense
will work in vain to alter their outcomes based on factors
that will not produce change; and developers will allocate
resources wastefully to improve model performance based
on a misguided understanding of model behaviors.
But not all philosophical theories require true explanan-
tia. While many theories do expect true explanantia and
a testable, robust connection between explanantia and ex-
plananda, the door is opened for false but psychologically
satisfying explanations. A strand of research in NLP has
explicitly aimed not to generate true explanantia, but in-
stead to produce false but cognizable explanantia: natural
language generation, especially work using sequence-to-
sequence modeling (Ehsan et al., 2018; Liu et al., 2019).
This direction of research would benefit from deeper vocabu-
lary on the relation between truth and reasoning; as is, these
explanations have no theoretical grounding of functional,
logical, or causal theories. The challenge for such research
will be to articulate the conditions for success of apparently
causal explanations that are known to be false.

6. Toward Non-Causal Explanation
As models with interdependent relationships among a large
number of variables grow, it becomes less likely that surgical
intervention on variables can be performed. Moreover, even
if such such surgical interventions were still possible in prin-
ciple within the model, Wiegreffe & Pinter offer compelling
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concerns about the connection between attention layers and
the broader model during training. To put it bluntly: the
‘deep’ structure of contemporary NLP is exactly what pre-
vents causal explanation from manipulation of their parts.
Nevertheless, the user affordances attached to many expla-
nations employ causal vocabulary, despite such research
being limited to purely psychological accounts of success.
If meeting the success criteria for generating an explanation
means producing human-cognizable systems of causal re-
lations between variables, the point at which explanation
becomes impossible is co-extensive with the point at which
the number of variables in a causal chain exceed the maxi-
mum number of relations between variables which can, in
principle, be tracked by a human to whom an explanation
is directed. We argue that while researchers have defined
their explanations informally using the constraints and suc-
cess conditions of causal explanation, they are evaluating
their success instead on non-causal theories of explanation,
particularly either pragmatic or psychological bases.
The practical recommendation for NLP researchers is to
disentangle explainability from cause-tracking. Rather than
generating causally faulty (but psychologically satisfying)
explanations that pattern themselves after causal explana-
tion, as researchers have done in the past (Ehsan et al., 2018),
we urge technical researchers of explanation to pattern their
notions of explanation on non-causal accounts. In section
3., we briefly identified non-causal accounts like the logical
and functional types. These canonical philosophical theo-
ries of explanation should be part of explanation researchers’
basic vocabularies. Additional, even more promising vari-
eties of non-causal explanation come from contemporary
philosophical research on explanation in mathematics and
physics. Below, we summarize these accounts, derived from
research at the interface between philosophy of explanation
and philosophy of scientific models, and the more general
research area in optimality theories of explanation (Strevens,
2008; Rice, 2015; Potochnik, 2018). These accounts of
explanation are robust, under active study by philosophers,
and are still available to NLP research:

• Mathematical Explanations (Pincock, 2007; Lange,
2013), iterate on logical theories of explanation. Geo-
metric explanations use mathematical principles as the
explanantia, which are taken to be modally stronger
than mere causal principles or even natural laws of
physics. A classic example of this type of explanation
is the use of graph representations of the Bridges of
Königsberg as the explanans for one’s inability to cross
all of the bridges exactly once in succession.

• Structural Model Explanations (Bokulich, 2011;
Bokulich, 2018) identify scientific or mathematical
models of systems as explanantia of the phenomena
they represent. Explanations are built by connecting
models to phenomena via a “justificatory step,” whose
details will be particular to the case at hand. This is
a useful alternative framework for thinking about how
explainable neural models will connect to the phenom-
ena they aim to model. In early work, Sullivan (2019)
has begun evaluating the current prospects for deriving
understanding from machine learning.

• Minimal-Model Explanations (Batterman, 2001; Bat-
terman and Rice, 2014; Rice, 2015; Rice, 2017; Rice,
2018), drawing from work on the renormalization
group in applied mathematics (Wilson, 1971), gener-
ates a framework for justifying an explanation by using
mathematical details to illuminate why differences be-
tween systems modeled via the same mathematics are
irrelevant. By focusing on explaining away irrelevance,
rather than articulating a relevance relation, these ac-
counts flip the script for justification of purported expla-
nations and produce a new theory of explanation of the
functional sort.2 Due to its explicit engagement with
explanations whose mathematics do not map cleanly
onto represented features of the system being modeled,
this approach may be especially promising for NLP.

So a variety of theories of explanation remain available.
However, when causal reasoning is taken off the table, some
of the existing constraints from a causal conception are also
placed at risk. Any non-interpretable neural network de-
fies the sort of individuation of explanantia into a set of
humanly-cognizable statements, premises, or causes, which
is required for most of these theories. Because deep learning
models defy this sort of individuation, recognizing which ac-
counts of explanation work within deep learning will clarify
evaluation criteria for explanation moving forward.

6.1. Limitations
While our study of explanation is based in philosophy, our
contributions are based in epistemology, not in ethics. Many
adjacent subfields of philosophy of science exist and only
occasional interactions between computer scientists and
philosophers have taken place to date (Miller, 2018; Zerilli
et al., 2018). In this work, we have examined whether re-
searchers or users are being given a true explanation. But
a good explanation does not mean that an algorithm has
made a good decision. Explainability research frequently
studies tasks with high stakes, including notoriously biased
tasks like recidivism prediction, financial risk modeling, and
facial recognition for surveillance. Our work does not ab-
solve researchers from a broader social responsibility: the
presence of a successful explanation will not help if a loan
is denied because of race (Fuster et al., 2018), if an accused
criminal is wrongly identified because of their gender pre-
sentation (Buolamwini and Gebru, 2018), or if algorithms
persecute ethnic groups (Wang et al., 2016) or misdiagnose
mental health (Bennett and Keyes, 2019).
To build algorithmic decision-making in a truly socially
responsible way, our work must be a component piece, in-
corporated into a broader foundation that accounts not only
for explanation but also for ethical software development.
This work provides a vocabulary for computer scientists
struggling to unify the informal language that proliferates
across research today, and will allow NLP researchers to im-
prove the quality and rigor of their explanations, and provide
a sure footing for the field.

2An alternative interpretation of renormalization-group expla-
nations as non-causal explanations can be found in (Reutlinger,
2014). This may also prove useful to some.
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(2019). Letâs make your request more persuasive: Model-
ing persuasive strategies via semi-supervised neural nets
on crowdfunding platforms. In Proceedings of the Con-
ference of the North American Chapter of the Association
for Computational Linguistics, pages 3620–3630.

Zerilli, J., Knott, A., Maclaurin, J., and Gavaghan, C. (2018).
Transparency in algorithmic and human decision-making:
Is there a double standard? Philosophy & Technology,
pages 1–23.


	Introduction
	Explainable Machine Learning
	Highlighted Studies

	Philosophy and Theories of Explanation
	The Interventionist Account
	Applying the Interventionist Account
	Does the Account Apply?
	Is Attention Manipulation Surgical?
	Consequences of failed causal explanation

	Toward Non-Causal Explanation
	Limitations


