
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 147–155
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

147

Linguistic, Kinematic and Gaze Information in Task Descriptions

The LKG-Corpus

Tim Reinboth1,2, Stephanie Gross1, Laura Bishop3, Brigitte Krenn1
1Austrian Research Institute for Artificial Intelligence (OFAI), Freyung 6, 1010 Vienna, Austria;

2Faculty of Philosophy and Education, University of Vienna, Universitätsstraße 7, 1010 Vienna, Austria;
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Abstract
Data from neuroscience and psychology suggest that sensorimotor cognition may be of central importance to language. Specifically,
the linguistic structure of utterances referring to concrete actions may reflect the structure of the sensorimotor processing underlying the
same action. To investigate this, we present the Linguistic, Kinematic and Gaze information in task descriptions Corpus (LKG-Corpus),
comprising multimodal data on 13 humans, conducting take, put, and push actions, and describing these actions with 350 utterances.
Recorded are audio, video, motion and eye-tracking data while participants perform an action and describe what they do. The dataset
is annotated with orthographic transcriptions of utterances and information on: (a) gaze behaviours, (b) when a participant touched an
object, (c) when an object was moved, (d) when a participant looked at the location s/he would next move the object to, (e) when the
participant’s gaze was stable on an area. With the exception of the annotation of stable gaze, all annotations were performed manually.
With the LKG-Corpus, we present a dataset that integrates linguistic, kinematic and gaze data with an explicit focus on relations between
action and language. On this basis, we outline applications of the dataset to both basic and applied research.
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1. Motivation

The paper presents the LKG-Corpus, comprising linguistic,
kinematic and gaze information in task descriptions. Par-
ticipants changed the positions of objects on a table while
they were describing what they were doing. The corpus
contains (a) 327 utterances, each describing an action, (b)
the accordant motion data, as well as (c) the participants’
gaze behaviour. This work is inspired by Knott (2012), and
aims towards a better understanding of the role of senso-
rimotor processes in language. With the LKG-Corpus, we
have also extended our previous work by higher resolution
methods in both motion capture and eye gaze data collec-
tion – c.f. the Multimodal Task Description (MMTD) Cor-
pus (Gross and Krenn, 2016), and the Action Verb Corpus
(AVC) (Gross et al., 2018).
The LKG-Corpus was collected to bridge the gap between
the AVC-corpus and Knott’s (2012) theses about the rela-
tion between regularities in (a) the dynamics of concrete
actions and their neural representation, and (b) regularities
in the structure of utterances about concrete actions – see
also Webb (2015). The basic idea of this approach is that
an action episode, e.g. reaching-to-grasp, is composed of a
series of operations. In the present paper, we adopt this ter-
minology and refer to action ‘episode’ and to ‘operation’, to
clearly distinguish two aspects of action: (1) the ‘episode’,
indicating complex behaviours such as reaching to grasp
a cup, and (2) ‘operations’, individual processes and their
consequences (amongst others visually attending to the tar-
get object), organised in a temporally invariant way, that
together constitute an episode.
The operations involved in an episode are considered to
be deictic, meaning that they create representations tied to

specific cognitive programs, i.e. the cognitive (inseparable
from perceptual and motor) means of achieving some goal
(Ballard et al., 1997). One such goal might be grasping a
cup. That being her goal, for example, an agent might soon
look at the cup. This visual attention to the cup is a deictic
operation. Arguing that this fixation is deictic entails that
it does two things: it (1) points to the object of the current
action episode, and thereby (2) establishes a reference be-
tween its own target, i.e. the cup, and the goal of the current
episode, i.e. to grasp that cup. Put another way, the deic-
tic operation specifies the concrete referent of the ongoing
action episode. Ballard et al. (1997) refer to a series of de-
ictic operations as a deictic routine, what we call an action
episode.
Deictic operations have been shown to be a computation-
ally simple means for directing behaviour (Ballard, 1991).
Moreover, deictic operations are promising in the context
of action episodes, because they produce specific sensory
consequences, which then define the context for the subse-
quent operation in the sequence. For example, the deictic
operation of visual attention to an object produces, as a sen-
sory consequence, the neural representation of that object.1

In turn, this representation is the basis on which the agent
can then move her arm to grasp the object. Moreover, the
neural representation can be thought to trigger the next de-
ictic operation, in this case activation of the ‘grasp’ oper-

1 The agent may also covertly attend to the object, rather than
visually, through internally directed attention (Chun, 2011). This
generates a functionally equivalent representation. However, eye-
tracking still remains useful in this case, since a number of eye
behaviours have been associated with internally directed attention
(Benedek et al., 2017; Walcher et al., 2017)
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ation (Knott, 2012). It is this dynamic that establishes the
canonical structure of action episodes (see Table 1).
Knott (2012) concentrates on a detailed neuro-scientific ac-
count of action episodes using the example of reaching-to-
grasp. Taking Knott’s conceptualization of action as an
inspiration, the LKG-Corpus addresses two of the deictic
operations: (a) ”attend to object’ and (b) ”activate motor
action”. Their sensory consequences are made accessible
via eye-tracking (focus on visual saccades, for details see
Sect. 2.3.) and motion capture (focus on hand-arm move-
ments, see Sect. 5.1.4.), respectively. In addition, the LKG-
Corpus extends the action episodes to lifting up objects,
putting them down, and moving them on a table from one
place to another. Moreover, linguistic information is added
to the picture by letting people verbalise what they are do-
ing. That allows us to empirically investigate the relation
between utterances and the sensorimotor variables recorded
by eye-tracking and motion capture.

Deictic Sensory Measure
Operation Consequence in LKG
Attend to the
agent (intero-
ceptive)

Attending
to the agent
(interoceptive)

Not applicable

Attend to the
cup (visual)

Attending to the
cup (visual)

Eye-tracking

Activate motor
action

Reattention
to the agent
(motor)

Motion Capture

Reattention to
the cup (haptic)

Not applicable

Table 1: Knott (2012) proposes an alternating sequence of
deictic operations and their sensory consequence, together
a deictic routine. The sensory consequences necessarily
follow from the preceding operation. Moreover, each sen-
sory consequence prepares the agent for the subsequent de-
ictic operation. Together, the processes summarised above
constitute a single action episode.

To this end, the LKG-Corpus offers a new initial set of data
from which to explore robotic learning of new actions, ob-
jects and the accordant words through observation and nat-
ural language descriptions. We proceed to explore Knott’s
suggestion that the structure of utterances concerning con-
crete action episodes reflects the structure of the sensori-
motor representations of the same action episode. In do-
ing so, we continue previous work on action-word mapping
– e.g. Krenn et al. (2017), Sadeghi and Scheutz (2017),
Hirschmanner et al. (2018) – according to a theory-driven
and biologically-inspired framework. Also, we extend pre-
vious research regarding this framework by recording data
from the perspective of the agent, rather than an observer –
cf. Webb (2015).
In Sect. 2. the background we build upon is outlined, and
Sect. 3. summarises the related work. Task scenario and
technical setup are presented in Sect. 4.. Data and anno-
tation tiers for the LKG-Corpus are described in Sect. 5..
Finally, Sect. 6. offers a closer look at possible applications
of the annotated corpus, and an outlook on future work.

2. Background
The framework we draw on is built on research in both
neuroscience, e.g. Arbib (1981), and artificial intelligence,
e.g. Agre and Chapman (1987). Specifically, the neurosci-
entific line of research investigates the dynamics of routine
activities and searches for regularities in the interaction be-
tween a system and its environment. Complementary to
this, Agre and Chapman (1987) set out a critique of tradi-
tional approaches to planning in AI, in which they devel-
oped a theory of activity that likewise emphasises the role
of regularities in the interaction between agents and their
environment. The present work builds on the idea shared by
both sets of research, namely that many routine behaviours
are, in fact, constituted by a canonical sequence of actions.
Consider again the example of reaching to grasp a cup. Al-
most at the outset, visual fixations create transient sensory
states that enable the execution of a subsequent action (Bal-
lard et al., 1997). According to this account, we fixate (very
briefly) on an object to create a stable image on the retina,
then classify that object. Fixations are a correlate of visual
attention, and the object representation is usually thought
to be in the visual domain. However, there is also evidence
of motor attention, for example during action preparation
(Rushworth et al., 1997). This process also generates a sta-
ble neural representation formed through parietal sensori-
motor circuits.
In the following, we give some background on the im-
portant concepts we were guided by when collecting and
analysing the LKG-Corpus.

2.1. Attention
In the context of the presented work, (selective) visual at-
tention is to be understood as the ability to quickly direct
one’s gaze to important objects in our visual surroundings
(Itti and Koch, 2001). In the LKG-Corpus, we use eye-
tracking to access visual attention. Motor attention refers
to the same process, however, in the proprioceptive modal-
ity. We are able to cover aspects of this modality using
motion capture, especially of the hands and arms.
In addition, Knott (2012) also refers to haptic attention as
being an important feedback indicating that the agent is
grasping the object at the end of a reach-to-grasp episode.
Haptic attention in this interpretation is exclusively covert
(or internal), meaning that the object of attention is not
present through the senses, but by being maintained in the
agent’s working memory (or recalled from long term mem-
ory) (Chun et al., 2011). In the absence of neuroimag-
ing data, this modality cannot be represented in the LKG-
Corpus. Covert attention processes in the visual and motor
domain (e.g. action-preparation (Rushworth et al., 2003))
also remain difficult to address.

2.2. Episode Structure
The representation of the episode, in both the visual and
motor domain, may play a central role in determining the
linguistic structure of sentences that describe concrete ac-
tions (Knott, 2012) – e.g. the woman grasped the cup.
Knott’s proposal is based on a thorough review of psy-
chophysical and neuroscientific literature, and has partially
been computationally implemented by Takac et al. (2012).
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In theory, and in the computational model, the canonical
sequence of actions that constitutes a single episode is cru-
cial. That is because the sequence provides structure. This
structure can be exploited as the foundation of other cogni-
tive processes, including linguistic processes.
Specifically, Knott (2012), and subsequently Webb (2015),
have investigated a direct structural relationship between
sensorimotor processes, the cognitive representation of
episodes (e.g. reaching to grasp a cup), and the sentences
describing those episodes. The authors argue that part of
the structure we observe in language is derived from the
canonical structure of sensorimotor processes and represen-
tations that underlie action performance and action obser-
vation. Such an approach is extremely promising, as it ac-
counts for both the underlying similarities and the surface
variability across natural languages. Moreover, the compu-
tational implementation reinforces the promise to be appli-
cable across natural languages. In fact, from the invariant
sensorimotor representation, it is possible to generate utter-
ances, the components of which can take various positions
within the structure of the clause (Takac et al., 2012).

2.3. Processes During Concrete Action Episodes
Thus far, our intention was to capture major individual
processes that together make up this structure of action
episodes. Processes we are able to address empirically are
those related to visual fixations, periods during which the
eyes appear immobile while visual information is being col-
lected and processed, also known as fixational eye move-
ments (Rucci et al., 2016). Specifically, visual fixations
can indicate visual attention (Weichselgartner and Sperling,
1987). This relationship is particularly strong for volun-
tary saccadic eye movements (Hoffman and Subramaniam,
1995), i.e. rapid eye movements, initiated voluntarily, that
suddenly and quickly change the point of fixation. Hence,
these kinds of eye movements also play a central role in our
work and in the framework proposed by Knott (2012).
Attention is key because it generates the transitory rep-
resentations that are operated on during subsequent pro-
cesses. The generation of such representations via attention
appears to be an essential regularity of action preparation
(Averbeck and Lee, 2007). That these representations are
created precisely by attention (in whichever modality) leads
us to refer to the actions that create them as attentional ac-
tions (Ballard et al., 1997), or actions of attention (Knott,
2012). The term is synonymous with deictic operation. We
refer to them here to emphasise that by directing her at-
tention, the agent is doing something. She is creating the
sensory state that is necessary for the next operation to be
performed. In that way, actions of attention are constitutive
of the deictic routine.
This returns us to the issue at hand: that episodes are con-
stituted by a canonical sequence of actions. For reaching
to grasp, Knott (2012) outlines a sequence of such actions
of attention. We investigated those in the visual domain
by eye-tracking. By motion capture, we deepen the ex-
ploration of the relation between kinematic and linguistic
processes, and of their temporal dynamics – cf. (Rizzolatti
and Arbib, 1998). All in all, the extent to which sensori-
motor processes provide structure to language still remains

an open research question. For example, so-called mirror
neurons are referred to in relation to a sensorimotor basis
of language and linguistic structure, but the mirror neuron
theory remains debatable (Gallese et al., 2011).

3. Related Work
Multimodal corpora that report various forms of linguistic
information and visual data are for example (Gross et al.,
2018; Gaspers et al., 2014; Panzner, 2016). Some mul-
timodal corpora also include manually annotated or auto-
matically tracked eye gaze data, e.g. (Gross and Krenn,
2016; Stefanov and Beskow, 2016; Ochs et al., 2019). In-
deed, studying gaze behaviour is a promising method to
gain a better understanding of the role of sensorimotor pro-
cesses in language (Webb et al., 2010). In most corpora
that record eye gaze, actions are conducted on a screen, e.g.
(Stefanov and Beskow, 2016; Panzner, 2016; Ochs et al.,
2019), rather than in a less constrained setting, as is the
case for the MMTD-Corpus (Gross and Krenn, 2016), and
even more so the LKG-Corpus. Though, the use of Virtual
Reality technologies means this is beginning to change, as
corpora are recorded in settings that are more enabling for
participants (Ochs et al., 2019). At the same time, data col-
lection is limited by the need to collect high quality material
suitable for automatic processing, so the design of data col-
lection experiments reflects a trade-off between less con-
strained settings on the one hand, and concern about data
quality on the other (Vinciarelli et al., 2015). When collect-
ing empirical data to gain insights in human sensorimotor
and linguistic processes, it is also a challenge to find the ad-
equate balance to collect data as ’natural’ as possible, but
constrained enough so that they are still comparable to data
collected from other participants. Because of the impor-
tance of recording participants behaviour in as high detail
as possible for the LKG-Corpus, we opted for a setting less
constrained than that of the AVC-Corpus.
Compared to corpora manually annotated for gestures, ac-
tions and eye gaze, such as the MMTD-Corpus (Gross and
Krenn, 2016), we employed a motion tracking system and
an eye-tracker for collecting the LKG-Corpus. These more
precise data allow us to conduct in-depth investigations of
sensorimotor processes.
Concerning cross-modal and cross-situational word-object
and word-action learning, the presented corpus builds upon
the AVC-Corpus, cf. (Gross et al., 2018). In both cor-
pora, the positions of three objects are changed on a table
and verbally described. There is no interlocutor present.
The main differences lie in the recorded data, determined
by the overall goal of the two corpora. In addition to
speech/audio, hand tracking, object tracking, head pose,
and table tracking in the AVC-Corpus, the LKG-Corpus
also contains eye-tracking data. Which were not relevant
for the AVC-Corpus, as the goal was to collect data that re-
semble what a robot hears and sees during task descriptions,
in order to learn new actions and objects through observa-
tion and their natural language descriptions. Goal of the
LKG-Corpus additionally is to collect sensorimotor data of
actions and their natural language descriptions to extract
sensorimotor patterns and compare them to linguistic pat-
terns. Concerning the technical set-up, the use of a head-
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mounted display in the AVC constrained participants field
of view, possibly causing them to move their head more
than they would have otherwise. Also, participants received
detailed instructions for each action during recordings for
the AVC-Corpus, whereas participants in data collection for
the LKG-Corpus were able to choose an action to perform.
Notably, the LKG-Corpus is relatively small, especially
compared to corpora collected for deep machine learning,
see for instance (Johnson et al., 2017; Kay et al., 2017).
This reflects the diverging goal of such projects and our
own. With the LKG-Corpus, we focus on representing the
rich multimodal dynamics of concrete actions. We are not
only interested in computational applications, but also aim
at a better understanding of the nature of language. This re-
flects the influence of studies such as Suanda et al. (2016)
on our own work, who investigate the multimodal dynamics
of parent-toddler dynamics. These authors, too, explored
the structuring role of sensorimotor processes for language.
In general, the LKG-Corpus is also intended to serve as
a basis for (robotic) simulations of human-like visual be-
haviour. Moreover, the understanding of language devel-
oped by analysing this kind of data could offer key in-
sights that may ultimately be applied to a developmentally-
inspired approach to robot language learning.

4. Setup and Data Collection
4.1. Participants
A convenience sample of 13 participants (Mean Age =
24.08 years, Range 21-28; 8 female, 5 male) was recruited
from a population of university students. All participants
but one were right-handed. All participants were naive to
the purpose of the study. The native languages of the final
sample included English (N=1) and German (N=14). All
participants were proficient in English (B2 level or above).
This study was conducted in English to facilitate the dis-
semination of the corpus, given limited interest in German-
language corpora. Moreover, English was chosen for the
sake of consistency with related empirical work, e.g. Webb
(2015). All participants gave informed consent to their par-
ticipation in this study.

4.2. Task Description
The overall goal of the data collection was to gather multi-
modal data on basic take, put, and push actions. The gen-
eral set-up is similar to that reported by Gross et al. (2018).
In this case too, the participants received instructions to per-
form actions with three objects, placed on a table in front
of them, and to verbalize their actions while carrying them
out. In the instructions for the LKG-Corpus, participants
were told: ”Your task in this experiment is to change the
positions of objects and to describe the actions as you per-
form them. You are asked to do this as naturally as possible
and to pay attention only to the task. Please look through
the glasses normally and try not to get distracted. During
the task, you will move objects from place to place within
the marked area and describe what you are doing.”
In the present study, participants did not receive specific in-
structions about which action to perform when, or which
aspects of an action to focus on. Possible verbalizations
were of the kind: I take the bottle and move it to the top

left of the table. Participants were instructed to return to a
neutral position between actions and to continue perform-
ing actions until they were told to stop. They were informed
that they would perform around 10 actions during each trial,
before being stopped by an experimenter.

Figure 1: Participants performed the task seated at
the table, with the three objects placed on a table in
front of them.

The group of participants included left- and right-handers,
and both were instructed to perform actions only with their
dominant hand. This reflects a concern that hand domi-
nance may result from neural asymmetries in motor plan-
ning (Sabaté et al., 2004). Motor planning plays a central
role in Knott (2012). To avoid disruptive effects, all ac-
tions performed with the non-dominant hand (N = 2) were
excluded from the present analysis.

4.3. Technical Setup
The data collected for the present study include audio data
(recordings of participants describing their actions), video
data (recordings of participants’ field of view), as well as
eye-tracking and motion capture data.
The user sits in front of a table (see Fig. 2), wearing Senso-
rimotor Instruments (SMI) ETG 2 wireless glasses, which
tracked gaze position at 120 Hz. Magnetic snap-on correc-
tive lenses were available for participants requiring a dis-
tance correction (within the range -4.0 to +4.0 dioptres).
The glasses featured a custom arrangement of motion cap-
ture markers for detection by the motion capture system.
One marker was placed at each corner of the top of the
frame. A third marker, attached to a small stick, extended
down from the left arm of the glasses (see Fig. 3). Eye-gaze
data was collected with a laptop connected to an OptiTrack
eSync 2 device that transmitted TTL triggers from the mo-
tion capture software to the eye-tracking software to mark
the start and end of a motion capture recording.
For the motion capture, a 10-camera (Prime 13) OptiTrak
motion capture system was used, tracking participants’ up-
per body and head movements at 240 Hz. Each performer
was fitted with a custom arrangement of 28 reflective mark-
ers. Additional markers (4) were attached to each of three
objects the actions were performed with, as well as to the
corners of the table. Audio data were recorded using two
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microphones mounted on the ceiling, via a Focusrite Scar-
lett 18i8 sound card and recorded in Ableton Live.

Figure 2: Participants sat at a table in the middle of
an array of 10 ceiling-mounted cameras of the Opti-
Trak system.

Figure 3: Eye-tracking glasses were fitted with three
markers for tracking by the OptiTrak system, and fea-
tured a central, front-facing camera.

5. Dataset and Annotation
The present corpus comprises

Recordings 22
Utterances referring to actions 327
Instances of objects being moved 209
Gaze Behaviours 3950

Table 2: Summary of the current state of the LKG-Corpus.
Each instance of an object being moved contains at least
two actions (first TAKE, second PUT/PUSH), though not
necessarily two utterances referring to actions.

5.1. Representation of Information
In addition to raw data from audio recordings, eye-tracking,
motion capture, and video recordings from the user’s per-
spective, each instance of a task is represented by:

1. manual orthographic transcriptions of speech (con-
ducted in Praat 2)

2http://www.fon.hum.uva.nl/praat/

2. a video from the participants’ perspective, automati-
cally overlaid with a circle indicating the target of the
participants’ gaze by SMI software

3. schematics of the gaze vector every 5 frames (see
Fig. 4), also compiled into an animation of gaze be-
haviour

4. information on gaze behaviours, for example whether
a participant is looking at/close to an object (manually
annotated)

5. information on whether the user’s dominant hand
touches an object (manually annotated)

6. information on when an object is being moved (man-
ually annotated)

7. information on velocity and acceleration of partici-
pants’ gaze 3

8. information on velocity and acceleration of a subset of
motion capture markers 4

While the raw data are provided as CSV files, the data from
1. and 4. to 8. (henceforth annotation tiers) is represented
as an Elan5 file (.eaf) and exportable to CSV from Elan.
Animations are synchronised with the annotation tiers.
In the following, we describe in more detail (a) the tran-
scribed utterances (annotation tier 1), (b) the calculated
gaze vectors (tier 2, 3, 8), (c) the annotated gaze behaviours
(tier 4), and (d) the motion capture data (tier 5 to 7).

5.1.1. Utterances
In total, the corpus comprises 350 utterances, of which 327
contain action verbs, such as ‘I am grasping the can’ and ‘I
am moving in to the middle of the table’. In these 327 ut-
terances, 15 different verbs are used by the 13 participants:
‘move’, ‘grasp’, ‘lift’, ‘put’, ‘pull’,‘push’, ‘take’, ‘hold’,
‘try’, ‘grab’, ‘stand’, ‘shift’, ‘pick’, ‘place’, ‘reach’. In 23
cases, the verb is missing, as in ’then the can next to the bot-
tle’. In addition to utterances describing actions, there are
four scene and sensor descriptions. Two utterances were
excluded, as they are only partially audible.

5.1.2. Gaze Vectors
A vector indicating the direction of the gaze for the right
eye of the participant was calculated. This gaze vector is
based on a precise calibration of the glasses when the par-
ticipant first puts them on. Given the length of a recording
session (15-45 minutes), however, a certain degree of im-
precision in the gaze vector coordinates cannot be ruled out
because of calibration errors, i.e. when participants bumped
or shifted the glasses.
An automated procedure to identify gaze targets was
adapted from (Bishop et al., 2019). It involved remap-
ping gaze coordinates into motion capture space. From this,

3 This provides a continuous rather than discretised annota-
tion of gaze. This has the advantage, for example, that it leaves
open the parameters of what counts as a visual fixation (see e.g.
Rayner (2009) for parameters approximating a typical fixational
eye-movement)

4This subset includes the markers of the head, and dominant
hand and arm.

5https://tla.mpi.nl/tools/tla-tools/elan
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we generated a schematic representation of each frame (see
Fig. 4) and an animation of each trial.
In every case, the direction of the gaze vector was automati-
cally corrected following the data collection, to compensate
for imprecision in the placement of markers on the glasses
and in the estimation of the gaze vector origin. Automati-
cally adjusted eye gaze vectors were then tested by visual
comparison with the video and gaze marker display. The
automatically generated schematics and animations are ac-
curate to the recorded data and therefore remain a valuable
additional representation.

Figure 4: Schematics of the scene at one point in
time from three angles, generated by the automated
analysis of gaze and motion capture data. The glasses
are visible as a triangle, the table as flat plain, and the
three objects as upright planes. The black line repre-
sents the gaze vector calculated from the eye-tracking
data. The individual points represent the markers on
the right arm of the participant.

Moreover, automatically extracted is information on when
the participants’ gaze was stable on one point in space for
at least 50ms (annotation tier 8).

5.1.3. Gaze Behaviours
Gaze behaviours (annotation tier 4) were annotated manu-
ally because of persistent irregularities that originated from
the marker placement on the objects and their resulting rep-
resentation in motion capture space. (The 3D shapes that
represented the objects were not symmetrical across orien-
tations; see Fig. 4.) For manual annotation, we identified
distinct patterns of eye movements in the video from the
front-facing camera mounted on the glasses. Our label set
(see Table 3) resulted from consideration of existing data on
eye movements during tasks similar to our own, e.g. Bal-
lard et al. (1997), Webb (2015). The label set was devel-
oped iteratively. Three authors of this paper (TR, SG, BK)
developed categories as a team, annotated the data inde-

pendently, tested for interrater agreement, and then revised
and retested the label set. A process characteristic for the
development of a coding scheme (Weber, 1990).
In the sense that we updated categories according to pat-
terns in the data, our method is partly inductive. Such an
approach is useful when, as is the case here, research in-
forms the development of new theories (Rivas, 2018). For
example, the challenge of identifying the appropriate level
of granularity at which to annotate, had to be addressed iter-
atively during the development of the label set. Ours is also
a common and effective pattern of developing novel coding
schemes (Weston et al., 2001). Manual annotation, in this
more qualitative manner, allowed us to distinguish between
eye-movements in a way that we were better able to repre-
sent the rich dynamics of visual behaviour. This produced
a detailed annotation tier that could not have been extracted
from the raw data automatically.

Primary
Label

Reference
Object

Secondary
Label

Addition Supp-
lement

on Object1 stable trans-
Object1-n

Object1-
Object2

moving close-
Object1-n

jumping alt-
Object1-n

to Object1-
Object2

smooth trans-
Object1-n

Object1* jumping
*Object2

with Object1 on smooth trans-
Object1-n

Object1-
Object2

close jumping close-
Object1-n

trans alt-
Object1-n

Table 3: Coding scheme for gaze behaviours – Primary
labels distinguish three different types of eye movements:
gaze on object, from/to a certain location, and with an
object/hand being moved. There can be up to two refer-
ence objects per annotation. Further labels describe fea-
tures of the gaze behaviour including whether it is (a)
smooth, (b) jumping, (c) stable, (d) crossing an object with-
out change in speed (trans), or (e) alternating between two
locations/objects. Aspects of the scene include whether an-
other object is close to the current gaze location.

Given the complexity of the data, the accuracy of labelling
was assessed using forced-choice. This meant that all tri-
als in the corpus were annotated by two coders, who had to
agree on each labelling instance. Using consensus to ensure
interrater agreement in this way is particularly useful when
different labels represent qualitatively different constructs
(Stemler, 2004). By this we mean that the primary labels
on, to, and with reported here, represent different types of
eye movements, rather than points on a continuum. Re-
spectively, the three primary labels map onto (a) smooth
eye movements, (b) voluntary saccades, and (c) pursuit eye
movements (Pruves et al., 2004). Forced choice is a useful
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method to arbitrate such cases and avoid discrepancies in
annotation. This challenge reflects the semantic richness of
the gaze behaviour, which made forced-choice consensus
an apt method to address interrater agreement.

5.1.4. Motion Capture Data
Motion capture data are made available within the corpus
in the form of .csv files of three-dimensional coordinates
for each marker. These data offer a number of possibilities.
For example, we will align motion capture data with video
and eye-tracking to identify where participants’ hands were
when they started looking at the object they wanted to
move. Such an approach also greatly simplifies the annota-
tion of eye-tracking data (Bishop and Goebl, 2018).
In general, motion capture data are an excellent resource as
they reflect the dynamics of movement. For instance, ve-
locity, acceleration, and jerk can all be easily calculated for
the gesture trajectories. From this, it is possible to investi-
gate the smoothness and speed of movements and whether
there are consistent correlations between the utterance and
changes in these aspects of participants’ movements. In
doing so, we move beyond Knott (2012) to investigate the
relation between motor action and speech production.
In this regard, our data allow us to investigate dynamics
suggested by Glenberg and Gallese (2012), who propose
control sharing between language and motor processes. Ar-
guing that ‘we say what we do, and do what we say’ they
suggest a two-fold relation, whereby 1) the act of articula-
tion prepares the associated motor actions, and 2) perform-
ing the action primes the articulation. In this framework,
sensorimotor and linguistic processes are inseparably cou-
pled, making it essential to explore and understand the re-
lation between the two. In this context, the LKG-Corpus
provides a valuable resource for further investigation.

6. Applications and Future Work
The LKG-Corpus is a novel data set that integrates linguis-
tic, kinematic and gaze information with an explicit focus
on the basic relations between language and action. As
such, it is a step towards better understanding the cogni-
tive processes that subserve language. That also means that
it offers two distinct avenues of future research. On the
one hand, we expect the data set to contribute to a better
understanding of fundamental questions concerning the dy-
namics of multimodal (inter-)actions which so far have re-
main unanswered (Vinciarelli et al., 2015). On the other
hand, the data support computational modelling of human-
robot interaction, notably supporting mutual understanding
between human and robot actors.

6.1. Basic Research
The present data allow us to investigate when the partic-
ipant directs her visual attention to the target object or is
looks for a target location. Also, motor actions can be ex-
tracted in different granularity. Thus, the data serve as a
good basis to identify temporal sequences in (a) visual at-
tention, (b) motor action, and (c) language, and to com-
pare them. For investigating deictic operations going be-
yond visual attention, further data is required. One ap-
proach is to complement the current set-up with neuro-

imaging data. Electroencephalography (EEG), for exam-
ple, has been used to decode actions (Schwarz et al., 2017)
and as the source for common neural (electrophysiological)
features from which to estimate behaviour (Touryan et al.,
2016). Simultaneous EEG measures would allow us to ex-
plore relations outlined by Knott (2012).
A different path to further develop this work would be to
adjust the current design to facilitate automatic annotation
of gaze behaviour. Among other improvements for the fu-
ture, reflective markers will be placed on the objects such
that they would be represented as 3D-objects in motion cap-
ture space (rather than as surfaces, see 4). To facilitate this,
the use of square objects would be more suitable than the
use of cylinders. We will avoid other modifications, such
as restricting where participants may take hold of an ob-
ject. Such interventions could improve automatic labelling
by the OptiTrack software, but will likely distort partici-
pants’ actions, and will make the data more artificial.
The fact that the LKG-Corpus comprises motion data at dif-
ferent levels of detail allows us to investigate the relation
between manual behaviour and utterances on two levels of
granularity at once. On the one hand, manually annotated
hand behaviour (e.g. ‘hand moving away from/towards ob-
ject’) represents a semantically high-level interpretation of
the motion capture data. On the other hand, features of
hand movements, such as velocity and acceleration can be
automatically extracted from the raw data. Taken together,
we can use this information to investigate both the finer dy-
namics suggested by Knott (2012)’s canonical structure of
concrete action episodes, as well as the overlap between
speech articulation and motor control suggested by Glen-
berg and Gallese (2012).

6.2. Applied Research
A pressing question for HRI is how human intentions can
be extracted from data. This is essential for robots to suc-
cessfully act in social situations (Broz et al., 2013), as well
as for tackling safety concerns in workplaces shared by hu-
mans and robots (Bascetta et al., 2011). To address the
problem of what a human is going to do, human speech
and/or motor action must be made interpretable to robots
(Sciutti et al., 2018). Eye-tracking and motion capture are
valuable sources of data, for instance, to exploit the corre-
lation between direction of human gaze and the focus of at-
tention (Frischen et al., 2007). Moreover, the velocity with
which an action is performed has been tied to intentions
directly (Karg et al., 2013), as well as to emotional status
(Sartori et al., 2011). In that respect, the LKG-Corpus is a
promising resource for these lines of research in HRI.
Both gaze data (Palinko et al., 2016) and motion data (Vi-
gnolo et al., 2017) are already being applied as resources
to study and design human-robot interaction. For example,
recent research indicated that eye motion and fixations fa-
cilitate disambiguation of target objects, while action kine-
matics have also been directly related to human intention
(Sciutti et al., 2015). In fact, in human-robot collaborative
settings, motion trajectories allow the prediction of subse-
quent human action and the anticipatory planning of robot
responses (Koppula and Saxena, 2015). To address this, be-
cause the LKG-Corpus does not report interactions, we plan
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to apply our simultaneous motion capture and eye-tracking
design to tasks similar to those reported in the MMTD-
Corpus (Gross and Krenn, 2016).

7. Acknowledgements
This research is supported by the Vienna Science and Tech-
nology Fund (WWTF), project RALLI – Robotic Action
Language Learning through Interaction (ICT15-045), the
Austrian Research Promotion Agency (FFG), Ideen Lab 4.0
project CoBot Studio (872590), and the Austrian Science
Fund (FWF), Project P29427-G24. Data collection was
conducted at the Performance Science Lab of the Depart-
ment of Music Acoustics – Wiener Klangstil, University of
Music and Performing Arts Vienna (mdw).

8. Bibliographical References
Agre, P. E. and Chapman, D. (1987). Pengi: An implemen-

tation of a theory of activity. In Proceedings of the Sixth
National Conference on Artificial Intelligence (AAAI),
volume 87, pages 286–272. AAAI Press, Menlo Park,
CA, Seattle, WA.

Arbib, M. (1981). Perceptual structures and distributed
motor control. In V. Brooks, editor, Handbook of Phys-
iology: Section II The Nervous System. Part 1: Motor
Control. American Physiological Society.

Averbeck, B. B. and Lee, D. (2007). Prefrontal neural
correlates of memory for sequences. Journal of Neuro-
science, 27(9):2204–2211.

Ballard, D. H., Hayhoe, M. M., Pook, P. K., and Rao, R. P.
(1997). Deictic codes for the embodiment of cognition.
Behavioral and Brain Sciences, 20(4):723–742.

Ballard, D. H. (1991). Animate vision. Artificial Intelli-
gence, 48:57–86.

Bascetta, L., Ferretti, G., Rocco, P., Ardö, H., Bruyninckx,
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