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Abstract
The Web archived data usually contains high-quality documents that are very useful for creating specialized collections of documents. To
create such collections, there is a substantial need for automatic approaches that can distinguish the documents of interest for a collection
out of the large collections (of millions in size) from Web Archiving institutions. However, the patterns of the documents of interest can
differ substantially from one document to another, which makes the automatic classification task very challenging. In this paper, we
explore dynamic fusion models to find, on the fly, the model or combination of models that performs best on a variety of document types.
Our experimental results show that the approach that fuses different models outperforms individual models and other ensemble methods
on three datasets.
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1. Introduction
A growing number of research libraries, museums, and
archives around the world are embracing Web Archiving as
a mechanism to collect born-digital material made available
via the Web. Between the membership of the International
Internet Preservation Consortium, which has 55 member
institutions (Consortium, 2017), and the Internet Archive’s
Archive-It Web Archiving platform with its 529 collecting
organizations (Archive-It, 2017), there are well over 584
institutions currently engaged in building collections with
Web Archiving tools. The amount of data that these Web
Archiving initiatives generate is typically at levels that dwarf
traditional digital library collections. As an example, in a
recent impromptu analysis, Jefferson Bailey of the Internet
Archive noted that there were 1.6 Billion PDF files in the
Global Wayback Machine. If just 1% of these PDFs are of
interest for collection organizations, that would result in a
collection of 15+ million volumes in HathiTrust.
While the number of Web Archiving institutions increases,
the technologies needed to provide access to these large
collections have not improved significantly over the years.
At this time, the standard way of accessing web archives is
with knownURL lookup using tools like theOpenWayback1
or pywb2. The use of full-text search has increased in
many web archives around the world, but often provides
an experience that is challenging for users because of the
vast amount of content and the limitations of strictly text-
based searches for these large heterogeneous collections of
content. Another avenue of access to web archived data that
is of interest to Web Archiving institutions is the ability to
extract high-quality, content-rich publications from the web
archives in order to add them to their existing collections.
In this paper, we exploremachine learning and deep learning
models to classify documents from Web Archiving collec-
tions into being in scope for a given collection (or collection
policy) or out of scope. By identifying and extracting these
documents, institutions will improve their ability to provide
meaningful access to collections ofmaterials harvested from

1 https://github.com/iipc/openwayback
2 https://github.com/webrecorder/pywb

the Web that are complementary, but oftentimes more de-
sirable than traditional Web archives.
In Web Archiving collections, usually, the documents are
very diverse, with different types of documents having a dif-
ferent textual structure and covering different topics. As an
example, consider a scholarly works repository, which con-
tains publications that are typical for an institutional reposi-
tory such as research articles, white papers, slide decks from
presentations, and other scholarly publications. Documents
not considered as part of the scholarly works repository
include curriculum vitae, resumes, publications lists, and
student manuals. The beginning and the end portions of a
document might contain useful and sufficient information
(either structural or topical) for deciding if a document is
in scope of a collection or not. For example, research arti-
cles usually contain the abstract and the introduction in the
beginning of the document, with the conclusion, acknowl-
edgements, and references occurring towards the end of the
document. Being on the proper subject (or in scope of a
collection) can often also be inferred from the beginning
and the end portions of a document.
Many traditional and neural network based approaches have
been successfully explored for text classification. The “bag
of words” (BoW) or tf-idf representation is commonly used
for text classification (Caropreso et al., 2001; Sebastiani,
2002). Structural features (Str) designed based on the char-
acteristics of a document have been successfully used to
classify academic documents into six different categories
such as papers, slides, theses, etc. (Caragea et al., 2016). In
addition, for text classification tasks, Convolutional Neural
Networks (CNNs) are extensively used in conjunction with
word embeddings and achieve remarkable results (Gold-
berg, 2016; Johnson and Zhang, 2014; Kim, 2014).
However, we conjecture that simply using any of the
above individual classifiers or combining them with static
decision-level fusion (e.g., aggregating all three BoW, Str,
and CNN classifiers’ confidences) may not always help in
finding relevant documents to a particular repository from
Web Archiving collections that contain a wide variety of
documents. Figure 1 illustrates this phenomenon using a
few examples sampled from one of our datasets (a scholarly
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Single classifier is correct
Document Class Label Description Prob.

+ve Slides BoW: 0.15
Str: 0.74
CNN: 0.16
SEM: 0.35

(a)

-ve CV BoW: 0.55
Str: 0.40
CNN: 0.87
SEM: 0.61

(b)

Two classifiers are correct
Document Class Label Description Prob.

+ve Research article BoW: 0.40
Str: 0.85
CNN: 0.63
SEM: 0.63

(c)

-ve Publication list BoW: 0.45
Str: 0.11
CNN: 0.97
SEM: 0.51

(d)

Figure 1: Example documents from a Web Archiving collection and classifiers’ confidences.

works repository). The figure contains the predicted proba-
bilities for textual content based BoW and CNN classifiers,
structural features classifier (Str), and static ensemblemodel
(SEM) that averages the probability of each individual clas-
sifier (BoW, Str, and CNN, in our case). For the document
(a) (slides) in Figure 1, only Str classifier correctly predicts
the class label with a probability of 0.74. However, BoW,
CNN and SEM miss-classified the document with very low
probability of 0.15, 0.16, and 0.35, respectively. Similarly
for document (b) (CV), only Str classifier correctly predicts
the document as out of collection, while all others (BoW,
CNN, and SEM) mistakenly classify the CV as being part
of the repository. Interestingly, for the research article (doc-
ument) (c), only BoW classifier miss-labeled the document
with 0.40 probability, whereas Str, CNN, and SEMcorrectly
classified the document. Similar observations can be seen
for the document (d) (a publications list).
To this end, we explore dynamic decision-level classifier se-
lection to identify on the fly the best suited classifier that can
perform well on a given document. Our study includes an
exploration of base classifiers including traditional machine
learning models based on BoW (Caropreso et al., 2001; Se-
bastiani, 2002) and structural features (Str) (Caragea et al.,
2016) that capture the characteristics of documents, as well
as an exploration of convolutional neural networks (CNNs)
for dynamically selecting the best classifier for specific doc-
ument types on the fly. Our research focus is on three
generic use cases that have been identified for the reuse
of Web Archives and include populating an institutional
repository from a Web archive of a university domain, the
identification of state publications from a Web Archive of
a state government, and the extraction of technical reports
from a large federal agency. These three use cases were
chosen because they have broad applicability and serve as a
good test for classification using machine learning and deep
learning models.
To our knowledge, miningWeb Archiving collections is un-
derexplored despite its importance in preserving the Web.
As far as we know, our work is the first proposing a dy-
namic decision-level classifier selection model for finding
relevant documents from these collections. In summary,
our contributions are as follows:

• We built three datasets from three different Web

archives, each covering different domains: a schol-
arly works repository (UNT.edu), state publica-
tions (Texas.gov), and a federal agency publications
(USDA.gov). Each dataset contains PDF documents
along with their labels indicating whether a document
is in scope of a collection or not. The datasets are
available online3 to further research in this area.

• We show that BoW and CNN classifiers that use only
some portion of the documents outperform their coun-
terparts that use the entire content of documents.

• We propose a dynamic classifier selection for docu-
ment classification (DCSDC) to dynamically select an
appropriate classifier to predict the probability of a tar-
get document as being in scope of a collection or not.
To dynamically select the classifiers, we consider tex-
tual similarity along with the structural aspects of the
documents.

• We show that DCSDC outperforms all the individual
feature set models (base classifiers) and other strong
baselines.

The rest of the paper is organized as follows: We sum-
marize closely related work in Section 2. In Section 3,
we describe three base classifiers used in our experiments:
BoW classifiers, structural features classifiers, and CNN
classifiers. Then, in Section 4, we discuss our proposed dy-
namic decision-level fusion approach for finding documents
of interest fromWeb Archiving collections. We explain the
process of creating the datasets in Section 5. We present
our experimental setup and results in Section 6, followed by
conclusions and future directions of our work in Section 7.

2. Related Work
Web Archiving. Web Archiving as a method for collect-
ing content has been conducted by libraries and archives
since the mid-1990’s. The most known Web Archiving is
operated by the Internet Archive who began harvesting con-
tent in 1996. Recently, the Library of Congress (Dooley
and Thomas, 2019) analyzed its Web Archiving holdings
and has identified 42,188,995 unique PDF documents in its

3 https://www.cs.uic.edu/∼cornelia/datasets/web_archive_data
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holdings. This shows interest in the PDF documents from
the Web as being of interest to digital libraries. Thus, there
is a high need for tools and techniques to help filter the desir-
able PDF content based on existing collections or collection
development policies. Jacobs (2014) articulates the value
and importance of web-published documents from the fed-
eral government that are often found in Web Archives. In
this paper, we formulate the problem of classifying the PDF
documents from a Web Archiving collection into being of
scope for a given collection or not.
The Web Archiving can be used to gather documents or
webpages belonging to a particular domain from the Web.
Nwala et al. (2018) studied about bootstrapping the Web
Archiving collections from the social media and showed
that sources such as Reddit, Twitter, andWikipedia produce
collections that are similar to expert generated collections
(i.e., Archive-It collections). McCoy et al. (2018) used the
TwitterAPI for ranking 264 universities using two easily col-
lected measurements as an alternative to university ranking
lists published in U.S. News &World Report, Times Higher
Education. To better understand a given Web Archiving
collection, Alam et al. (2016) used CDX summarization for
web archive profiling and AlNoamany et al. (2017) pro-
posed the Dark and Stormy Archive (DSA) framework for
summarizing and arranging these collections.
Ensemble models and dynamic fusion. Ensemble mod-
els have been used previously in many systems (Woźniak
et al., 2014; Breiman, 1996; Skurichina and Duin, 1998).
Bagging is an ensemble technique that builds a set of di-
verse classifiers, each trained on a random sample of the
training data to improve the final (aggregated) classifiers’
confidence (Breiman, 1996; Skurichina and Duin, 1998).
Since the classifiers in an ensemble may learn very different
patterns, dynamic ensembles that extend bagging have also
been proposed (Cruz et al., 2018; Cruz et al., 2015; Cavalin
et al., 2011). In dynamic ensembles, a pool of classifiers are
trained on a single feature type (e.g., bag-of-words), each
using a different subset of examples or features, within the
bagging technique (Breiman, 1996; Skurichina and Duin,
1998) and the competence of the base classifiers is deter-
mined dynamically. Our work extends these approaches to
dynamically select one of the various classifiers on the fly
to perform document categorization.
Ensemble classifiers have also been used in a multi-modal
setting (Guillaumin et al., 2010; Poria et al., 2016), in which
different modalities are coupled, e.g., images and text for
image retrieval (Kiros et al., 2014) and image classification
(Guillaumin et al., 2010). Zahavy et al. (2018) urged the
development of optimal unificationmethods to combine dif-
ferent classifiers trained on differentmodalities. Co-training
approaches (Blum andMitchell, 1998) usemultiple views of
the data to “guide” different classifiers in the learning pro-
cess. However, co-training methods are semi-supervised
and assume that all views are “sufficient” for learning. In
contrast with the above approaches, we aim to capture dif-
ferent aspects of documents (structure and topicality), with
each aspect having a different competence power, and per-
form dynamic selection of classifiers for classifying the tex-
tual documents from a Web Archiving collection into being
in scope for the collection or not.

Traditional Text Classification. Text classification is awell-
studied problem. The BoW, binary, tf or tf-idf representa-
tions are commonly used as input to machine learning clas-
sifiers, e.g., Support Vector Machine (Joachims, 1998) and
Naïve Bayes Multinomial (McCallum and Nigam, 1998)
for text classification. Feature selection is often applied
to these representations to remove irrelevant or redundant
features (Forman, 2003; Dumais et al., 1998). In the con-
text of digital libraries, the classes for text classification are
often document topics, e.g., papers classified as belonging
to “machine learning” or “information retrieval” (Lu and
Getoor, 2003; Caragea et al., 2015; Caragea et al., 2011).
Caragea et al. (2016) proposed structural features for the
classification of documents into six different categories,
such as research papers, slides, and theses. These fea-
tures extend the original structural features proposed for the
automatic identification of research articles from crawled
documents (Caragea et al., 2014).
Comprehensive reviews of the feature representations,
methods, and results on various text classification problems
are provided by Sebastiani (2002) and Manning (2008).
Kodakateri Pudhiyaveetil et al. (2009) used the k-NN clas-
sifier to classify computer science papers into 268 different
categories based on the ACM classification tree. Zhou et
al. (2016) experimented with different classification meth-
ods such as unigram, bigram, and Sentence2Vec (Le and
Mikolov, 2014) to identify the best classification method for
classifying academic papers using the entire content of the
scholarly documents.
Deep Learning. Deep learning models have achieved re-
markable results in many NLP and text classification prob-
lems (Bengio et al., 2003; Collobert and Weston, 2008;
Collobert et al., 2011; Mikolov et al., 2013; Kalchbren-
ner et al., 2014; Goldberg, 2016). Most of the works for
text classification with deep learning methods have involved
word embeddings. Among different deep learning architec-
tures, Convolutional Neural Networks, Recurrent Neural
Networks, and their variations are the most popular archi-
tectures for text applications. Kalchbrenner et al. (2014)
proposed a deep learning architecture with multiple con-
volution layers and uses word embeddings initialized with
random vectors. For text classification, Zhang et al. (2015)
used encoded characters (“one-hot” encoding) as an input
to the deep learning architecture with multiple convolution
layers. Kim (2014) used a single convolution layer after ex-
tracting word embeddings for tokens in the input sequence.
The author experimented with several variants of word em-
beddings, i.e., randomly initialized word vectors later tuned
for a specific task, fixed pre-trained vectors or pre-trained
vectors fine-tuned for a specific task, and a combination of
two sets of word vectors. Zhang et al. (2016) and Yin et
al. (2016) used the combination of diverse versions of pre-
trained word embeddings followed by a CNN and a fully
connected layer for the sentence classification problem.

3. Base Classifiers
Our goal in this paper is to study different types of features
and learning models to accurately distinguish documents of
interests from Web Archives for indexing in a specialized
collection. In this section, we discuss different types of fea-
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tures that are used in conjunction with traditional machine
learning classifiers for finding documents of interests, and
the CNN model that does not require any feature engineer-
ing. These models form our base classifiers.

3.1. Bag of Words (BoW)
BoW is a simple fixed-length vector representation of any
variable length text based on the occurrence of different
words within the text. It is called bag of words as the infor-
mation about the positions of different words is discarded.
First, a vocabulary from the words in the training documents
is generated. Then, each document is represented as a vector
based on the words in the vocabulary. The values in the vec-
tor representation are usually calculated as normalized term
frequency (tf) or term frequency - inverse document fre-
quency (tf-idf) of the corresponding words calculated based
on the given document/text.
We extracted BoWs from the entire documents as well
as using only some portions of documents. Our intu-
ition behind using only some portion of the documents
is that many types of documents contain discriminative
words at the beginning and/or the end. For selecting
these portions of documents, we considered first-X words
and first-X words combined with last-X words from each
document before any preprocessing was performed (where
X ∈ {100, 300, 500, 700, 1000, 2000}). For documents
with less than 2 ·X words, we considered the entire docu-
ment without repeating any parts/words from the document.

3.2. Structural Features
Structural features cover various structural aspects of doc-
uments and are grouped into four categories: file specific
features, text specific features, section specific features, and
containment features.
File specific features include the characteristics of a doc-
ument such as the number of pages and the file size in
kilobytes.
Text specific features include specifics of the text of a
document: the length in characters; the number of words;
the number of lines; the average number of words and lines
per page; the average number of words per line; the count of
reference mentions; the percentage of reference mentions,
spaces, uppercase letters, symbols; the ratio of length of
shortest to the longest line; the number of lines that start
with uppercase letters; the number of lines starting with
non-alphanumeric letters; the number of words that appear
before the reference section.
Section specific features include section names and their
position within a document. These features are boolean
features indicating the appearance of “abstract”, “introduc-
tion”, “conclusion”, “acknowledgements”, “references” and
“chapter,” respectively, as well as numeric features indi-
cating position for each of these sections. These features
also include two binary features indicating the appearance
of “acknowledgment” before and after “introduction.”
Containment features include containment of specific
words or phrases in a document. These features include bi-
nary features indicating the appearance of “this paper,” “this
book,” “this thesis,” “this chapter,” “this document,” “this
section,” “research interests,” “research experience,” “ed-

ucation,” and “publications,” respectively. These features
also include three numeric features indicating the position
of “this paper,” “this book,” and “this thesis” in a document.

3.3. Convolutional Neural Network (CNN)
CNNs (LeCun et al., 1998) are a special kind of neural net-
works. CNNs are associated with the idea of a “moving
filter.” A convolution consists of a filter or a kernel that is
applied in a sliding window fashion to extract features. The
convolution layer consists of multiple filters of different re-
gion sizes that generate multiple feature maps for different
region sizes. Pooling is usually used after the convolution
layer to modify the output or reduce the dimensionality.
The common practice is to extract the most important fea-
ture within each feature map (Collobert et al., 2011), called
1-max pooling. Max pooling is applied over each feature
map and maximum values from all filter responses are se-
lected. Maximum values from all feature maps are then
concatenated and used as input to a fully connected layer
for the classification task.
For CNN, we experimented by using the text from spe-
cific portions of a document. While selecting the por-
tions of documents, as before, we considered first-X words
and first-X words combined with last-X words from each
document before any preprocessing was performed (where
X ∈ {100, 300, 500, 700, 1000}). For the documents with
less than 2 · X words, we considered the whole document
without repeating any part/words from the document.

4. Proposed Model: Dynamic Classifier
Selection

In contrast with the approaches that use a single model to
identify relevant documents to a given collection, we pro-
pose an approach called “Dynamic Classifier Selection for
Document Classification” (or DCSDC), that dynamically
selects an appropriate classifier to identify if a given doc-
ument is relevant to a collection by dynamically capturing
different aspects of the document. The intuition behind us-
ing this approach is that there is a high variability in the type
of the documents in each dataset.
The proposed approach consists of a three-step process for
classifying a given document:

• Step-1: Find its neighborhood documents. We iden-
tify the neighborhood documents of the target doc-
ument by considering textual similarity along with
their structural aspects using K-Nearest Neighbors al-
gorithm (K ∈ {5, 10, 15, 20, 50}). In the first step, we
consider the documents in the Dev set that fall under
the range of X ± L pages (X is the number of pages
of the target document and L is a page range limit; we
consider L = 3). After that, we calculate the textual
similarity between the target document and those docu-
ments fromDev that are withinX±L page range from
the target document. In order to calculate the textual
similarity between the documents, we use two differ-
ent methods by considering top Nmost frequent words
(N ∈ {25, 50, 100}): (a) tf-idf based cosine similarity,
and (b) Word centroid based cosine similarity, where
the centroid is calculated by a weighted average word
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vectors. We consider pre-trained word embeddings
trained on Google News for the word vectors.

• Step-2: Find the most competent classifier. Here we
find the set of features and classifiers that perform best
on neighborhood documents. The goal is to find the
most competent classifier for a particular type of docu-
ment. We apply each individual or the combination of
different feature sets to neighborhood documents and
find which classifier has the highest success rate for
labeling them correctly.

• Step-3: Use themost competent classifier on the test
example. The classifier with the highest success rate
based on step-2 is used to classify the given test doc-
ument. In case of multiple classifiers with the highest
success rate, we selected the majority vote.

5. Data
For this research, we constructed three datasets from three
Web archives collected by the UNT Libraries. For each of
the datasets we extracted all PDF documents within each
of the Web archives. Next, we randomly sampled 2,000
PDF files from each collection that we used as the basis
for our labeled datasets. Each of the 2,000 PDF documents
were then labeled in scope or out of scope by subject mat-
ter experts who are responsible for collecting publications
from the Web for their collections. Each dataset includes
PDF files along with their labels (in scope/out of scope or
relevant/irrelevant). Further description of the datasets is
provided below.
UNT.edu: The first dataset was created from the Web
archive containing university scholarly works of the unt.edu
domain. This archive was created in May 2017 as part of a
bi-yearly crawl of the unt.edu domain by the UNT Libraries
for the University Archives. A total of 92,327 PDF docu-
ments that returned an HTTP response of 200 are present
in the archive. A total of 3,141,886 URIs are present in the
entire Web archive with PDF content making up just 3%
of the total number of URIs. Out of the 2,000 documents
sampled for labeling, 445 documents (22%) were identified
as being of interest for the repository and 1,555 not being
of interest.
Texas.gov: The next dataset was created from aWeb archive
of websites that constitute the State of Texas web presence.
The data was crawled from 2002 to 2011 and is housed as a
collection in the UNT Digital Library. A total of 1,752,366
PDF documents that returned an HTTP response of 200
are present in the archive. A total of 26,305,347 URIs are
present in the entire web archive with PDF content making
up 6.7% of the total number of URIs. Out of the 2,000
documents sampled for labeling, 136 documents (7%) were
identified as being of interest for the repository and 1,864
not being of interest.
USDA.gov: The last dataset created for this study comes
from the End of Term (EOT) 2008 Web archive. This Web
archive was created as a collaborative project between a
number of institutions at the transition between the second
term of George W. Bush and first term of Barack Obama.
The entire EOT Web archive contains 160,212,141 URIs.
For this dataset we selected the United States Department

of Agriculture (USDA) and its primary domain of usda.gov.
This usda.gov subset of the EOT archive contains 2,892,923
URIs with 282,203 (9.6%) of those being PDF files that re-
turned an HTTP 200 response code. Out of the 2,000 doc-
uments sampled for labeling, 234 documents (12%) were
marked as of interest (technical reports) and 1,766 identi-
fied as not being of interest (not technical reports).
The three datasets represent a wide variety of publications
that would be considered for inclusion into their target col-
lections. The Texas.gov content is the most diverse as the
publications range from strategic plans and financial au-
dit reports (which are many pages in lengths) to pamphlets
and posters (which are generally very short). The UNT.edu
dataset contains publications that are typical for an insti-
tutional repository such as research articles, white papers,
slide decks from presentations, and other scholarly publi-
cations. The publications from the UDSA.gov dataset are
similarly scoped as the UNT.edu content, but they also con-
tain a wider variety of content that might be identified as
a “technical report.” A goal in the creation of the datasets
used in this research was to have a true representative sam-
ple of the types of content that are held in collections of this
kind.
Supplemental Datasets. From the original datasets of
2,000 PDF files, we divided each dataset into three parts
by randomly sampling training set (Train-1), development
set (Dev), and test set (Test) from each dataset. AllTrain-1,
Dev, and Test follow a similar distribution as the original
datasets. Because the original datasets were very skewed,
with only around 22%, 7%, and 12% of the PDF documents
being part of the positive class, we asked the subject matter
experts of each Web archive collection to further identify
more positive examples to enlarge the training set. For the
training set, we sampled from the newly labeled set of pos-
itive examples so that the number of negative examples is
doubled as compared with the number of positive examples.
We experimented with other ratios of positive to negative
examples in the training set, but the 2:1 ratio showed better
results. We denote this set as Train-2. Table 1 contains
the summaries regarding the total number of documents in
each dataset for which we were able to extract the text from
a given PDF document. To extract the text from the PDF
documents, we used PDFBox.4 The scanned documents
and other documents for which the text was not correctly
extracted were ignored.

UNT.edu Texas.gov USDA.gov
-ve +ve -ve +ve -ve +ve

Train-1 869 250 981 72 907 121
Dev/Test 290 83 327 24 300 40
Train-2 869 434 981 490 907 453

Table 1: Datasets description.

6. Experimental Setup and Results
In this section, we first discuss the baselines and then the ex-
perimental setup for our document classification task. Next,
we present the set of experiments to determine the base

4 http://pdfbox.apache.org/
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classifier hyper-parameters and to find which portion of a
document to use on different classifiers. We then present
an analysis to highlight the potential of the proposed algo-
rithm. At last, we compare our proposed approach with the
individual base classifiers and strong baselines.

6.1. Baselines
The baselines used for comparison are described below.
1. KNN: For a target documentT , we calculate its K-nearest
neighbors from the Train-2 set and then select the majority
class label from the neighbors set. We experiment with
K ∈ {1, 5, 9, 15} and select the best value of K using the
Dev set. We used the Weka5 implementation of KNN.
2. Dynamic Ensemble Model (DEM): We created this
baseline by simplifying Step-2 and Step-3 of our proposed
approach (Section 4.). We use the correctly classified neigh-
borhood documents to calculate the score for each classifier
and then use the scores for doing weighted sum of predicted
probabilities of each base classifier similar to last stage of
Step-3 in our approach as described below:

• Find the score for each base classifier. Here we
compute the score for each base classifier by applying
each base classifier to neighborhood documents. Then
the score becomes:

Score =
#correctly_classified_neighbors

#neighbors
(1)

• Predict the class label for target document T . We
use weighted sum (similar to our main approach) of
predicted probabilities of each base classifiers by using
scores calculated as above as a weight for each base
classifiers.

3. Static Ensemble Model (SEM): In this baseline, to
make a final prediction, probability for each class label is
averaged among all the base classifiers.
4. Majority Vote: We consider a majority vote as another
baseline. We predict the document label by a label predicted
by a majority of the base classifiers.
5. Bagging (Skurichina and Duin, 1998): In Bagging, a
bag of classifiers, each trained on a random sample of exam-
ples from the training set are used to predict the class label
for a test example. To predict the target document T , the in-
dividual class probabilities assigned by classifiers in the bag
are averaged and the class label with the highest probabilty
is selected. We used BoW classifier for the bagging.
6. META-DES (Cruz et al., 2018): Here, similar to bag-
ging, a pool of classifiers are trained and then the com-
petence or meta-classifier learning is performed to select
the competent classifiers out of a pool of classifiers. The
majority vote rule is applied over the selected competent
classifiers. For META-DES, we used BoW classifiers to
generate a pool of classifiers. Note that this baseline in-
cludes the competence learning component, but unlike our
approach, it uses only one feature type (BoW).

5 https://www.cs.waikato.ac.nz/ml/weka/

6.2. Experimental Setup
As base classifiers, we experiment with the “bag of words”
(BoW) extracted from the entire documents as well as from
some portion of the documents, 43 structural features, and
the convolutional neural networks (CNN). For the prepro-
cessing step of the BoW, we remove stop words and punc-
tuation, and perform stemming. In addition, we keep only
words that appear in at least 5 documents.
For the traditional base classifiers, we experiment with sev-
eral traditional machine learning classifiers: Naive Bayes
(NB), Naive Bayes Multinomial (NBM), Random Forest
(RF), and Support Vector Machines with a linear kernel
(SVM). We used the Weka5 implementation of these clas-
sifiers. Our CNN classifier comprises of mainly two layers:
a convolution layer followed by a max pooling and a fully
connected layer for the classification. For the CNN input,
we consider a document (partial) as a sequence of words and
use pre-trained word2vec. For CNN, we used TensorFlow.6
We use the Dev set for the hyper-parameter tuning for the
classifiers, and for the best classifier selection. In exper-
iments, we tuned hyper-parameters for different classifiers
as follows: the C parameter in SVM ∈ {0.01, 0.05, 0.1};
the number of trees in RF ∈ {20, 23, 25, 27, 30}; in CNN,
single as well as three types of filters with region sizes
∈ {1, 3, 4, 5, 7}; the number of each type of filters in CNN
∈ {100, 128, 200}. For CNN, we used ADAM optimizer
with a learning rate of 0.0005.
Evaluation Measures. To evaluate the performance of
classifiers, we use precision, recall, F1-score for the positive
class, and the accuracy. All performance measures are
averaged over the test set by repeating each experiment three
times with three different seeds. We first discuss the results
for the base classifiers in terms of F1-score using bar plots.
Then we compare the proposed model with base classifiers
and baseline models in terms of all the measures: precision,
recall, F1-score, and accuracy in a table.

6.3. Experiments with Base Classifiers
Here, we report the performance of the base classifiers when
we train on Train-2 (2:1 distribution) and evaluate on Dev.

6.3.1. The Performance of the BoW Classifier
We compare the performance of the BoW classifiers in Fig-
ure 2 when we use different portions of the documents as
well as the entire text of the documents. Random Forest
performs better than any other classifier for the BoW fea-
tures, and hence, we show the results using Random Forest.
On the UNT.edu, the BoW using the first-100 words com-
bined with last-100 words from each document performs
best and achieves an F1 of 0.86. On the Texas.gov, the BoW
classifier that uses the first-700 words combined with last-
700 words performs best and achieves an F1 of 0.78. On
the USDA.gov, the BoW classifier that uses the first-2000
words performs best and achieves an F1 of 0.85.

6.3.2. The Performance of the Str Classifier
Figure 4 shows the performance of the Str features extracted
from the entire document for all three datasets. Random
Forest classifier performs better than other classifiers for

6 https://www.tensorflow.org/

https://www.tensorflow.org/
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(a) UNT.edu dataset (b) Texas.gov dataset (c) USDA.gov dataset
Figure 2: Performance of BoW using different portions of the documents on different datasets

(a) UNT.edu dataset (b) Texas.gov dataset (c) USDA.gov dataset
Figure 3: Performance of the CNN using different portions of the documents on different datasets

Figure 4: Performance of the Str classifiers using entire
documents on different datasets

the Str features. The Str classifiers achieve an F1 of 0.85,
0.66, and 0.76 on UNT.edu, Texas.gov, and USDA.gov,
respectively.

6.3.3. The Performance of the CNN Classifier
Next, we compare the performance of the CNN classifier
when we consider the text from different regions of the
documents in Figure 3. On the UNT.edu, the CNN classifier
that uses the first-100 words from each document performs
best and achieves an F1 of 0.79. On the Texas.gov, the CNN
classifier that uses first-700 + last-700 words performs best
and achieves an F1 of 0.72. On the USDA.gov, the CNN
classifier that uses the first-100 words from each document
performs best and achieves an F1 of 0.69.

6.4. Exploratory Analysis
We perform an exploratory analysis in Table 2 to highlight
the potential of using our algorithm for selecting best clas-
sifier for classifying a document. We predict the class label
for a given document by using different individual classi-
fiers and obtain the coverage of the positive class (+ve) and

UNT.edu Texas.gov USDA.gov
(%) (%) (%)

+ve All +ve All +ve All
BoW is correct 78 92 85 96 84 94
Str is correct 84 93 88 93 83 94
CNN is correct 80 90 83 94 78 91
All are correct 63 91 71 97 66 95
All are wrong 4 1.2 2.7 1 5.8 1.4
At least one 96 90 97 89 94 90

Table 2: Exploratory analysis.

the overall accuracy (All) for the following cases when: (1)
an individual feature set is correct, (2) all feature sets are
correct, (3) all feature sets are wrong, and (4) at least one
feature set is correct. It can be seen from the table that
the last row has the highest value regarding the coverage of
the positive class (+ve) among all the datasets. This shows
that there is room for improvement for the classifiers that
use an individual feature set (first three rows), i.e., “At least
one” covers 96%, 97%, and 94% of the positive examples
as compared with 84% (Str), 88% (Str), and 84% (BoW)
for the UNT.edu, Texas.gov, and USDA.gov, respectively.
The large gap between the coverage of individual feature set
(first three rows) and the “At least one” (last row) for the
coverage of the positive class (+ve) showcases the potential
of dynamically selecting a best performing classifier. Next,
we evaluate the performance of our proposed DCSDC for
the positive class.

6.5. Proposed Model vs. Individual Models and
Baselines

We contrast the performance of our proposed model
DCSDC with that of the three base classifiers (Section 3.:
BoW, CNN, and Str), late fusion of the base classifiers
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Classifier UNT.edu Texas.gov USDA.gov
Pr(+) Re(+) F1(+) Acc.(%) Pr(+) Re(+) F1(+) Acc.(%) Pr(+) Re(+) F1(+) Acc.(%)

BoW 0.87 0.78 0.82 92.4 0.64 0.85 0.73 95.7 0.75 0.84 0.79 94.7
Str 0.86 0.84 0.85 93.2 0.50 0.88 0.64 93.3 0.70 0.83 0.76 93.8
CNN 0.75 0.80 0.77 89.5 0.53 0.83 0.65 93.7 0.62 0.78 0.68 91.5
DCSDC3 0.88 0.85 0.87 94.2 0.69 0.88 0.77 96.5 0.77 0.86 0.81 95.2
BoW+Str 0.94 0.83 0.88 95.0 0.61 0.89 0.72 95.4 0.74 0.88 0.80 94.8
BoW+CNN 0.83 0.81 0.82 92.1 0.64 0.89 0.74 95.7 0.75 0.84 0.79 94.7
Str+CNN 0.88 0.86 0.87 94.2 0.65 0.93 0.77 96.1 0.76 0.85 0.80 95.0
BoW+Str+CNN 0.91 0.85 0.88 94.8 0.69 0.93 0.79 96.6 0.78 0.87 0.82 95.5
DCSDC7 0.94 0.86 0.90 95.5 0.74 0.94 0.83 97.3 0.81 0.89 0.85 96.3
KNN 0.85 0.17 0.29 80.9 0.34 0.49 0.35 88.5 0.51 0.12 0.19 88.6
DEM 0.93 0.84 0.88 95.1 0.59 0.88 0.70 95.0 0.74 0.88 0.80 94.9
SEM 0.91 0.85 0.88 94.8 0.69 0.93 0.79 96.6 0.78 0.87 0.82 95.5
Majority Vote3 0.90 0.83 0.86 94.1 0.70 0.88 0.78 96.6 0.76 0.85 0.80 95.0
Majority Vote7 0.91 0.85 0.88 94.8 0.69 0.93 0.79 96.6 0.78 0.87 0.82 95.5
Bagging 0.90 0.78 0.84 92.7 0.67 0.86 0.75 95.9 0.76 0.86 0.80 95.1
META-DES 0.92 0.82 0.86 94.2 0.73 0.85 0.78 96.8 0.84 0.88 0.85 96.5

Table 3: Performance of different features/models on our datasets.

(BoW+Str, BoW+CNN, Str+CNN, and BoW+Str+CNN)
and six baselines (Section 6.1.: KNN, DEM, SEM, Ma-
jority Vote, Bagging, and META-DES) in terms of all com-
pared measures, precision, recall and F1-score for the pos-
itive class, Pr(+), Re(+), and F1(+), and the overall accu-
racy of the classifier on the Test set. DCSDC3 considers
only the three base classifiers (BoW, CNN, and Str) and
DCSDC7 considers the three base classifiers along with
their four late fusions (BoW+Str, BoW+CNN, Str+CNN,
and BoW+Str+CNN). For DEM, SEM and Majority Vote,
we experiment with considering only three base classifiers
as well as base classifiers alongwith their late fusion, but the
performance for DEM and SEM did not change. Majority
Vote3 and Majority Vote7 indicate Majority Vote baseline
by considering only three base classifiers and base classifiers
along with their late fusion, respectively.
As we can see from Table 3, the DCSDC3 outperforms the
individual base classifiers (BoW, Str, and CNN). Moreover,
we can see that theDCSDC7 is the highest performingmodel
across all three datasets in terms of all compared measures
except the precision and accuracy on USDA.gov. On the
other hand, the performance of the KNN classifier is worst
as compared with all other compared classifiers.
On UNT.edu, Str outperforms the other two base classifiers,
i.e., Str achieves an F1 of 0.85 as compared with 0.82 and
0.77 achieved by BoW and CNN, respectively. Late fusion
of base classifiers outperforms the corresponding base clas-
sifiers, i.e., Str+CNN achieves an F1 of 0.87 as compared
with 0.85 and 0.77 achieved by Str and CNN, respectively.
KNN, DEM, and both Majority Vote baselines outperform
individual base classifiers. DCSDC7 achieves the highest
values among all the measures. Furthermore, BoW+Str and
Str+CNN also achieve highest precision and highest recall,
respectively.
On Texas.gov, BoW outperforms the other two base classi-
fiers, i.e., BoW achieves an F1 of 0.73 as compared with
0.64 and 0.65 achieved by Str and CNN, respectively. Late
fusion of base classifiers outperforms the corresponding
base classifiers except BoW+Str. All baselines except KNN,

and DEM outperform individual base classifiers. DCSDC7

achieves again the highest values overall.
On USDA.gov, BoW outperforms the other two base clas-
sifiers, i.e., BoW achieves an F1 of 0.79 as compared with
0.76 and 0.68 achieved by Str and CNN, respectively. Late
fusion of base classifiers outperforms the corresponding
base classifiers, i.e., Str+CNN achieves an F1 of 0.80 as
compared with 0.76 and 0.68 achieved by Str and CNN,
respectively. All baselines except KNN outperform indi-
vidual base classifiers. Surprisingly, META-DES achieves
the highest recall, F1 and accuracy. DCSDC7 achieves the
highest values for the recall and F1.

7. Conclusion and Future Directions
In this paper, we proposed a dynamic decision-level fu-
sion model for finding documents of interest from Web
Archiving collections. We used a BoW classifier, a struc-
tural features-based classifier, and a CNN classifier as base
classifiers. Experimental results show that BoW features
extracted using only some portions of the documents out-
perform BoW features extracted using the entire document
content. Thus, our conclusionwas that the text from specific
portions of documents is more useful than the text from the
entire content for finding documents of interest to a collec-
tion. Furthermore, we proposed an approach that dynami-
cally selects a classifier to identify if a document is relevant
to a collection by dynamically capturing relevant aspects of
the given document. Our experimental results show that the
proposed dynamic selection approach performs better than
the individual classifiers and other strong baseline models
for finding documents of interest to a given collection as the
collections may include documents of diverse types.
In the future, it will be interesting to explore domain adapta-
tion by training classifiers on one Web Archiving collection
and testing on another Web Archiving collection.

8. Acknowledgements
This work is funded by the Institute of Museum and Library
Services (IMLS) under award LG-71-17-0202-17.



1467

9. Bibliographical References
Alam, S., Nelson, M. L., Van de Sompel, H., Balakireva,
L. L., Shankar, H., and Rosenthal, D. S. (2016). Web
archive profiling through cdx summarization. Interna-
tional Journal on Digital Libraries, 17(3):223–238.

AlNoamany, Y., Weigle, M. C., and Nelson, M. L. (2017).
Generating stories from archived collections. In Proceed-
ings of the 2017ACMonWeb Science Conference, pages
309–318. ACM.

Archive-It. (2017). Archive-it homepage. https://
archive-it.org/.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C.
(2003). A neural probabilistic language model. JMLR,
3(Feb):1137–1155.

Blum, A. and Mitchell, T. (1998). Combining labeled and
unlabeled data with co-training. In Proceedings of the
Eleventh Annual Conference on Computational Learning
Theory, COLT’ 98, pages 92–100, New York, NY, USA.
ACM.

Breiman, L. (1996). Bagging predictors. Machine learn-
ing, 24(2):123–140.

Caragea, C., Silvescu, A., Kataria, S., Caragea, D., and Mi-
tra, P. (2011). Classifying scientific publications using
abstract features. In SARA.

Caragea, C., Wu, J., Williams, K., Gollapalli, S. D., Khabsa,
M., Teregowda, P., and Giles, C. L. (2014). Automatic
identification of research articles from crawled docu-
ments. In Proceedings of the Workshop: Web-Scale
Classification: Classifying Big Data from the Web, New
York, NY.

Caragea, C., Bulgarov, F., and Mihalcea, R. (2015). Co-
training for topic classification of scholarly data. In
EMNLP.

Caragea, C., Wu, J., Gollapalli, S. D., and Giles, C. L.
(2016). Document type classification in online digital
libraries. In AAAI, pages 3997–4002.

Caropreso, M. F., Matwin, S., and Sebastiani, F. (2001). A
learner-independent evaluation of the usefulness of sta-
tistical phrases for automated text categorization. Text
databases and document management: Theory and prac-
tice, 5478:78–102.

Cavalin, P. R., Sabourin, R., and Suen, C. Y. (2011). Dy-
namic selection approaches for multiple classifier sys-
tems. Neural Computing and Applications, 22:673–688.

Collobert, R. and Weston, J. (2008). A unified architecture
for natural language processing: Deep neural networks
with multitask learning. In Proceedings of the 25th inter-
national conference onMachine learning, pages 160–167.
ACM.

Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., and Kuksa, P. (2011). Natural
language processing (almost) from scratch. JMLR,
12(Aug):2493–2537.

Consortium, I. I. P. (2017). Members. http://
netpreserve.org/about-us/members.

Cruz, R., Sabourin, R., Cavalcanti, G., and Ing Ren, T.
(2015). Meta-des: A dynamic ensemble selection frame-
work using meta-learning. Pattern Recognition, 48, 05.

Cruz, R., Sabourin, R., andCavalcanti, G. (2018). Dynamic

classifier selection: Recent advances and perspectives.
Information Fusion, 41, 05.

Dooley, C. and Thomas, G. (2019). The library of congress
web archives: Dipping a toe in a lake of data. https:
//blogs.loc.gov/thesignal/2019/01/
the-library-of-congress-web-archives-
dipping-a-toe-in-a-lake-of-data/.

Dumais, S., Platt, J., Heckerman, D., and Sahami, M.
(1998). Inductive learning algorithms and representa-
tions for text categorization. In CIKM, CIKM ’98, pages
148–155.

Forman, G. (2003). An extensive empirical study of fea-
ture selection metrics for text classification. Journal of
Machine Learning Research, 3:1289–1305.

Goldberg, Y. (2016). A primer on neural network mod-
els for natural language processing. Journal of Artificial
Intelligence Research, 57:345–420.

Guillaumin, M., Verbeek, J., and Schmid, C. (2010). Multi-
modal semi-supervised learning for image classification.
In 2010 IEEE Computer society conference on computer
vision and pattern recognition, pages 902–909. IEEE.

Jacobs, J. A. (2014). Born-digital us federal government
information: Preservation and access. Leviathan: Li-
braries and Government Information in the Age of Big
Data.

Joachims, T. (1998). Text categorization with suport vector
machines: Learningwithmany relevant features. In Proc.
of the 10th ECML, pages 137–142.

Johnson, R. and Zhang, T. (2014). Effective use of word
order for text categorization with convolutional neural
networks. arXiv preprint arXiv:1412.1058.

Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014).
A convolutional neural network for modelling sentences.
arXiv preprint arXiv:1404.2188.

Kim, Y. (2014). Convolutional neural networks for sen-
tence classification. arXiv preprint arXiv:1408.5882.

Kiros, R., Salakhutdinov, R., and Zemel, R. (2014). Mul-
timodal neural language models. In Proceedings of the
31st International Conf. on ML, volume 32, 22–24 Jun.

Kodakateri Pudhiyaveetil, A., Gauch, S., Luong, H., and
Eno, J. (2009). Conceptual recommender system for
citeseerx. In RecSys, pages 241–244. ACM.

Le, Q. and Mikolov, T. (2014). Distributed representations
of sentences and documents. In International Conference
on Machine Learning, pages 1188–1196.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.

Lu, Q. and Getoor, L. (2003). Link-based classification. In
ICML.

Manning, C. D., Raghavan, P., and Schütze, H. (2008).
Introduction to Information Retrieval. Cambridge Uni-
versity Press, New York, NY, USA.

McCallum, A. and Nigam, K. (1998). A comparison of
eventmodels for naive bayes text classification. InAAAI-
98 Workshop on Learning for Text Categorization.

McCoy, C. G., Nelson, M. L., and Weigle, M. C. (2018).
Mining the web to approximate university rankings. In-
formation Discovery and Delivery, 46(3):173–183.

https://archive-it.org/
https://archive-it.org/
http://netpreserve.org/about-us/members
http://netpreserve.org/about-us/members
https://blogs.loc.gov/thesignal/2019/01/the-library-of-congress-web-archives-dipping-a-toe-in-a-lake-of-data/
https://blogs.loc.gov/thesignal/2019/01/the-library-of-congress-web-archives-dipping-a-toe-in-a-lake-of-data/
https://blogs.loc.gov/thesignal/2019/01/the-library-of-congress-web-archives-dipping-a-toe-in-a-lake-of-data/
https://blogs.loc.gov/thesignal/2019/01/the-library-of-congress-web-archives-dipping-a-toe-in-a-lake-of-data/


1468

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111–
3119.

Nwala, A. C., Weigle, M. C., and Nelson, M. L. (2018).
Bootstrapping web archive collections from social me-
dia. In Proceedings of the 29th on Hypertext and Social
Media, pages 64–72. ACM.

Poria, S., Cambria, E., Howard, N., Huang, G.-B., and
Hussain, A. (2016). Fusing audio, visual and textual
clues for sentiment analysis from multimodal content.
Neurocomput., 174(PA):50–59, January.

Sebastiani, F. (2002). Machine learning in automated text
categorization. ACM Computing Surveys, 34(1):1–47.

Skurichina, M. and Duin, R. P. (1998). Bagging for linear
classifiers. Pattern Recognition, 31(7):909–930.

Woźniak, M., Graña, M., and Corchado, E. (2014). A
survey of multiple classifier systems as hybrid systems.
Information Fusion, 16:3–17.

Yin,W. and Schütze, H. (2016). Multichannel variable-size
convolution for sentence classification. arXiv preprint
arXiv:1603.04513.

Zahavy, T., Krishnan, A., Magnani, A., and Mannor, S.
(2018). Is a picture worth a thousand words? A deep
multi-modal architecture for product classification in e-
commerce. In AAAI. AAAI Press.

Zhang, X., Zhao, J., and LeCun, Y. (2015). Character-level
convolutional networks for text classification. In Ad-
vances in neural information processing systems, pages
649–657.

Zhang, Y., Roller, S., and Wallace, B. (2016). Mgnc-
cnn: A simple approach to exploiting multiple word
embeddings for sentence classification. arXiv preprint
arXiv:1603.00968.

Zhou, T., Zhang, Y., and Lu, J. (2016). Classifying com-
puter science papers. In IJCAI.


