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Abstract
Near-duplicate documents are particularly common in news media corpora. Editors often update wirefeed articles to address space
constraints in print editions or to add local context; journalists often lightly modify previous articles with new information or minor
corrections. Near-duplicate documents have potentially significant costs, including bloating corpora with redundant information (biasing
techniques built upon such corpora) and requiring additional human and computational analytic resources for marginal benefit. Filtering
near-duplicates out of a collection is thus important, and is particularly challenging in applications that require them to be filtered out in
real-time with high precision. Previous near-duplicate detection methods typically work offline to identify all near-duplicate pairs in a
set of documents. We propose an online system which flags a near-duplicate document by finding its most likely original. This system
adapts the shingling algorithm proposed by Broder (1997), and we test it on a challenging dataset of web-based news articles. Our
online system presents state-of-the-art F1-scores, and can be tuned to trade precision for recall and vice-versa. Given its performance
and online nature, our method can be used in many real-world applications. We present one such application, filtering near-duplicates to
improve productivity of human analysts in a situational awareness tool.
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1. Introduction
Near-duplicates are multi-sentence spans of text in the same
language that convey the same content using largely similar
vocabulary; parts may be identical, paraphrased or lightly
modified, and limited portions may be entirely unique to
one document but not its near-duplicates. Near-duplicates
can be thought of as documents with a non-trivial but
bounded edit distance. This paper presents a near-duplicate
detection system that is online, rapid, and has been vali-
dated in an enterprise software tool.
Near-duplicate documents are prevalent in some corpora
and come at a significant cost. There are computational
costs in processing documents that provide no new infor-
mation; and significant costs to end users, who are forced
to sift through redundant documents when trying to accom-
plish a task. Machine learning algorithms may also be sus-
ceptible to error due to near-duplicate documents. For ex-
ample, Chatterjee (2019) describes how a sudden spike in
news about Brexit has thrown off machine-based trading
systems; a near-duplicate detection system could be used
to filter out fundamentally similar documents to help these
systems cope with bursts of news articles.
We build upon the shingling method proposed by Broder
(1997) to create a real-time near-duplicate detection system
that offers state-of-the-art results, and which can be tuned
to provide better precision or recall as needed.

1.1. Near-duplicate detection
There are different definitions of near-duplicate documents.
For web-based news documents, Theobald et al. (2008) de-
scribe one type as consisting of news articles from different
sites where the article content is the same, but the content
of the surrounding site is different. The second type is es-
sentially an inversion of the first: the page’s core content
is different, but the surrounding site is the same. In this
work, we are concerned with identifying the first type of
near-duplicate document. In particular, we require a sys-

tem that is capable of receiving documents in a stream, and
for each document, can answer two questions: is this doc-
ument a near-duplicate of one previously seen, and if so,
which? While previous systems have presented effective
offline methods for filtering near-duplicate documents, we
propose an online system that can answer both questions.

1.2. Related work
1.2.1. Background
The previous work on near-duplicate detection has focussed
on judging the similarity of two documents without per-
forming a computationally-expensive bit-wise comparison
of entire documents. Detection of identical documents can
be done by hashing the documents and comparing the hash
values: any documents with matching hashes are then con-
sidered to be duplicates. This method is not applicable to
near-duplicate detection however, as it provides no infor-
mation about how similar any two candidates are to one
another. For near-duplicate detection, most methods create
a compact representation of a document and use these for
comparison, though they vary in how representations are
formed and compared.
The shingling method (Broder, 1997; Broder, 2000) views
a document as a set of overlapping n-grams (or shingles,
short sequences of words in the text). The similarity of two
documents can then be measured by calculating their set
similarity. When this value is above a given threshold, doc-
uments can be considered near-duplicates of one another.
This method is costly however, as the number of shingles
generated can be quite large. To deal with this, Broder pro-
poses generating a document sketch either by finding the
set of minimum hash values of a random sample of shin-
gles within a document with a set of permutations, or elim-
inating all of the shingles where, for a given shingle S and
number m, S mod m 6= 0.
Another method of determining similarity between docu-
ments is cosine similarity (Salton et al., 1975). This method
translates documents into vectors, where each element of
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the vector relates a term’s importance in the corpus (gen-
erally, the elements are calculated with term frequency –
inverse document frequency (TF-IDF) scores). Similarity
between two documents is then expressed as the cosine dis-
tance between their vectors.
Charikar (2002) introduced locality-sensitive hashing to es-
timate similarity between documents without the memory
overhead needed to keep full vector representations of each
document in memory. To do this, Charikar proposes the use
of hashing functions where the similarity between two doc-
uments is the probability that their hash values are equal.
Each document is then hashed with some number t of these
functions, and the resulting hash values are placed in a
vector which represents the document. If two documents
share a number of matching vector elements that surpasses
a given threshold, they are considered near-duplicates.
Chowdhury et al. (2002) introduced I-Match, an algorithm
that generates lightweight document fingerprints by hash-
ing all of the significant tokens present in a document.
Then, whenever two documents share a fingerprint, they
can be classified as near-duplicates. This method is sensi-
tive to very slight changes in document content. Kołcz et
al. (2004) presented a variation where n variants of the lex-
icon are used. In each variant, some portion of the lexicon
is dropped, and a fingerprint is generated by hashing the
document once for each variant of the lexicon. This results
in each document being represented by a vector of hash val-
ues. When testing two documents for near-duplicate status,
if any of the matching pairs of elements of their vectors
collide, the documents can be considered near-duplicates.
Henzinger (2006) proposed detecting near-duplicates by
combining shingling (Broder, 1997) and locality sensitive
hashing (Charikar, 2002). The method begins by using
shingling to identify near-duplicate candidates, and then fil-
ters these results using locality sensitive hashing to identify
near-duplicate documents. The author obtained promising
results on a very large dataset, both for near-duplicate doc-
uments on the same website and near-duplicate documents
on different websites.
Other methods exist that are useful in the related task of de-
termining similarity between documents. Blei and Lafferty
(2009) propose a document similarity metric based on topic
models, where documents sharing an underlying topic dis-
tribution are rated as more similar to one another. Kusner et
al. (2015) present a method for judging document distances
based on word embeddings. Such methods are particularly
relevant for judging documents with similar underlying se-
mantic similarity. While this task is related, it is not quite
the same as near-duplicate detection, where we seek to fil-
ter out documents that are not only semantically similar, but
nearly identical in content.

1.2.2. Near-duplicate detection of web-based news
content

Previous research has been done on near-duplicate detec-
tion of web pages in Hypertext Markup Language (HTML).
Several methods attempt to leverage the Document Object
Model (DOM) – the hierarchical structure of layout ele-
ments of the web page – to aid in the task. Mathew et al.
(2011) present a three step algorithm centred around the

use of a Term-Document-Weight (TDW) matrix. Each el-
ement of the matrix represents the frequency of a term in
a document multiplied by a weight. Judging that the im-
portance of a term varies according to where it is found
on a page, the authors compile a predefined list of weights
based on the HTML tags within which a term appears, and
assign weights from this list. They apply filtering to the
resulting matrix to reduce the number of comparisons, and
then perform a final verification step to return the set of
near duplicates to an input document. Arun and Sumesh
(2015) also use the TDW matrix to perform near-duplicate
detection. They then filter the documents to consider by
limiting candidates to those that contain a number of sen-
tences within a given range from the input document. These
candidates are then hashed and compared bit-wise. Docu-
ments with a similarity over a given threshold are consid-
ered near-duplicates. Ling et al. (2010) present a three-
step method that analyzes a web page’s DOM tree. They
prune the tree of any extraneous data (site navigation, ad-
vertisements, etc.) and keep the document’s core content.
They then examine the different fields present in the docu-
ment and assign them a priority based on their importance
in determining near-duplicate status. They finally compute
the similarity of documents using the minimum edit dis-
tance between the comparable fields of different documents
and compare the distance to a given threshold to determine
near-duplicate status. Web page structure can change over
time, however, as sites update their templates and as web
technologies change, or even as a given document page gets
served differently on a laptop versus a mobile device, or as a
single document gets served with different branding for var-
ious newspapers owned by the same conglomerate. Natural
language processing approaches can avoid such problems.
Theobald et al. (2008) identify near-duplicate web pages
by finding stopwords (common words in a language that
are likely to appear in most articles) in an HTML document
and chains of non-stopwords that follow them. They refer
to the chains that make up this set as the “spot signatures”
of the document. This method is based on the likelihood
that common words such as a, an or the are quite likely to
appear in the text of an article, but less likely to appear in
the structure of a web page or its advertisements. They then
consider the Jaccard similarity of the spot signatures of two
documents to determine if they are near-duplicates. They
report good results for their method but note that it cannot
handle certain classes of web documents. As the authors re-
port, two web pages which simply report lists of data (e.g.
stock prices) may not contain any stopwords whatsoever:
their system would thus conservatively reject any pairs of
such documents as non-near-duplicates, even if their con-
tent is exactly the same.
Hajishirzi et al. (2010) proposed an algorithm that learns
vector representations of documents using labelled training
data from the target domain and uses these to build a near-
duplicate classifier. Each document is then represented by
the resulting vector where each element relates the impor-
tance of an n-gram in the known vocabulary to the docu-
ment. Comparing these uncompressed vectors, the authors
are able to obtain high precision and recall scores for the
near-duplicate detection task. Trading some precision and
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recall for computational efficiency, the authors also present
a version of their method where they generate a signature
of the vector with locality sensitive hashing.
Zhang et al. (2016) introduced a method called SigNCD for
near-duplicate detection. It uses normalized compression
distance (NCD), which has a prohibitive time complexity
when dealing with full documents, and can also be skewed
by longer documents. To deal with these issues, they apply
NCD to a shorter signature of the document. They elimi-
nate the content within specific tags from the body of the
HTML document (e.g.: style, a, iframe) and replace them
with blank spaces. This is a fairly simple approach to isolat-
ing the meaningful text in documents. They then generate
document signatures using a method similar to Theobald
et al. (2008), identifying punctuation or stopwords in text
and extracting the chains of words that surround them. One
benefit of Zhang et al.’s method is that their algorithm is
parameter-free, meaning that there is no tuning process to
adapt it to any given domain or application.
To the best of our knowledge, the previous work which
most closely resembles our proposed method is by Gibson
et al. (2008). They developed a system to identify near-
duplicate news articles in a collection of web pages. Their
approach was largely centered around a two-step process.
First, they build a classifier that processes an HTML file in
order to identify the main article content within the file and
separate it from other parts of the file. Second, they apply
a shingling method to the article content to identify which
pairs of documents are near-duplicates. Their results boast
very high precision and recall. Our method is similar in-
sofar as we share the same two high-level steps. We also
use a content extraction tool to extract article content from
an HTML file, and apply a shingling-based method to iden-
tify near-duplicate articles. However, our systems differ in
two major ways. First, our implementation makes use of
a database, eliminating the need to keep information about
all articles in memory, making it scalable to many millions
of documents and making it more convenient to reconcile
duplicates-of-duplicates back to a canonical original docu-
ment. Secondly, our method is designed to be used in an
online setting, allowing us to use it as a fast, real-time near-
duplicate detector in a piece of enterprise software.

1.3. Contribution
Our system, based on Broder (2000), presents several im-
provements for the task of identifying near-duplicate doc-
uments from a document input stream. Our system intro-
duces a database-backed architecture, which allows us to
evaluate incoming documents against a collection of mil-
lions of previously-processed documents. While our algo-
rithm largely implements Broder’s clustering algorithm to
identify a candidate original document for a potential near-
duplicate, we adapt it to function online and add a final step
of calculating n-gram overlaps between two potential near-
duplicate documents. This final comparison is enabled by
our database-backed architecture, and offers good explain-
ability of the algorithm’s decision-making, as two docu-
ments with significant vocabulary overlap are intuitively
more likely to be near-duplicates than otherwise. The ra-
tio of n-gram overlap is also a key parameter in our algo-

rithm, allowing users to tune the system for better precision
or recall.

2. Method
In this section, we will examine how our system processes
documents to identify potential near-duplicates. As our
dataset (see section 3.1) uses HTML files, we describe how
these files are converted into raw text, how we generate
compact representations of this text, and finally, how to use
these representations to judge if a new document is a near-
duplicate of one previously seen.

2.1. Preprocessing
The fact that our dataset uses HTML files renders the
problem more challenging than simply trying to identify
whether two news articles are near-duplicates: documents
from a similar website may share much extraneous infor-
mation in common, which could nudge a near-duplicate de-
tection algorithm towards detecting more false positives. In
contrast, near-duplicate news articles from different web-
sites will not share this extraneous HTML structure and
will have less underlying content in common, potentially
raising the number of false negatives. As extraneous web
page content can lead to a higher rate of false positives and
negatives, our first step is to remove as much of this poten-
tially misleading information as possible. We use a com-
mercial tool called Diffbot1 to separate the title and body of
a document from the HTML content surrounding it. Diff-
bot provides an API that extracts the main text content from
most web pages, returning a JSON (JavaScript Object No-
tation) structure that includes the body of the page in plain
text. Our dataset files include relative links to other con-
tent (images, advertisements, etc.); however, these links are
not useful for our task, and, due to the age of the data, they
tended to generate resolution errors. To account for this, we
provided Diffbot’s link resolver with a URL back to a site
serving empty error content. In effect, this removed linked
data from the HTML data. If Diffbot returns an error code
for a given request, we add the document to a queue for re-
submission to the service. While this does not eliminate all
errors (it occasionally returns no usable results for a doc-
ument), it does generally eliminate network-related errors.
From Diffbot’s output, we select the article’s title and body,
trim any leading or trailing white space, and concatenate
the fields to create the document we will process.

2.2. Near-duplicate identification
Our system’s aims are twofold. First, to determine if a new
document is a near-duplicate of a previously processed doc-
ument. Second, if it is a near-duplicate, to return the origi-
nal document to which it is linked (e.g., linking a duplicate
of a duplicate back to a shared parent). In this section, we
present a method to generate representations of documents
and describe how to use those representations to achieve
both goals.
In essence, we assign evenly-distributed random numbers
as identifiers to unique n-grams in a document. From each
document, we then sample a random set of n-grams, sort

1Accessible at https://www.diffbot.com.

https://www.diffbot.com
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them by their unique n-gram ID, and take the first twenty
IDs from this sorted list as the document’s “sketch”, which
can then be compared to the sketches of previously pro-
cessed documents. Sorting by randomly-distributed IDs
is the key to ensuring that the amount of overlap of the
sketches of two documents is pronounced when they are
similar, and small or non-existent (i.e. overlapping only by
chance) when dissimilar.

2.2.1. Generating a sketch of a document
Our near-duplicate detection algorithm is a shingling
method largely inspired by Broder’s work (Broder, 2000;
Broder, 1997). In this section we refer to the concatenated
string containing the trimmed title and text of the article as
the document.
Our goal is to represent each document as a sketch consist-
ing of a small set of 8-byte numbers, such that two similar
documents will tend to generate sets of 8-byte numbers that
overlap proportionally to their similarity. The pseudo-code
for generating the sketch is given in algorithm 1.2

We begin by translating the document into a list of n-grams
(“shingles” in Broder’s terminology) of length n. We then
randomly select a sample of k shingles from the collec-
tion (if the document has fewer than k shingles, we con-
sider its full list of shingles), typically with k = 200. As
in Broder (2000), we have generated a list of p randomly-
generated numbers which we will call permutations. For
each permutation in permutations, we find the mini-
mum hash value of that permutation and the numeric fin-
gerprints of the shingles in the document3. The lowest hash
value is then added to an array. This array of length p is
then our sketch for the document4, which we subsequently
use to evaluate near-duplicate document candidates.

2.2.2. Using sketches to determine if a document is a
near-duplicate

The above method boils down each document to a “sketch”
consisting of p numbers. When processing a new doc-
ument, dnew, we generate its sketch and compare it to
sketches of previously processed documents. Whenever
this comparison yields a number of collisions greater than a
threshold number tcollisions, we consider the previous doc-
ument as a candidate document for which the new one may
be a near-duplicate. From this list of candidates, we iden-
tify the document with the highest number of collisions as
our proposed original document, dcandidate.
We still need to confirm the candidate document’s status
as an original of the current document. We thus make a
final set of comparisons: we obtain the percentage of over-
lap between the n-grams of dnew and dcandidate, consid-
ering only the first f percent of each document – based

2We discuss the parameters for the algorithm in section 3.3.
3In our implementation, we define a fingerprint using the func-

tion
∑n−1

i=0
s[i] ∗ 31n−i−1 where s is a string of length n and s[i]

represents the ith character of the string. Our hash function is a
bitwise exclusive-or operation between the fingerprint and permu-
tation.

4We store sketches in a database to manage our large number
of documents and to avoid a large memory overhead. We discuss
this further in 2.2.3.

Algorithm 1 Generating sketches for documents
function GENERATESKETCH(document)
Parameters

n← length of shingles (in words).
k ← number of shingles to select for sample.
permutations← set of p static,

randomly-generated numbers.
Algorithm

shingleList← Sample k shingles from all
shingles of length n in document.

sketch← empty list.
for all permutation in permutations do

minHash←∞
for all shingle in shingleList do

hash← HASH(FINGERPRINT(shingle),
permutation)

minHash← MIN(hash, minHash)
end for
add minHash to sketch

end for
return sketch

end function

on the observation that news data is often structured with
the most relevant information towards the beginning of the
document, whereas context, background, and template in-
formation tends to be placed towards the end. If the overlap
is greater than a threshold, roverlap, we conclude that dnew
is a near-duplicate of dcandidate.
Documents which yield no list of viable candidates through
this process are considered originals.
Table 1 shows how the system evaluates five short sample
documents that share various levels of similarity.

2.2.3. Implementation considerations
In 2.2.1 we described a set called permutations with a list
of p static, randomly-generated numbers. This makes the
comparisons deterministic in nature when all shingles are
sampled from a document.
In 2.2.2, we describe comparing the sketch of a new docu-
ment with the sketches of previously processed documents.
As our algorithm is designed to detect near-duplicates on
the fly in an online setting with a large number of docu-
ments, we want to avoid storing the document sketches in
memory. We therefore store them in a database, linking
a document’s unique identifier to each of the hashes that
make up its sketch. When we process a new document, we
can quickly obtain the unique identifiers of any previous
documents where there is a collision between the hashes,
and verify if the number of hash collisions is above the re-
quired threshold to be declared a duplicate. While this does
require the additional overhead of a database, it allows us
to do rapid lookups of hash collisions (typically� 1 sec.)
without storing each document’s sketch in memory.
Broder et al. (1997) point out that shingling does not al-
ways work well for very short documents, as the error in es-
timating document resemblance is greater than with longer
documents. To counteract this, we use a higher value of
f when considering small documents, which improves our
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ID Text Original
Document
Hypothesis

Hash
Collisions

N-Gram
Overlap

Decision

1 A couple of capricious capybaras chatted coolly
by the cactus, curiously considering another
capy capably chewing on cantaloupe

N/A N/A N/A Original

2 A pair of capricious capybaras chatted coolly by
the cactus, curiously considering another capy
capably chewing

1 5 0.79 Near-
duplicate
of 1

3 Yesterday, a pair of capricious pigeons prattled
placidly by the cactus, curiously considering an-
other pigeon capably pecking at cantaloupe

1 1 N/A -
Insufficient
collisions

Original

4 The pair of capricious capybaras chatted placidly
by the cactus, curiously pondering another capy
capably chewing on cantaloupe

1 4 0.33 Near-
duplicate
of 1

3 1 N/A -
Insufficient
collisions

5 The lazy llama lightly limped through the lilacs,
laboriously longing for a lozenge

1,3 0 N/A -
Insufficient
collisions

Original

Table 1: Example of document processing with 4 documents, processed in the presented order. Parameters for this run are
n = 3, k = 1600, p = 5, tcollision = 2, f = 1.0, roverlap = 0.2.

results in real-world operation. None of the documents in
the SpotSigs dataset were short enough to trigger this com-
parison, however, so we omit it from the algorithm above.

3. Analysis
We now measure how effective our system is at detect-
ing near-duplicate web articles on-the-fly. We describe the
dataset we used, propose our scoring metric, discuss the
parameters that affect our algorithm’s performance, and fi-
nally compare the results we obtained against others’ simi-
lar systems.

3.1. Dataset
We evaluated our technique using the SpotSigs dataset pro-
vided by Theobald et al. (2008). The collection contains
2167 news articles divided into 68 uneven sets of near-
duplicate documents, each of which contains one document
marked as an original and some number of near-duplicates.
Each document is an HTML file containing the text of the
news article and any additional HTML related to format-
ting, layout, or non-article-related page content, such as
headers, footers, navigation bars and advertisements. We
ran our algorithm on a random permutation of the files in
the dataset, where the only constraint on the random order
was that the first document processed from each topic was
the original.

3.2. Scoring
To score the effectiveness of our algorithm, we used a scor-
ing metric that considered a classification correct so long
as it linked the proposed document to the correct cluster.
More specifically, we considered the classification of a doc-
ument a true positive if it was correctly identified as being
the duplicate of any other previously processed document

in its cluster. A classification was considered a false pos-
itive if an original document was mistakenly classified as
the near-duplicate of any other document, or if a document
was classified as the near-duplicate of a document in the
wrong cluster. A true negative was any original document
correctly identified as such, and a false negative was any
near-duplicate document incorrectly identified as an origi-
nal. Furthermore, any document that could not be success-
fully processed was conservatively considered an original,
which increased our number of false negatives.
Given the nature of our algorithm, the very first document
processed is necessarily considered an original. Thus, our
scoring schema also ignores this first true negative from the
total score.
It should be noted that our system identifies if a given doc-
ument is a near-duplicate as it is processed, and not after
all documents have been considered. Our score is thus ob-
tained in an online setting.
Finally, we should note that while the SpotSigs dataset is
generally of very high quality, there are instances of sep-
arate clusters within the dataset which contain documents
with near-identical article content. In order to compare
ourselves fairly against other methods, we left these un-
corrected within the dataset. This does however have the
effect of creating a few cross-cluster false positives which a
human might be inclined to judge as true positives instead.

3.3. Parameters
Table 2 summarizes our system’s tunable parameters, and
presents the list of values we explored for each. We tested
3-grams and 4-grams, observing that smaller n-grams tend
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Parameter Description Values tested
n The number of tokens in a shingle (section 2.2.1). 3, 4
k The size of the random sample of shingles taken from the document from which

we will generate the sketch (section 2.2.1).
1600

p The number of static, randomly-generated numbers in permutations, which we
use to generate a sketch (of size p) of a document (section 2.2.1).

20

tcollision A threshold number of collisions among the values of the sketches of two doc-
uments. Two documents having more than this many collisions are considered
near-duplicate candidates (section 2.2.2).

2

f The portion (starting at the beginning) of two potential near-duplicate documents
to compare directly (section 2.2.2).

0.4, 0.5, 0.65, 0.8, 1.0

roverlap The threshold minimum ratio of overlap between the n-grams of two potential
near-duplicate documents; if the ratio is above this value, the documents are
considered to be potential near-duplicates of one-another (section 2.2.2).

0.2, 0.3, 0.4, 0.5

Table 2: List of parameters involved in our near-duplicate detection system.

Value of n Value of f Value of roverlap Precision Recall F1-measure
3 0.8 0.5 0.991 0.803 0.887
3 1.0 0.2 0.971 0.940 0.955

Table 3: Best results (in bold) generated by our system for precision, recall and F1-measure, along with the parameters
used to obtain them.

to produce more overlap by chance and larger n-grams tend
to be more likely to be unique even when pulled from sim-
ilar documents (e.g. the larger an n that is considered, the
more n-grams are affected by a trivial single-word change
in a document); 3-grams and 4-grams tend to be an ideal
compromise for most language modelling tasks. We chose
a value of k such that, for roughly 90% of our news arti-
cles, we are able to sample the entire article, but are inten-
tionally trimming the small number of very long articles
down to a more manageable size to increase processing
speed. Our choice of p permutations was somewhat arbi-
trary, but the goal was to find the smallest number such that
inspecting p n-grams for any random article would give us
the gist of what the article was about. We chose tcollision
by repeatedly ingesting a set of documents and evaluating
false positive rates – observing that e.g. two documents
sharing only one out of twenty randomly-selected n-grams
would happen by chance but be a poor predictor of simi-
larity. We grid-searched values of f by observing that, at
one extreme, some news articles (particularly short ones)
are composed entirely of “new” news content, while, at the
other extreme, some news articles start with a short para-
graph of novel news content but end with roughly 60%
background or context boilerplate text. We did not have
a reasonable linguistically-motivated intuition for how to
choose a value for roverlap, so we chose equally-distributed
values from 20% to 50% overlap, reasoning that any less
than 20% was probably too dissimilar to consider. Finally,
a note that as our system uses a heuristic-based model for
near-duplicate detection (as opposed to a supervised ma-
chine learning model), setting these parameters does not
induce bias or over-fitting; accordingly, we would expect
these to generalize well for other data sets.

3.4. Results
In Table 3, we present selected experimental results with
the parameter combinations that generated them. Our best
F1-measure (0.955) used n = 3, f = 1.0 and roverlap =
0.2.5 By performing a grid search over the three varied
parameters however, we were able to empirically observe
their impact on results. Depending on the application and
the importance placed on precision and/or recall, one might
be inclined to adjust the parameters to trade a little bit of
one for the other. In particular, the threshold ratio of com-
mon n-grams (roverlap) is a key parameter for both preci-
sion and recall. We observed that increasing this value gen-
erally lowered recall, but improved precision. This seems
natural: the more of the document we consider in a direct
comparison, the surer we can be of our prediction. This
same comparison however, by being more stringent, re-
duces the number of correct near-duplicates identified. The
next most impactful parameter is the portion of documents
to compare directly (f ), which, holding roverlap constant,
has a substantial impact on recall. Increasing the value of f
generally increases recall, whereas its effect on precision is
less predictable, and interacts with the value of n. Finally,
the value of n made relatively little difference; in general,
we would expect higher values of n to have higher precision
and lower recall, but the effect seems slight in practice. It
should be noted that while we obtained a fairly constrained
range of precision scores in our grid search, recall scores
varied significantly. Our lowest observed precision score
was 0.968 (n = 4, roverlap = 0.2, f = 0.65) and highest

5As an easy-to-replicate evaluation, we also performed this
grid search when processing the documents in depth-first alphanu-
meric order: for each topic in the dataset, we processed the orig-
inal first and then all subsequent duplicates. This yielded compa-
rable results: the best F1 score was 0.950, with n = 4, f = 0.8
and roverlap = 0.2.
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Method Precision Recall F1-measure Online
NRC-GPHIN 0.971 0.940 0.955 Yes
SpotSigs 0.96 0.92 0.94 No
SigNCD 0.95 0.89 0.92 No
ANDD-Raw - - 0.956 No
ANDD-LSH-Cos 0.965 0.923 0.943 No

Table 4: The results of our system (NRC-GPHIN) compared to the results reported by different near-duplicate detection
systems on the SpotSigs dataset.

was 0.991, with a median of 0.983. Recall ranged from a
low of 0.724 (n = 4, roverlap = 0.5, f = 0.4) to a high of
0.940, with a median of 0.870.

4. Discussion
4.1. Method comparisons
Table 4 presents our best results compared to other systems
that also evaluated their methods on the SpotSigs dataset.
Note that because our system is online and selects only the
most likely duplicate candidate, we do not perform pair-
wise evaluation in exactly the same manner (our evaluation
metrics are presented in 3.2). This difference in comparison
penalizes our performance results to a small extent, so we
feel the comparison is still a fair one.
Our method outperforms SpotSigs (Theobald et al., 2008)
and SigNCD (Zhang et al., 2016) on measures of precision,
recall and accuracy. ANDD-Raw (Hajishirzi et al., 2010)
slightly outperforms or is tied with our system in terms of
F1-score, however, this method is inapplicable in our con-
text. The method requires keeping a large, uncompressed
vector representation of documents in memory, which is in-
feasible for a real-time web application. When Hajishirzi et
al. (2010) use a more computationally efficient version of
their algorithm with hashed values (ANDD-LSH-Cos) in-
stead, our proposed system outperforms it in terms of pre-
cision, recall and F1-score.
Other algorithms have also attempted to tackle this prob-
lem, but have applied their work to different datasets,
which they have generally generated automatically or semi-
automatically for the purposes of their experiments. These
include Gibson et al. (2008), who reported a very high
F1-score of 0.985. However, their method is offline, re-
quires annotated data to train a supervised content classi-
fier, and is also implemented completely in memory, all
factors that make it impractical in our context – retrain-
ing a classifier each time a new document is added to the
set isn’t viable at scale. Mathew et al. (2011) and Arun
and Sumesh (2015) both present very good F1-scores for
their algorithms (0.941 and 0.95, respectively). However,
both methods rely on an HTML page’s DOM to detect near-
duplicates; our system presents slightly higher scores while
also being independent of HTML page structure, making
our method more suitable for real-world use over time. Fi-
nally, Ling et al. (2010) presents two algorithms for near-
duplicate detection. One presents very high results (F1-
score of 0.967) but is dependent on regular fields found in
documents (for instance, a “company name” field in a se-
ries of employment advertisements). As our documents do
not necessarily contain such regular fields, the method is

not directly comparable. An alternate version of their algo-
rithm which does not assign priorities to these fields yields
an F1-score of 0.877.

4.2. Applications
We developed this near-duplicate detection system for use
in the Global Public Health Intelligence Network (GPHIN)
(Carter et al., 2018), a public health monitoring tool.
GPHIN currently houses approximately seven million pub-
lic health news articles, and continues to collect new arti-
cles in real time, which are then displayed to users. A near-
duplicate detection system is necessary so as not to over-
whelm users with bursts of redundant information. How-
ever, our particular domain requires that users be able to
see all original documents – the domain is more tolerant of
false negatives than of false positives, for fear of missing an
early signal of an outbreak or natural disaster. Given this,
we place a high importance on limiting our system’s rates
of false positives, so we tune our system as discussed in 3.4
to favour precision.
Because our system is put to use in the public health do-
main, we also leverage domain-specific factors to identify
true near-duplicates and filter out false positives. Many
news stories in the public health domain, particularly as
it pertains to outbreaks of infectious diseases, evolve over
time. News outlets may re-issue articles that are virtu-
ally identical on the surface, but with updated details, such
as number of infected persons, or number of casualties.
While these documents could often be classified as near-
duplicates given their nearly identical content, they do pro-
vide new and useful information in the public health do-
main. As an extra step in our near-duplicate detection sys-
tem, we use information extraction tools to obtain these
counts from the text. Then, when documents are flagged
as potential duplicates, we perform this additional com-
parison to ensure new information is considered original.
While this is not reflected in our analysis, it is worth noting
that the very definition of a near-duplicate may be domain-
dependent and may require information extraction tech-
niques in addition to pure near-duplicate detection.

4.3. Conclusion
We have presented a real-world implementation of a near-
duplicate detection system that is fast, online, boasts state-
of-the-art results and does not require a high memory over-
head. As reported in 3.4, the method boasts very high pre-
cision scores, which can be traded for increased recall and
F1 scores, depending on the needs of the application. Our
method of identifying near-duplicate news documents also
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functions independently from an HTML file’s DOM, and
can handle both HTML files or plain text as input.
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