
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 1235–1241
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

1235

LEDGAR: A Large-Scale Multilabel Corpus for
Text Classification of Legal Provisions in Contracts

Don Tuggener, Pius von Däniken, Thomas Peetz, Mark Cieliebak
Zurich University of Applied Sciences, Winterthur, Switzerland

Legartis technology AG, Zurich, Switzerland
{tuge, vode, ciel}@zhaw.ch, thomas.peetz@legartis.ai

Abstract
We present LEDGAR, a multilabel corpus of legal provisions in contracts. The corpus was crawled and scraped from the public
domain (SEC filings) and is, to the best of our knowledge, the first freely available corpus of its kind. Since the corpus was constructed
semi-automatically, we apply and discuss various approaches to noise removal. Due to the rather large labelset of over 12,000 labels
annotated in almost 100,000 provisions in over 60,000 contracts, we believe the corpus to be of interest for research in the field of Legal
NLP, (large-scale or extreme) text classification, as well as for legal studies. We discuss several methods to sample subcopora from the
corpus and implement and evaluate different automatic classification approaches. Finally, we perform transfer experiments to evaluate
how well the classifiers perform on contracts stemming from outside the corpus.
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1. Introduction
Legal Natural Language Processing is an emerging field
that investigates the application of Natural Language Pro-
cessing (NLP) techniques to the legal domain. Several ded-
icated conferences and workshops have emerged in recent
years (Aletras et al., 2019; Rehm et al., 2018; Palmirani,
2018; Keppens and Governatori, 2017). As a relatively
young discipline, Legal NLP lacks resources in several ar-
eas. We aim to address this lack regarding text classifica-
tion by presenting LEDGAR (Labeled EDGAR1), a corpus
of labeled provisions in contracts.2

Contractual provisions are a primary research target in law
studies (Mills, 2019; Knapp et al., 2019; Hershkoff and Ka-
han, 2018; Fisch, 2018, inter alia), as they are the essen-
tial discourse units when drafting, negotiating, validating,
or analysing contracts. Each provision in a contract con-
stitutes a legal speech act (Yovel, 2000; Trosborg, 1995;
Trosborg, 1991), and the concatenation of the provisions
comprises the legal essence of a contract.
Meanwhile, an emerging line of research investigates text
classification with large-scale or extreme labelsets, where
labelsets consist of thousands or even millions of labels
(Bengio et al., 2019; Choromanska and Kumar Jain, 2019;
Soni et al., 2018, e.g.).
In this light, our main contributions are:

• We provide a freely available, substantially-sized cor-
pus (100m+ tokens) that assists the study of provi-
sions, both from a legal and an NLP perspective.

• The corpus features a large labelset (12k+ labels),
which makes it attractive to research in the field
of large-scale (or extreme) multilabel and multiclass
classification.

1Cf. Section 3.1. for the explanation of the acronym.
2Available here: https://drive.switch.ch/index.

php/s/j9S0GRMAbGZKa1A

• Additionally, we discuss several subsampling tech-
niques and present a method for extracting a label hier-
archy based on label names. This hierarchy enables us
to reduce the initially large labelset to a more feasible
size in a standard text classification setting.

• Finally, we demonstrate the corpus’ suitability for
training classifiers that are applicable to out-of-
domain contracts, i.e. contracts that stem from outside
the corpus.

2. Related work
We focus on related work in two areas, namely work on ex-
tracting corpora from EDGAR or providing structured ac-
cess to information contained in EDGAR, and research on
text classification in the legal domain.
Bommarito et al. (2018b) present an open-source frame-
work to extract and store data from EDGAR in a relational
database, effectively making working with EDGAR (e.g.
finding Exhibit 10 filings) more convenient. They also in-
clude example use cases, such as training word embeddings
on press releases contained in EDGAR.
Bommarito et al. (2018a) released an open-source software
library for NLP in the legal domain. The library offers sup-
port of basic NLP tasks, such as text segmentation, POS
tagging, or named entity recognition. Furthermore, it of-
fers heuristics for the extraction and normalization of ad-
dresses, amounts, durations, etc. Additionally, the library
contains a broad variety of word and document embeddings
pre-trained on different legal data (contract types, provision
types etc.), and features a binary, machine learning-based
classifier to distinguish contracts from other documents.
Chalkidis et al. (2019) investigate large-scale multi-label
document classification in the legal domain by predict-
ing concepts occurring in EU legislative documents. They
compile a corpus of 57K documents annotated with 4.3K
concepts. They find that BERT (Devlin et al., 2018) pro-
duces the best classification Micro F1 scores in almost all

https://drive.switch.ch/index.php/s/j9S0GRMAbGZKa1A
https://drive.switch.ch/index.php/s/j9S0GRMAbGZKa1A
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Figure 1: Excerpt from an Exhbit-10 material contract (https://www.sec.gov/Archives/edgar/data/
0001171825/000119312519044328/d691151dex101.htm) showing different markup of potential labels (un-
derlined and in bold) and the accompanying provisions.

settings in comparison to Logistic Regression and several
neural classifiers.
Waltl et al. (2019) explore automatic classification of se-
mantic types of legal norms in German laws. They identify,
label, and classify nine functional categories (e.g. duty, pro-
hibition, permission) in sentences in the German tenancy
law. They transform the texts into TF-IDF representations
and found that an SVM classifier performed best in their
setting. Waltl et al. (2017) also explore a combination of
rule-based classification with active machine learning on
this data. Glaser et al. (2018) follow up on this work and
explore whether these annotated data are suitable to train
classifiers that predict functional categories in rental agree-
ments in a series of experiments similar to ours.
To the best of our knowledge, no prior work is available
on provision classification in contracts or on corpora con-
taining provisions labeled in a topical (i.e. not functional)
sense.

3. Data
We first describe the data source of our corpus and then
outline the extraction of the labeled provisions.

3.1. Data Source
Our corpus is comprised of contracts crawled from the
website of the U.S. Securities and Exchange Commission
(SEC).3 The SEC’s main mission is to establish trans-
parency of business activities, with the goal of provid-
ing investors more security regarding the companies that
they invest in. The SEC website hosts a service called
EDGAR (Electronic Data Gathering, Analysis, and Re-
trieval system). Domestic and foreign companies conduct-
ing business in the U.S.A. are required to file regular re-
ports to the SEC through EDGAR. Reports are filed based
on a list of forms that correspond to certain filing types.
While EDGAR features over 150 forms, we targeted filings
that contain material contracts (called Exhibit-10), such as
agreements (e.g. shareholder/employment/non-disclosure

3https://www.sec.gov/

agreements), because a) material contracts include provi-
sion types (such as governing law) which occur in a broad
variety of contracts, and b) these filings offer the opportu-
nity to automatically obtain labels.4

3.2. Crawling and Scraping
We crawled all Exhibit-10 contracts from (including) 2016
to 2019, which yields an initial set of 117,578 contracts
from which we heuristically scraped labeled provisions.
While not all Exhibit-10 filings follow a standardized
HTML markup format, we observed regularities in mark-
ing up the names of provisions, as shown in Figure 1. That
is, provisions are often prepended with the name of their
type, and this type is often displayed in special formatting,
such as bold-face or underline, followed by a sentence de-
limiter, such as a dot or colon. We identified two frequent
markup strategies for the provision types (i.e. using either
<u> or <font> tags) and heuristically scanned the begin-
ning of paragraphs (identified by <p> or <div> tags) in
contracts for occurrences of the pattern:

underlined and/or bold text + delimiter
+ differently formatted text

We then treated the specially formatted text as the (poten-
tial) label, and the non-formatted text as the (potential) pro-
vision text.5

To cope with noisy extractions, we applied several filters
during the scraping process (e.g. minimum and maximum
length of each element in the pattern; first character in text
elements must be uppercase; texts cannot consist of stop-
words only; labels cannot end in stopwords, etc.).6 The

4Navigating EDGAR to extract Exhibit-10 filings is a non-
trivial task. Our approach is outlined in the codebase that
accompanies this paper. A guide to EDGAR can be found
under the following URL: https://www.sec.gov/oiea/
Article/edgarguide.html.

5We noted that some provisions feature multiple labels, delim-
ited by a semicolon or a slash. We split such labels into multi-
labels.

6For the complete set of filters we refer readers to the codebase
released with this paper.

https://www.sec.gov/Archives/edgar/data/0001171825/000119312519044328/d691151dex101.htm
https://www.sec.gov/Archives/edgar/data/0001171825/000119312519044328/d691151dex101.htm
https://www.sec.gov/
https://www.sec.gov/oiea/Article/edgarguide.html
https://www.sec.gov/oiea/Article/edgarguide.html
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# contracts # provisions % with multilabels # labels
Initial scrape 72,605 1,850,284 5.96 % 183,622
De-duplicate provisions 63,794 1,081,177 6.32 % 182,328
Split labels 63,794 1,081,177 16.69 % 166,063
Merge sg/pl label forms 63,794 1,081,177 16.69 % 158,842
Remove low-frequency labels 61,456 908,465 17.39 % 21,003
Remove outlier labels 60,540 846,274 16.44 % 12,608

Table 1: Impact of provision and label filtering on corpus statistics.

scraping process yielded 1,850,284 labeled provisions in
72,605 contracts and a labelset of size 183,622.

3.3. Data cleanup
We applied several heuristic filters to improve the quality
of the extracted data. First, we de-duplicated the provi-
sion texts, which reduced the number of provisions from
1,850,284 to 1,081,177. To ”sanitize” the labels, we ap-
plied the following filters:
Split labels: We found that labels that denote multilabels
are sometimes connected by and (Ratification and Ac-
knowledgements), a comma (Severability, Modification of
Covenants), or by an ampersand (Facsimile & Electronic
Signatures). In contrast to semicolons and slashes, we
found these delimiters to be ambiguous.7 If such delim-
iters occurred, we split the label and verified whether its
constituents had been observed as single labels. If so, we
assigned the constituents as individual labels, turning the
initial label into a multilabel.
Merging singular and plural forms: We merged plural
and singular forms of labels by finding all labels ending in
-s and checking whether a version of the label without the
ending -s exists in the labelset, e.g. waiver→ waivers. We
then merged the singular form label into the plural form.
Pruning labels based on document distribution: Given
the relatively large number of documents, we deemed la-
bels idiosyncratic to specific subsets if they occurred in
less than five contracts and removed them. We then cal-
culated the distribution of labels over documents with the
aim to identify labels that occur in a wide variety of con-
tracts. Our guiding assumption was that labels with a nar-
row distribution are also idiosyncratic to specific contracts.
Clearly, not all labels are similarly frequent. We assumed a
linear, monotonic relationship between the frequency of a
label and the number of contracts it occurs in. Hence, we
applied a linear regression on the frequency of the labels
and their document counts to identify outliers. Specifically,
for the i-th label, we measured the difference between the
predicted label document frequency l̂dfi and the observed
label document frequency ldfi, normalized by ldfi to allow
for more variance in frequent labels:

dist(ldfi, l̂dfi) =
l̂dfi − ldfi

ldfi
(1)

Finally, we measured the standard deviation of the dis-
tances, and regarded all labels with a negative distance

7For example, in the label Rights of the successor and retiring
agent, and is not a connector of two individual labels, while in
e.g. Consideration and Payment it is.

above the standard deviation as outliers. Among the labels
deemed outliers by our method are e.g. New mezzanine loan
option, Resignation as issuing lender after assignment, and
Performance of obligations of parent.
The impact of the provision and label filters on the corpus
statistics are shown in Table 1. As a result, 12,608 labels
and 846,274 provisions remain after filtering. This is still
a comparably large labelset for text classification with a
biased label distribution. We show the impact of enforc-
ing minimum count thresholds on the labels on the corpus
statistics in Table 2. However, we do not set a threshold for
the corpus release, but leave it to practitioners to set their
own, or select a subset of labels that they deem relevant.
We discuss several subsampling techniques in Section 4.

min. freq. #contracts #prov. #labels multi
10 60,297 831,283 10,485 16.44%
50 58,437 695,218 2,677 16.41%

100 57,118 625,519 1,442 16.13%
500 53,012 429,771 309 15.01%

1,000 49,922 319,334 130 15.80%
5,000 37,151 123,419 16 14.45%

10,000 30,285 62,701 5 2.88%

Table 2: Corpus statistics (number of labels, provisions,
contracts, and percentage of provisions with multilabels)
for different label frequency thresholds.

The token and provision statistics of the corpus after the fi-
nal filtering step are given in Table 3.8 The corpus contains
a substantial amount of tokens suited for e.g. training word
embeddings. We also see that the standard deviations for
the average of tokens per provision and provisions per con-
tract are quite high, which indicates that there is variety in
the corpus.

Quantity amount (std. dev.)
No. of tokens 104,990,418
Vocabulary size 52,098
Avg. tokens per provision 124 (104)
Avg. provisions per contract 13 (20)

Table 3: Token and provision statistics of the cleaned cor-
pus.

We release the corpus as a JSONL file, where each
line consists of a JSON object that holds the attributes

8Note that these statistics only apply to provisions for which
we were able to extract labels, other text passages of the contracts
are omitted in our scraping.
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provision, which contains the provision text, label,
which holds the extracted labels, and source, which gives
the relative path to the contract from which the provision
was extracted.9 Additionally, we release the codebase used
for creating the corpus, as well as for running the classifi-
cation experiments in the following sections.10

3.4. Label hierarchy extraction and label
decomposition

A potential means to handle the large labelset in the corpus
is to infer a hierarchy of the labels and then predict labels
that subsume other labels. We noted that the length of the
label names (as measured by number of tokens in the name)
seemed to correlate (negatively) with the label frequencies,
i.e., labels with longer names tend to be more sparse.
We assumed that the labelset features a latent hierarchy,
where longer label names can be considered parents of
shorter ones (e.g. compliance with environmental laws →
compliance, environmental laws). Hence, we extracted a
directed acyclic graph from the labelset, where nodes de-
note labels, and edges denote subsumption. That is, longer
label names point to shorter ones that include consecutive
token sequences from the longer label name.
This graph enabled us to decompose (long) label names into
multiple shorter labels, i.e. multilabels. Figure 2 shows an
excerpt from the label graph, i.e. the label Adjustment upon
subdivision of combination of share of common stock and
how it is decomposed into intermediary and leave nodes.
We will explore the use of the graph for labelset manipula-
tion in the next section.

Figure 2: Example of label decomposition.

4. Provision classification
Our corpus of labeled provisions retains all provisions that
are left after our cleaning effort. Here, we explore auto-
matic provision classification on four different labelset sub-
sets to verify the suitability of the data for training provision
classifiers.

4.1. Data selection
We create the following four data subsets to evaluate auto-
matic provision classification:
Prototypical (proto): We calculate the average number of
provisions that a contract contains in our corpus, i.e. 13, and
select the 13 most common labels based on frequency. This
yields 110,156 provisions (12.50% with multilabels) and
gives us an approximation of a standard provision inventory
in a contract.11

9https://drive.switch.ch/index.php/s/
j9S0GRMAbGZKa1A

10https://github.zhaw.ch/tuge/LEDGAR_
provision_classification

11The list of labels is shown in the Appendix.

Frequency at least 100 (freq100): We select all provisions
with a frequency of at least 100 in the data. This yields
1,442 labels and 625,519 provisions (16.13% with multil-
abels).
Projection to leaf labels (leaves): We decompose all la-
bels into the leaf labels using the label graph introduced
in Section 3.4. The provision count remains unchanged
(832,513), while we obtain 945 leaf labels. Here, we ob-
tain a high rate of multilabels due to the decomposition of
labels (59.19% with multilabels).
NDA provisions (NDA): Finally, we let a lawyer select pro-
visions that typically occur in non-disclosure agreements
(NDAs). We select NDA provisions, because we will eval-
uate the NDA provision classifier on proprietary data stem-
ming from outside our corpus to evaluate the broader appli-
cability of the labeled EDGAR provisions. This yields 46
labels and 110,082 provisions (8.30% with multilabels).12

For all data subsets, we perform a random 70%-10%-20%
split to obtain training, development, and test set, respec-
tively.

4.2. Classifier selection
For classification, we compare the following approaches:
Label name. Like Chalkidis et al. (2019), we observed that
for some provisions, the label name occurs in the provision
itself. Thus, we check a provision for all label names and
apply all labels whose names we find.
LogReg. We transform the texts into their unigram TFIDF
representations and train one logistic regression classifier
per label.
BoW+MLP. This approach uses neural embeddings by
fasttext (Joulin et al., 2018; Bojanowski et al., 2017)
as word representations. We represent provisions as
bag-of-words (BoW). The embeddings are then fed into
two-layered multilayer perceptron (MLP) for classification
(with sigmoid as the last activation function to produce out-
put suited for multilabel classification). To derive fixed-
length sentence representations suited for classification, we
compare two different aggregation methods:

• Basic averaging (BoW+MLP): We average each di-
mension of the token embeddings.

• BoW+MLP+Attn: Before averaging the token em-
beddings, we feed them through an attention layer
(Yang et al., 2016) which assigns each embedding a
weight regarding its usefulness for classification. The
weighted sum of the embeddings then serves as the
classifier input.

DistilBERT. We fine-tune DistilBERT (Sanh et al., 2019),
a distilled version of BERT (Devlin et al., 2018) and use its
[CLS] token as the classifier input. We use the reference
implementation of DistilBERT and the associated classifi-
cation fine-tuning script from Huggingface’s ”Transform-
ers” Library (Wolf et al., 2019) and modify it for multi-label
classification (by replacing the softmax with the sigmoid
activation).

12Cf. the Appendix for the complete list.

https://drive.switch.ch/index.php/s/j9S0GRMAbGZKa1A
https://drive.switch.ch/index.php/s/j9S0GRMAbGZKa1A
https://github.zhaw.ch/tuge/LEDGAR_provision_classification
https://github.zhaw.ch/tuge/LEDGAR_provision_classification
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For both the word embedding and BERT approaches, we
use a two-layer feed-forward neural network as a classi-
fier, with sigmoid activation function at the last layer to ob-
tain multilabel predictions. We fine-tune the classification
thresholds for each classifier by evaluating all threshold be-
tween 0.1 and 0.9 in 0.01 increments, retaining the one that
yields the best micro F1-score for each label.

4.3. Results
Table 4 shows the results of our classification experiments.

proto

Macro Micro
Rec Prec F1 Rec Prec F1

Label name 0.62 0.64 0.63 0.60 0.60 0.60
LogReg 0.94 0.91 0.92 0.95 0.92 0.93
BoW+MLP 0.93 0.90 0.92 0.94 0.91 0.93
BoW+MLP+Attn 0.92 0.93 0.93 0.92 0.94 0.93
DistilBERT 0.95 0.94 0.94 0.95 0.95 0.95

freq100

Macro Micro
Rec Prec F1 Rec Prec F1

Label name 0.41 0.13 0.20 0.49 0.04 0.07
LogReg 0.75 0.61 0.67 0.78 0.59 0.68
Bow+MLP 0.61 0.72 0.66 0.68 0.70 0.69
BoW+MLP+Attn 0.61 0.73 0.67 0.69 0.72 0.71
DistilBERT 0.63 0.59 0.61 0.67 0.53 0.60

leaves

Macro Micro
Rec Prec F1 Rec Prec F1

Label name 0.58 0.11 0.18 0.60 0.07 0.12
LogReg 0.76 0.65 0.70 0.76 0.63 0.69
BoW+MLP 0.61 0.72 0.66 0.67 0.71 0.69
BoW+MLP+Attn 0.64 0.74 0.69 0.70 0.74 0.72
DistilBERT 0.58 0.62 0.60 0.73 0.20 0.31

NDA provisions

Macro Micro
Rec Prec F1 Rec Prec F1

Label name 0.14 0.11 0.12 0.23 0.48 0.31
LogReg 0.84 0.84 0.84 0.94 0.90 0.92
BoW+MLP 0.73 0.83 0.78 0.91 0.92 0.92
BoW+MLP+Attn 0.77 0.88 0.82 0.93 0.94 0.93
DistilBERT 0.74 0.82 0.78 0.92 0.92 0.92

Table 4: Results of provision classification.

Overall, we observe that the subcorpora are well-suited for
classification, yet the classification task is not easily solved
by matching keywords from the labels.
We also observe a distinction between the logistic regres-
sion classifier and the neural models: While micro F1-
scores are comparable, LogReg features higher recall, but
the neural models outperform it in precision. We believe
that this difference stems from the different input repre-
sentations. LogReg has direct access to the tokens through
their TFIDF representations, while the neural model all op-
erate on aggregated token representations, i.e. averaged to-
ken embeddings, or the [CLS] token in the case of Distil-
BERT. We believe thus that the classification tasks in our
subcorpora strongly rely on learning associations between
individual keywords and labels. LogReg, with its direct ac-
cess to keyword occurrences, is able to pick up such as-
sociations more quickly with fewer training examples, as
evidenced by its strong macro F1 and recall scores. Dis-
tilBERT seems to struggle to learn these associations suf-
ficiently for larger labelsets with lower-frequency labels,
and our adapted implementation yields poor results on the

leaves subcorpus. We found that the logits produced by
DistilBERT for low-frequency labels are not reliable when
tuning the classification thresholds, and the classifier then
over-predicts these labels, resulting in a low micro preci-
sion. One measure to alleviate this could be to apply an
attention layer over the BERT token embeddings to obtain
a weighted average for classification, rather than relying on
the [CLS] token.
Finally, the inclusion of the attentional layer into the BoW-
MLP improves performance across the board.

4.4. Application to out-of-domain NDAs
We designed a quasi zero-shot classification or transfer ex-
periment to verify whether LEDGAR is a valid resource to
train classifiers for provision classification in contracts that
do not stem from SEC filings.
To this end, we used a set of publicly available English
NDAs that we gathered from the internet. A group of three
legal professionals annotated the NDAs using a proprietary
annotation scheme. Within their proprietary labelset, we
identified a subset of 46 labels that can be mapped to la-
bels in the LEDGAR provisions based on the label names.13

It is noteworthy that the annotators followed specific an-
notation guidelines by their company, while the labels in
the LEDGAR subcorpus were extracted automatically, and
were assigned by the creators of the contracts in the SEC
filings while drafting the contracts. That is, the labels stem
from different sources and were assigned to the provisions
in different settings.
Table 5 shows the statistics of the proprietary annotations.
One stark difference to the LEDGAR corpus is that the av-
erage token count is much lower (30 vs. 124). This differ-
ence stems from the units annotated in the corpora: While
LEDGAR’s labels apply to paragraphs, the proprietary an-
notations were labeled on the sentence level. Furthermore,
in the NDA subcorpus of LEDGAR, 8% of the provisions
have mutlilabels, while in the proprietary data, 51% of the
provisions have multilabels.

Quantity amount (std. dev.)

No. of tokens 423,654
Vocabulary size 7,921
No. of provisions 14,142
Multilabel provisions 7,193
Avg. tokens per provision 30 (23)

Table 5: Token and provision statistics of the proprietary
annotations.

Again, we apply a 70-10-20% split to obtain train, devel-
opment, and test set. We compare zero-shot classification
to in-domain training, i.e. the setting where the classifiers
are trained on the proprietary annotations. For the zero-
shot experiments, we tune the classification thresholds on
the proprietary development set. Table 4.4. shows the clas-
sification results.
Clearly, in-domain training yields better results than zero-
shot classification. Using in-domain training, LogReg

13Cf. the appendix for the list of NDA-related labels.
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NDA proprietary; in-domain training

Macro Micro
Rec Prec F1 Rec Prec F1

Label name 0.06 0.09 0.07 0.05 0.16 0.08
LogReg 0.61 0.64 0.62 0.75 0.77 0.76
BoW+MLP 0.50 0.59 0.54 0.69 0.74 0.72
BoW+MLP+Attn 0.51 0.57 0.54 0.66 0.61 0.63
DistilBERT 0.34 0.37 0.35 0.60 0.47 0.53

NDA proprietary; zero-shot

Macro Micro
Rec Prec F1 Rec Prec F1

Label name 0.06 0.09 0.07 0.05 0.16 0.08
LogReg 0.47 0.46 0.46 0.57 0.42 0.48
BoW+MLP 0.33 0.43 0.37 0.38 0.55 0.45
BoW+MLP+Attn 0.37 0.47 0.41 0.44 0.51 0.47
DistilBERT 0.44 0.44 0.44 0.55 0.48 0.52

Table 6: Classification results on proprietary NDA annota-
tions.

achieves the best results. Also, the attention layer de-
creases performance for BoW+MLP. We assume that the
proprietary annotations do not contain enough data for sev-
eral labels in order to train the attention weights properly.
DistilBERT also fails, as in the leaves subcorpus, and we
again found that the low-frequency labels are the culprit. In
the zero-shot results, however, where enough samples are
present in the LEDGAR corpus to train the model, Distil-
BERT achieves the highest micro F1 scores, while LogReg
outperforms the other classifiers in terms of macro F1 based
on its strong recall.
We inspected the evaluation reports of the individual provi-
sion types in the zero-shot setting for DistilBERT to iden-
tify whether all provision types perform worse, or if the
drop in micro/macro F1 score mainly stems from the lower
performance on specific labels. Indeed, we found that the
F1 scores vary strongly for the different labels. Firstly,
we found a moderate to strong correlation between fre-
quency of the labels and their F1 score (pearson’s r of
0.44). Secondly, for several provision types, performance
is high (around 0.80 F1 score for e.g. Amendments, Battle
of Forms, Counterpart Copy, Jurisdiction, Warranty, Non-
Assignment, Severability, Waivers), while for others, espe-
cially low-frequency labels, transferring the fine-tuned Dis-
tilBERT fails. Upon inspecting samples from the two cor-
pora, we found that the semantics of some labels differ in
the two corpora, although the label name suggests a high
similarity (F1 scores of around 0.30 for e.g. Arbitration
Choice of Law, Consequences of Termination of Contract,
Data Security, Liquidated Damage, Warranty of Title). For
example, the consequences of terminating a contract vary
across contract types, such as NDAs (one might have to
destroy confidential data), software license agreements (li-
censed software needs to be uninstalled), or construction
agreements (certain costs might have to be redeemed). Our
classifiers were trained on provisions stemming from differ-
ent contract types in the LEDGAR corpus, but in the propri-
etary annotations, these provisions have a more restricted,
NDA-specific meaning.
Based on these results, we believe that our corpus is useful
as a resource when developing classifiers in the legal do-
main for contract analysis. It offers various provision types
that, in our experiments, are suitable for direct transfer to
contracts stemming from outside the corpus. However, we

suggest verifying whether the definitions of the provisions
align with the intended use. Some provision types (e.g.
Consequences of Termination of Contract) do seem to in-
herit specific semantics in the different contract types they
occur in. Selecting only provisions from contract types of
the target domain may increase classifier performance for
such provision types.

5. Conclusion
We have presented a freely-available corpus for text classi-
fication in the domains of Legal NLP and large-scale multi-
label, multiclass classification. We have demonstrated dif-
ferent subsampling approaches to obtain subcorpora and
performed classification experiments on them. The exper-
iments showed that the corpus is well-suited for both re-
search in Legal NLP, as well as large-scale multilabel clas-
sification.
Future work will include extending the label merging steps,
as we found several labels with seemingly equivalent se-
mantics (e.g. withholding taxes, withholding of tax, tax
withholding), as well as applying classification approaches
from the extreme multiclass classification domain (Jain et
al., 2019, e.g.) on the full corpus. Finally, extracting con-
tract types and assigning extracted provisions to their con-
tract types might increase the specificity of the extracted
provisions when targeting certain types of contracts for pro-
vision classification.
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Appendix
Prototypical provision labels
Labels selected for the proto subcorpus:
Amendments, Assignments, Assigns, Counterparts, Entire
Agreements, Expenses, Governing Laws, Notices, Sever-
ability, Successors, Survival, Terminations, Waivers

NDA provision labels
Labels selected for the NDA subcorpus:
Amendments, Arbitration Choice of Law, Arbitration Pro-
cedure, Audit, Battle of Forms, Change of Control, Confi-
dential Information, Consequences of Termination of Con-
tract, Counterpart Copy, Data Privacy, Data Security,
Definitions, Duration of Contract, Duty of Confidential-
ity Mutual, Equitable Remedies, Expenses, Export Restric-
tions, Extra Costs, Governing Law, IP Rights, Jurisdiction
(Courts), Legal Costs, Liability Exclusion, Liability Rea-
sons, License Rights, Liquidated Damages, Mediation, No
Third Party Rights or Beneficiaries Disclaimer, No War-
ranty, Non-Assignment, Non-Solicitation Agreement, No-
tice Date, Notices, Ordinary Notice Period, Ownership,
Passing of Risk, Payment Deadline, Permissible Disclosure
to Third Party, Place of Performance, Reference to Fur-
ther Agreements, Renewal or Extension of Contract, Sever-
ability, Succession, Termination of Contract, Waivers, War-
ranty of Title
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