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Abstract
Automating straightforward clinical tasks can reduce workload for healthcare professionals, increase accessibility for geographically-
isolated patients, and alleviate some of the economic burdens associated with healthcare. A variety of preliminary screening procedures
are potentially suitable for automation, and one such domain that has remained underexplored to date is that of structured clinical
interviews. A task-specific dialogue agent is needed to automate the collection of conversational speech for further (either manual
or automated) analysis, and to build such an agent, a dialogue manager must be trained to respond to patient utterances in a manner
similar to a human interviewer. To facilitate the development of such an agent, we propose an annotation schema for assigning dialogue
act labels to utterances in patient-interviewer conversations collected as part of a clinically-validated cognitive health screening task.
We build a labeled corpus using the schema, and show that it is characterized by high inter-annotator agreement. We establish a
benchmark dialogue act classification model for the corpus, thereby providing a proof of concept for the proposed annotation schema.
The resulting dialogue act corpus is the first such corpus specifically designed to facilitate automated cognitive health screening, and
lays the groundwork for future exploration in this area.
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1. Introduction
Recent advancements in artificial intelligence have opened
new pathways for improving patient and clinician health-
care experiences, with technologies including but not lim-
ited to predictive disease modeling, ambient healthcare
monitoring, and clinical record-keeping assistance. At the
same time, shifting population demographics have ush-
ered in new and pressing healthcare concerns. Dementia
is one such increasingly critical concern as median popu-
lation ages around the globe continue to rise (Tom et al.,
2015). Although cures for dementia remain out of reach,
researchers believe that early diagnosis can mitigate its ef-
fects (Prince et al., 2011). Diagnosis typically requires cog-
nitive tests or in-person screening interviews, which can
be costly, resource-intensive, and stressful for patients. A
conversational agent capable of conducting screening inter-
views to elicit the information necessary to perform a pre-
liminary assessment of cognitive health could pose an inex-
pensive, flexible, low-stress alternative that could simulta-
neously increase patient accessibility and reduce clinician
workload.
Training such an agent to interpret natural language in-
put and select suitable follow-up responses cannot be done
without appropriate, clinically-relevant dialogue modeling
data. Currently, there exists no spoken or text-based cor-
pus containing utterances annotated with the dialogue in-
tentions and associated characteristics necessary to facili-
tate cognitive health screening. In this work, we set out to
fill that void. Our contributions are as follows:

1. We establish a dialogue act annotation schema for a
popular, clinically-validated conversational cognitive
health screening task.

2. Using that schema, we collect dialogue act annotations
for an existing collection of transcribed conversations

for that task. This data source is commonly used for
automated dementia detection (Habash et al., 2012;
Orimaye et al., 2014; Fraser et al., 2016; Yancheva
and Rudzicz, 2016; Orimaye et al., 2018; Karlekar et
al., 2018; Di Palo and Parde, 2019), and thus we an-
ticipate that our additional layer of dialogue act anno-
tations will be of broader interest to those working on
automated dementia detection as well.

3. We demonstrate that the resulting corpus exhibits high
inter-annotator agreement.

4. We establish a benchmark dialogue act classification
model, validating and providing a proof of concept for
the annotation schema.

Notably, our corpus is the first dialogue act corpus specif-
ically designed to facilitate automated cognitive health
screening. The rest of the paper is organized as follows. We
summarize relevant dialogue act annotation and dementia
diagnosis literature in Section 2. In Section 3, we detail our
annotation schema and data collection process. We analyze
the resulting dialogue act corpus in Section 4. In Section 5,
we establish a benchmark dialogue act classification model.
Finally, in Section 6, we summarize our findings and briefly
describe our future plans.

2. Background
2.1. Dialogue Act Annotation
Dialogue act (DA) annotation is the process by which
functionally- and contextually-appropriate labels are as-
signed to spans of dialogue, or utterances. The rules defin-
ing the set of DAs accepted for a given domain or task
are referred to as the DA annotation schema. Over the
years, many DA annotation schemata have been developed
for conversational and task-based interactions. Early ex-
amples include TRAINS (Allen et al., 1995) and DAMSL
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(Core and Allen, 1997) in the United States, Map Task in
the United Kingdom (Anderson et al., 1991), and Verbmo-
bil in Germany (Alexandersson et al., 1997).
Researchers used those early guidelines and others to con-
struct a variety of spoken dialogue corpora. These corpora
included the task-oriented Map Task Corpus (Anderson et
al., 1991), the multimodal AMI Meeting Corpus (Mccowan
et al., 2005), and the conversational SWITCHBOARD cor-
pus (Godfrey et al., 1992). Although these corpora fueled
the burgeoning tasks of automated dialogue act classifica-
tion and subsequent dialogue management, an underlying
weakness was their lack of consistency with one another.
More recently, many researchers have coalesced upon us-
ing variations of the ISO Standard 24617-2 (Bunt, 2011),
a portable, application-independent annotation schema that
can adequately deal with typed, spoken, and multimodal
dialogue. We adapt our schema from the ISO Standard
24617-2 to foster compatibility with recent (Fang et al.,
2012; Bunt et al., 2016; Petukhova et al., 2014; Petukhova
et al., 2018) and future corpora in other dialogue domains.

2.2. Health-Related Dialogue Act Corpora
Although many dialogue act corpora exist for both gen-
eral conversation (e.g., SWITCHBOARD (Godfrey et al.,
1992)) and specific tasks (e.g., tourist information (Young
et al., 2010)), resources for work in the healthcare domain
have thus far been scant. Gupta et al. (2018) recently re-
leased a corpus of 2858 SMS messages between patients
and trained health coaches, annotated for specific goals and
other DAs relevant to health behavior change therapy. Can
et al. (2016) and Pérez-Rosas et al. (2016) focused on mo-
tivational interviewing dialogues between patients and ther-
apists, coding counselor reflection types.1

Guntakandla and Nielsen (2018) released the only corpus
thus far that has focused specifically on dialogues between
trained interviewers and elderly patients. Similarly to Can
et al. (2016) and Pérez-Rosas et al. (2016), they also ex-
amined reflection types. Their corpus includes reflection
type labels (Complex Reflection, Simple Reflection, or No
Reflection) for 1536 counselor utterances.
An underlying commonality of the corpora developed by
Guntakandla and Nielsen (2018), Can et al. (2016), Pérez-
Rosas et al. (2016), and Gupta et al. (2018) is that they
all focus on psychological outcomes, either by directly pro-
moting healthy behaviors (Gupta et al., 2018) or more in-
directly promoting those behaviors by encouraging com-
plex reflection during motivational interviews (Pérez-Rosas
et al., 2016; Can et al., 2016; Guntakandla and Nielsen,
2018). In contrast, our focus is on facilitating cognitive
assessment. Thus, we seek not to counsel or otherwise ac-
tively influence patients, but instead to encourage them to
provide thorough narrative responses in the context of a nat-
ural conversation (Farzana and Parde, 2019).

2.3. Dementia Detection Corpora
Analysis of recorded or transcribed dialogue samples can
provide valuable clues for early-stage dementia diagnosis.

1Reflection, a trademark characteristic of motivational inter-
viewing, refers to the act of explicitly or implicitly mirroring con-
tent from the preceding utterance.

Figure 1: The image used for the Cookie Theft Picture De-
scription Task. Annotated regions (Masrani, 2018) indicate
different topic areas for our DA annotation schema.

Recent work in automated dementia detection has focused
on such samples, harnessing linguistic, acoustic, and demo-
graphic features from text and/or audio data (Habash et al.,
2012; Orimaye et al., 2014; Fraser et al., 2016; Yancheva
and Rudzicz, 2016; Orimaye et al., 2018; Karlekar et al.,
2018; Di Palo and Parde, 2019). Although our focus in this
work is on dialogue modeling, our goal is specifically to
model dialogue in the context of cognitive health assess-
ment. Therefore, we collect dialogue act labels as an ad-
ditional annotation layer for the most popular natural lan-
guage dementia detection dataset, commonly known as De-
mentiaBank. To provide requisite background, we summa-
rize the publicly available datasets for dementia detection
here.
DementiaBank (Becker et al., 1994) is the largest and most
commonly-used dementia detection dataset. It consists of
transcripts and recordings of English-, German-, Mandarin-
, Spanish-, and Taiwanese-speaking participants with and
without dementia completing several different language
tasks. The task most frequently of interest to natural lan-
guage processing researchers is the Cookie Theft Picture
Description Task, a component of the Boston Diagnostic
Aphasia Examination (Goodglass and Kaplan, 1972). In
this task, English-speaking patients are asked to describe
an image to an interviewer in a two-person conversational
setting. We describe this data subset in more detail in Sec-
tion 3.1, as it serves as the basis upon which our dialogue
act corpus is built.
The Western Aphasia Battery Dataset (Risser and Spreen,
1985) contains writing samples that were elicited based on
an image of a picnic. Subjects were asked to hand-write
detailed descriptions of the scene, with the resulting de-
scriptions filling a similar diagnostic role to that of the
cookie theft picture descriptions. The Cinderella Narrative
Dataset (Santos et al., 2017), used to detect mild cogni-
tive impairment, contains speech samples elicited by asking
participants to tell the “Cinderella” story after examining a
corresponding picture book.
A common thread among these corpora is that the spoken
and written samples were all collected manually by clin-
icians, during in-person visits. Not only is this costly in
terms of clinicians’ time; it is often inconvenient for pa-
tients, who must travel to testing sites at times dictated by
clinicians’ schedules. A conversational agent that can con-
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duct these interviews automatically, on the patient’s own
time, at a location of their preference, could ameliorate
these issues. Collecting a suitable DA corpus to train such
an agent is a necessary first step toward its development,
and the underlying motivation for our work here. Since
DementiaBank is the largest existing source of cognitive
health screening dialogues, in addition to being a popular
resource among researchers for the downstream task of au-
tomated dementia detection, we select it as the basis upon
which our dialogue act corpus is built.

2.4. Dialogue Act Modeling
Many studies conducted on dialogue seek to model its con-
versational structure by analyzing sequences of user in-
tents. Intelligent systems designed to facilitate conversa-
tions autonomously need to replicate the same structure ob-
served in natural human-human conversations, and to do so
they typically manage input and select follow-up responses
by classifying user utterances based on the dialogue act(s)
that they realize (Shriberg et al., 1998; Prasad and Walker,
2002). Performing DA classification effectively enables the
development of high-quality natural language dialogue sys-
tems (Higashinaka et al., 2014). A system’s ability to accu-
rately recognize different DAs often relies on a variety of
information sources, including its own dialogue history.
DA recognition is known to be a complex problem, and
many different approaches ranging from multi-class/multi-
label classification to structured prediction have been ap-
plied to it (Stolcke et al., 2000; Yang et al., 2009). Rather
than focusing on developing a state-of-the-art DA predic-
tion model, our emphasis in this work is on the develop-
ment of a DA corpus for cognitive health screening inter-
views. We validate the corpus here, in turn enabling us to
shift our focus to the development of more complex DA
recognition models in follow-up work. To validate our cor-
pus, we train several well-known statistical and neural clas-
sification models that have been used previously for both
DA prediction and other tasks; more details about our val-
idation experiments can be found in Section 5. We refer
readers to the wealth of additional studies on dialogue act
modeling for more detailed studies focusing exclusively on
DA classification (Venkataraman et al., 2003; Ang et al.,
2005; Khanpour et al., 2016).

3. Methods
We built our dialogue act corpus on top of a popular exist-
ing dementia detection dataset, using a custom annotation
schema designed to align well with schemata used in other
dialogue domains. We describe the source corpus, annota-
tion schema, and data collection process in the following
subsections.

3.1. Source Corpus
We used the Pitt Corpus (Becker et al., 1994), a subset of
DementiaBank, as the source for our dialogue act corpus.
The Pitt Corpus contains verbal descriptions of an eventful
image including, among other elements, a boy stealing a
cookie (Figure 1). To elicit the descriptions, participants
were shown the image and asked to describe what they

Group Subjects Transcripts Avg. Words
AD 169 257 104.98 (SD=59.8)
MCI 19 43 111.09 (SD=55.8)
Control 99 242 113.56 (SD=58.5)

Table 1: Pitt Corpus statistics.

saw. The interviewer coaxed participants to further elab-
orate their descriptions as needed. This process is known
as the Cookie Theft Picture Description Task. The task is a
clinically-validated assessment that was originally created
for the Boston Diagnostic Aphasia Examination (Good-
glass and Kaplan, 1972), and has been used in many clin-
ical settings for dementia detection (Mendez and Ashla-
mendez, 1991; Giles et al., 1996) and detection of other
language impairments (Weintraub et al., 1990; Williams et
al., 2010; Azambuja et al., 2012). The Pitt Corpus contains
both audio recordings and transcripts for each participant
who completed this task, as well as labels indicating their
dementia status.
Overall, the Pitt Corpus includes 257 speech samples
from participants diagnosed with probable or possible
Alzheimer’s disease or related dementia (AD), and 242
samples from healthy controls. It also contains a smaller
number of speech samples from patients with mild cog-
nitive impairment (MCI); these are patients with no of-
ficial dementia diagnosis, but who received lower scores
than healthy controls on a cognitive battery. Table 1 pro-
vides these statistics, along with average transcript length
for each group.
The transcribed speech samples were separated into in-
dividual speech utterances (Interviewer=INV and Partici-
pant=PAR) following the CHAT-format annotation guide-
lines (MacWhinney, 2000). Although the transcripts also
contain morphosyntactic information including part-of-
speech tags, descriptions of tense, and repetition mark-
ers, we extracted only the speaker utterances (both INV
and PAR). We did not remove or edit any CHAT tran-
scription entities, such as indicators of filled pauses (e.g.,
“ah,” “um”), repairs (e.g., “in the in the kitchen”), or non-
standard word forms (e.g., “gonna”). Table 2 shows a sam-
ple transcript from the corpus, annotated using our dialogue
act schema (described in the following subsection).

3.2. Annotation Schema
Our dialogue act annotation schema is based on the ISO
Standard 24617-2 (Bunt, 2011), which inherits nine dimen-
sions from the DIT++ scheme (Bunt, 2006). These dimen-
sions, each of which cover different communicative ac-
tivities, include: (1) Task DAs that move the communi-
cation forward, motivating the dialogue; (2-3) Auto- and
Allocation-Feedback DAs, which provide or elicit informa-
tion about the processing of previous utterances by the cur-
rent speaker or addressee, respectively; (4) Turn Manage-
ment DAs used to obtain or release the right to speak; (5)
Time Management DAs that manage the use of time in the
interaction; (6) Discourse Structuring DAs that deal with
topic management and opening and closing sub-dialogues;
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Speaker DA Utterance

INV Instruction this is the picture

INV Instruction just tell me what’s
happening in the picture

PAR Answer: t5,
Answer: t6

he’s trying to steal
cookie

PAR Answer: t6 she’s uh the little girl is
uh saying shh

PAR Answer: t2 uh the mother don’t hear

PAR Request:
Clarification

did I tell say the sink
was running over ?

INV Answer: Yes okay mhm you did
INV Acknowledg. okay that’s fine

Table 2: Transcript fragment from the Pitt Corpus.

(7-8) Own and Partner Communication Management DAs,
by which speakers can edit their contributions or the contri-
butions of other speakers, respectively; and (9) Social Obli-
gations Management DAs for dealing with social conven-
tions (e.g., greetings, introductions, apologies, or expres-
sions of gratitude). We adapted these dimensions to in-
clude custom roles necessary to the Cookie Theft Picture
Description Task, to reflect the types of interactions typical
of the task and to minimize complexity for our annotators;
however, our adapted schema can be easily mapped to the
original ISO Standard 24617-2.

In the Task dimension, we added labels ({Answer:t1-
Answer:t8}) corresponding to the regions annotated in the
image in Figure 1. We introduced these DA labels so
that we could capture a finer-grained understanding of the
comprehensiveness and coverage of a participant’s descrip-
tion. These image regions have previously been validated
as representative of the image’s central information units,
or themes (Masrani, 2018).

We simplified the DA hierarchy by removing the lowest-
level distinctions for many dimensions, which are either
difficult for novice annotators to judge (e.g., sub-types of
Time Management), or can be recovered from other prop-
erties of the data. We also only included DAs from the
following dimensions: Task, Feedback, Time Management,
Own/Partner Communication Management, Social Obliga-
tions Management, and Other (a default for DAs not fitting
into any other dimension). The dimensions are in principle
often already independent of one another, and we explicitly
instructed the annotators to assign only the most relevant
DA label to each utterance, with the exception that multiple
labels from {Answer:t1, ..., Answer:t8} could be assigned
if necessary.2 Our full adapted DA annotation schema is
shown in Tables 3 and 4.

2For example, the utterance “the mother is wiping dishes and
the water is running on the floor” could be labeled as Answer:t2
or Answer:t4, but more accurately as both.

Task

Question:
General

Speaker wants information from
addressee, and does not signal
non-understanding.

Question:
Reflexive

Speaker asks questions to him/herself,
not to others.

Answer:
Yes Affirmative answer.

Answer:
No Negative answer.

Answer:
General

Speaker provides complete or partial
information in response to a
question/instruction in a previous
utterance.

Ans.:
t1–t8 Illustrated in Figure 1.

Instruc-
tion

Speaker gives directions to do
something, or makes a statement to
elicit information from the addressee.

Sugges-
tion

Speaker offers addressee an idea/plan
for consideration.

Request Speaker asks addressee to perform an
action.

Offer
Speaker expresses readiness to do or
give something to the addressee if
desired.

Feedback

Acknowl. Speaker expresses understanding of
the addressee.

Request:
Clarifica-
tion

Speaker asks a clarifying question
regarding any previous context of the
conversation, and expects a response
from the addressee.

Feed-
back:
Reflexive

Speaker answers his/her own
questions or responds to his/her own
statements.

Table 3: Dialogue act annotation schema (part one).

3.3. Data Collection

Two graduate students annotated 100 transcripts from the
Pitt Corpus. The annotators viewed the entire transcripts
and were asked to assign a DA label from the schema in
Tables 3 and 4 to each segmented utterance. They received
instruction on DA annotation as well as detailed guidelines
and examples for the permitted labels. The annotations
were collected using the WebAnno framework (Yimam et
al., 2013), a free, user-friendly, web-based annotation inter-
face. Annotators were told to choose the label correspond-
ing to an utterance’s main function, and were provided with
an illustrated guide to the labels in {Answer:t1, ..., An-
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Time Management

Stalling
Speaker moderates the time needed to
continue the dialogue directly or
indirectly.

Own/Partner Communication Management

Correc-
tion

Speaker corrects information from a
previous utterance.

Social Obligation Management (SOM)

Farewell

Speaker explicitly seeks to end a
conversation. Farewell should not be
confused with Acknowledgement —
many transcripts may end without a
Farewell.

Apology Speaker desires to convey regret.

Greeting
Speaker explicitly seeks to begin a
conversation. Many transcripts may
begin without a Greeting.

Other

Other Default tag for otherwise
non-classifiable utterances.

Table 4: Dialogue act annotation schema (part two).

swer:t8}. They were also told that those labels should take
precedence over seemingly equally-applicable alternate la-
bels (e.g., Acknowledgement).
Disagreements (including overlapping but non-identical
sets of {Answer:t1, ..., Answer:t8} labels) were forwarded
to a third-party, native English-speaking adjudicator. The
adjudicator considered both annotations and selected the fi-
nal label (or optionally, labels, if all were in {Answer:t1, ...,
Answer:t8}) for the utterance.

4. Corpus Analysis
In total, the 100 annotated transcripts comprised 1616 dis-
tinct utterances. We assessed inter-annotator agreement us-
ing a modified version of Cohen’s kappa (Cohen, 1960).
More specifically, in cases when we allowed multiple labels
for an utterance (e.g., with {Answer:t1, ..., Answer:t8}), we
considered two annotators to agree if they had indicated at
least one common label. We refer to this updated kappa
statistic as relaxed kappa (κr), and present the updated
formula below, letting xm be a binary variable indicating
agreement or disagreement regarding utterance m, Si

m be
the set of labels provided by annotator i for utterance m, N
be the number of utterances, and nik be the number of times
annotator i predicted label k.

xm =

{
1, if |S1

m ∩ S2
m| > 0

0, otherwise
(1)

Po =
1

N

∑
m

xm (2)

DA Speaker
PAR INV Frequency

Answer:t1-
Answer:t8 904 1 56%

Acknowledgement 34 156 11.8%
Instruction 0 128 7.9%
Answer:General 81 17 6.1%
Question:General 17 61 4.8%
Stalling 61 3 4.0%
Request:Clarification 49 11 3.7%
Answer:Yes 7 17 1.5%
Farewell 0 16 1.0%
Feedback:Reflexive 14 0 0.9%
Other 12 1 0.8%
Answer:No 5 4 0.6%
Question:Reflexive 9 0 0.6%
Correction 5 0 0.3%
Apology 2 1 0.2%
Grand Total (Count) 1616

Table 5: DA frequencies, from highest to lowest.

Pe =
1

N2

∑
k

n1kn
2
k (3)

κr =
Po − Pe

1− Pe
(4)

Across all utterances, κr=0.75. This is in line with values
reported for other recent DA corpora utilizing labels of sim-
ilar granularity (e.g., Shirai and Fukuoka (2018)), and val-
idates the feasibility of the annotation schema. We present
all non-zero DA type frequencies in the corpus in Table
5, organized into both participant (PAR) and interviewer
(INV) utterances. In Table 6, we also provide a breakdown
of the ten most frequently co-occurring topic-related labels
({Answer:t1, ..., Answer:t8}). This was computed to facil-
itate analysis of which topics participants typically group
together when describing the image; we observe that many
frequent co-occurrences are spatially related.

4.1. Examples of Inter-Annotator Disagreement
In analyzing the collected data, we observe that certain
words or phrases are generally more ambiguous and prone
to causing confusion and disagreement than others. For ex-
ample, a common source of disagreement among our anno-
tators concerned phrases such as “alright thanks” or “okay
that’s fine,” both of which could conceivably signal either
Acknowledgement or Farewell at the end of the conversa-
tion. More generally, we found that label disagreement of-
ten occurred when words or phrases could be interpreted
either way in a given context; often to more decisively dis-
ambiguate the speaker’s true intent, prosodic or visual cues
would be needed.
We provide an example of one such disagreement that oc-
curred during data collection in Table 7. Specifically, the
utterance u10 of transcript t057 can be interpreted either
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DA Count Frequency

Answer:t5, Answer:t6 90 9.97%

Answer:t5, Answer:t8 59 6.53%

Answer:t2, Answer:t4 45 4.98%

Answer:t5, Answer:t6, Answer:t8 22 2.44%

Answer:t1, Answer:t2 18 1.99%

Answer:t3, Answer:t4 16 1.77%

Answer:t2, Answer:t5, Answer:t6 12 1.33%

Answer:t6, Answer:t8 11 1.22%

Answer:t6, Answer:t7 7 0.78%

Answer:t2, Answer:t3 6 0.66%

Table 6: The 10 most frequent co-occurring labels.

T. ID U. ID Speaker Utterance

t057 u09 PAR and the cookie jar’s look-
ing full.

t057 u10 INV okay.

t057 u11 PAR that’s it.

t057 u12 INV alright thanks.

t257 u00 INV now I want you to tell me
everything you see happen-
ing there.

t257 u01 INV everything that you see go-
ing on in that picture.

t257 u02 PAR &uh inside the room or ev-
ery place ?

Table 7: Example disagreements, with columns indicating
the transcript ID, utterance ID, speaker label, and utterance
text.

as an Acknowledgment or as an expression of saying good-
bye (Farewell), indicating the end of the conversation in
response to the previous utterance of the participant. Tran-
script t257 highlights another common source of disagree-
ment in the corpus; namely, the task of disambiguating
question types (Question:General, Question:Reflexive, or
Request:Clarification). Correctly discerning the speaker’s
interrogative intent often depends on the context from the
previous utterances. One can see how the utterance u02
could conceivably be misunderstood as Question:General
in isolation, whereas if it is placed in context, a more ap-
propriate label becomes evident (Request:Clarification).

5. Dialogue Act Classification
To validate the utility of our corpus, we used it to train and
evaluate a dialogue act classification model. In addition to

demonstrating that the general and domain-specific speaker
intents can be successfully modeled, this establishes a per-
formance benchmark upon which we hope to improve in
follow-up work. In this section we describe the features
extracted for this benchmark, as well as the classification
models considered in our experiments. We provide results
showing which classification model exhibited the highest
performance, and compare the performance of all exper-
imental models with a baseline model that predicted the
most frequent label (Answer:t6). Comparing with this latter
baseline allowed us to validate that our model performed at
a level clearly distinguishable from chance.

5.1. Features
For each utterance, we extract a vector of continuous (nu-
meric) and categorical (one-hot encoded representations)
features. These features can be subdivided into three cat-
egories: (1) target utterance features; (2) context fea-
tures; and (3) global dialogue features. All features are
derived from the interview transcripts and represent aspects
of the dialogue in which each utterance occurs. Each fea-
ture category is described in further detail below.

5.1.1. Target Utterance Features
We extracted n-gram features for n ∈ {1, 2, 3} from the en-
tire training corpus, comprising all training utterances. We
retained only those n-grams that appeared at least five times
across the training data, and constructed a sparse feature
vector for each utterance containing one dimension for each
n-gram. Feature values were filled using TF-IDF counts for
a given utterance, and each vector was L2-normalized with
unit modulus.

5.1.2. Context Features
We introduced context features to model dependencies
among consecutive utterances in a natural conversation.
Specifically, we added the gold-standard DA labels3 of
the immediate previous utterance as a 26-dimensional one-
hot encoded feature vector for the current utterance. This
served as a simple way to address a key shortcoming of the
standard multi-class classification models examined here
(see Section 5.2.2); namely, that they are not naturally
equipped to handle sequential information.

5.1.3. Global Dialogue Features
Finally, we incorporated global dialogue features as a
mechanism for capturing speaker information rather than
utterance-specific characteristics. The goal in including
these features was to facilitate the classifier’s ability to
model turn-taking behavior, drawing upon our observations
that certain dialogue acts (e.g., Answer:t1-Answer:t8) tend
to be uttered by the participant in the interview, whereas
others (e.g., Instruction) tend to be uttered by the inter-
viewer. We refer the reader to Table 5 for an in-depth break-
down of participant and interviewer utterance distributions.

3We note that using the gold-standard labels reflects a hypo-
thetical downstream case with perfect DA classification accuracy.
Since this scenario may be unrealistic, we also include results
without these features in Table 8 for comparison.
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5.2. Experiments
5.2.1. Data Preprocessing
As previously noted, our corpus contains 1616 utterances
across 100 interview transcripts, labeled using the 26 DAs
described in Tables 3 and 4. All speakers in all transcripts
are anonymous to protect user privacy; each transcript and
each speaker within a given transcript were instead linked
to a unique ID (transcripts are represented using an inter-
view number, and speakers are identified using participant
numbers). Participant demographic data (e.g., age, gen-
der, and interview date) can be extracted from accompany-
ing metadata files using the participant and transcript IDs.
Sixty-four unique participants are represented among the
100 interview transcripts included in our corpus.
Our classification objective was to predict DA labels that
matched the gold standard values (i.e., labels provided by
trained annotators, or adjudicated labels in the event that
the annotators disagreed). We partitioned the full dataset
into 10 folds, with each fold containing 10 transcripts. We
kept all transcripts belonging to the same participant in the
same fold to ensure no unintentional biases or performance
boosts in the classification results.

5.2.2. Classification Models
We experimented with multiple supervised machine learn-
ing methods to establish a strong performance benchmark
for our dialogue act classification task. As exemplified ear-
lier in Table 2, certain utterances in our corpus allow mul-
tiple labels (specifically, those containing topic-related in-
formation, i.e., {Answer:t1-Answer:t8}). This makes our
classification task a multi-class, multi-label problem. In
multi-label text classification, texts are automatically clas-
sified into a subset of one or more predefined classes, rather
than strictly requiring a single class label. More formally,
we can denote training examples (individual utterances)
as {u1, ..., un} and the k classes (dialogue act labels) as
{c1, ..., ck}. We can then represent the label set for utter-
ance ui as a binary vector Yi = [y1, ..., yk], yj ∈ {0,1},
where yj = 1 if ui belongs to class j or otherwise yj = 0.
We experiment with the following standard classification
models for our multi-label dialogue act classification task.

• Support Vector Classifier (SVC): SVC has demon-
strated significant success on text classification tasks
(Joachims, 2002; Yang, 2001); hence, we include it
in our experiments. Multi-label SVC adopts the one-
versus-all approach, treating the DA classification task
as multiple binary classification problems, where the
utterances from the target class are given positive la-
bels (i.e. y = 1), and the rest of the utterances are
given negative labels (i.e., y = 0). Features were stan-
dardized by removing the mean and scaling to unit
variance. Following prior work, we applied a linear
kernel (Joachims, 1998) and kept the penalty parame-
ter C at a default value of 1.0.

• Decision Tree (DT): Decision Trees hierarchically or-
ganize features based on information gain, and have
proven to be successful on prior DA classification
tasks (Moldovan et al., 2011; Stolcke et al., 2000);

thus, we include it as an additional baseline classifi-
cation model in our experiments.

• Logistic Regression (LR): Logistic Regression mod-
els have proved useful on numerous text classification
tasks (Sankoff and Labov, 1979; Schütze et al., 1995;
Berger et al., 1996; Ratnaparkhi, 1996; Kehler, 1997;
Nigam et al., 1999). For this reason, we consider it as
an additional baseline classification model.

For all standard classification models, we apply a one-
versus-all wrapper to predict multiple labels, selecting any
and all labels surpassing a prediction probability thresh-
old of 0.5 and adhering to several post-processing con-
straints, outlined below. We implemented each classifier
using sckikit-learn v0.21.3,4 with the default hyperparame-
ter settings for each. We used the same feature set (target ut-
terance features, context features, and global dialogue fea-
tures, described in Section 5.1) for all three standard classi-
fication models.
Our focus in establishing a benchmark was on standard
classification algorithms due to the size of our corpus.
However, we also conducted preliminary experiments to as-
sess how neural networks perform compared to these other
classifiers for our dataset. One potential advantage of neu-
ral models over standard classifiers is that their response
function is continuous (smooth) at the decision boundaries,
allowing them to avoid hard decisions and complete frag-
mentation of data associated with decision questions. For
our experiments here, we used a simple feedforward neural
network with a single hidden layer comprised of 128 units,
and a sigmoid activation at the output layer. For label pre-
diction, we then set our classification threshold at 0.5 for
each class as usual. We used a binary cross-entropy loss
function when optimizing the model to ensure that output
nodes were penalized independently.
After predicting an initial set of labels based on probability
thresholds, we passed the labels through a post-processing
step to ensure that each of the previously-described mod-
els adhered to the same restrictions as our human anno-
tators. Specifically, in this step we applied the following
constraints:

• For utterances for which no predicted probability for
any DA label exceeded the classification threshold, the
model defaulted to selecting the DA label with the
highest class probability. This was done to eliminate
the possibility of an utterance having no predicted la-
bel, since leaving an utterance unlabeled was a disal-
lowed behavior for human annotators.

• For utterances for which the predicted probability for
multiple DA labels exceeded the classification thresh-
old:5

– If some were in {Answer:t1, ..., Answer:t8} and
some were not, the model retained only those in
{Answer:t1, ..., Answer:t8}.

4https://scikit-learn.org/stable/
5Human annotators were only allowed to select multiple labels

if all of the selected labels were in {Answer:t1, ..., Answer:t8}.

https://scikit-learn.org/stable/
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– If none were in {Answer:t1, ..., Answer:t8}, the
model retained the single label with the highest
class probability.

5.3. Results
We evaluated performance for the most-frequent-label
baseline (BASE), SVC, DT, LR, and neural network (NN)
models using accuracy, Jaccard index, micro-averaged
precision, micro-averaged recall, and micro-averaged F1

score,6 and present the results in Table 8. We calculated our
performance metrics using 10-fold cross-validation across
the entire dataset. As previously mentioned, we run ex-
periments both with and without context features; cases
without those features are denoted as -CONTEXT. Since
some utterances contain multiple gold standard labels (e.g.,
u01={Answer:t5, Answer:t6}) and our accuracy metric re-
quires an exact match in label(s) to count an utterance as
a true positive, accuracy for the baseline model is closer
to 9% despite the most frequent label making an appear-
ance in the label set for 15% of utterances. We address this
by measuring label overlap, and therefore partial matches
(e.g., predictions of Answer:t6 when the gold standard la-
bels are {Answer:t5, Answer:t6}), using Jaccard index. Al-
though rarely used to evaluate dialogue act classification
models, Jaccard index is commonly used in other multi-
label classification settings, and thus we include it along-
side more standard single-class DA classification metrics
(e.g., accuracy, precision, recall, and F1) here. We compute
Jaccard index across the full test set according to the equa-
tion below, where T is the set of one or more true labels
for an utterance and P is the set of one or more predicted
labels for the same utterance.

J(T, P ) =
1

N

N∑
k=1

Tk
⋂
Pk

Tk
⋃
Pk

(5)

Interestingly, we observe that the inclusion of context
features results in only minor performance improvements
across all models; thus, it appears that inter-utterance de-
pendencies play a much smaller role than the text content
itself and global characteristics when modeling dialogue in
this domain. Despite our corpus being smaller than those
typically used to train neural models, we find that NN
outperforms the standard classification models across all
metrics, establishing a strong performance benchmark for
this dataset (Accuracy=68.64, Jaccard Index=75.54, Preci-
sion=80.59, Recall=75.06, and F1=77.70). The three stan-
dard classification models exhibited similar performance to
one another, with logistic regression slightly outperforming
the others. All three easily outperformed the most frequent
class baseline.

6. Conclusions and Future Work
In this work, we build the first dialogue act corpus for cog-
nitive health screening interviews. We design an annotation
schema with 26 DA types corresponding to task-specific,

6Due to the nature of our classification problem (multi-class,
multi-label classification with many classes and a high class im-
balance), we report micro-averaged metrics rather than individual
scores for each class.

Model Acc. Jaccard Precision Recall F1

BASE 8.76 13.23 15.16 15.16 15.16

SVC 58.39 67.56 72.56 67.57 69.97

SVC-
CONTEXT

58.15 66.57 71.79 66.76 69.16

DT 57.65 66.07 74.16 70.30 72.13

DT-
CONTEXT

58.68 67.17 69.63 71.53 70.56

LR 65.30 72.77 79.97 70.32 74.79

LR-
CONTEXT

65.24 72.09 79.24 70.06 74.31

NN 68.64 75.54 80.59 75.06 77.70

NN-
CONTEXT

67.78 74.37 79.37 74.05 76.59

Table 8: Cross-validation results (%), where Precision, Re-
call and F1 are micro-averaged. Note that in a multi-class
setting where a single label is output for each class (i.e.,
BASE), micro-averaged precision and recall are expected to
be the same (the sums of all false negatives and false posi-
tives, across all classes, will be equivalent to one another.)

goal-oriented, and general conversational cues, and collect
labels adhering to this schema for 100 Cookie Theft Pic-
ture Description interviews between clinicians and elderly
patients. The resulting corpus contains 1616 labeled utter-
ances; we compute Cohen’s kappa to assess inter-annotator
agreeement and find that we achieve substantial agreement
between two graduate student annotators (κr=0.75).
In analyzing the corpus, we find that the most common
DA labels are task-specific ({Answer:t1-Answer:t8}), fol-
lowed by a mixture of goal-oriented (Instruction) and tra-
ditional conversational (Acknowledgement) cues. This ver-
ifies our earlier observations that conversational cognitive
health screening is characterized by a unique set of dialogue
roles not adequately captured by existing schemata. As a
proof of concept and to validate the feasibility of the corpus,
we use the collected data to train a variety of statistical and
neural classification models for DA classification, finding
that all outperform a naı̈ve baseline by a clear margin. Fur-
thermore, we find that the top-performing model achieves
high overall performance (Accuracy=68.64, Jaccard In-
dex=75.54, Precision=80.59, Recall=75.06, and F1=77.70),
establishing a strong benchmark for this dataset. In the fu-
ture, we plan to leverage this corpus to develop a conversa-
tional agent capable of facilitating cognitive health screen-
ing interviews, with the eventual goal of promoting greater
healthcare accessibility for patients and reducing clinician
burden. We publicly release our corpus7 to the research
community to stimulate additional interest in this field and
foster further follow-up work from others.

7https://nlp.lab.uic.edu/resources

https://nlp.lab.uic.edu/resources
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