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Abstract
This paper describes an accurate framework for carrying out multi-lingual discourse segmentation with BERT (Devlin et al., 2019). The
model is trained to identify segments by casting the problem as a token classification problem and jointly learning syntactic features like
part-of-speech tags and dependency relations. This leads to significant improvements in performance. Experiments are performed in
different languages, such as English, Dutch, German, Portuguese Brazilian and Basque to highlight the cross-lingual effectiveness of the
segmenter. In particular, the model achieves a state-of-the-art F-score of 96.7 for the RST-DT corpus (Carlson et al., 2003) improving
on the previous best model by 7.2%. Additionally, a qualitative explanation is provided for how proposed changes contribute to model
performance by analyzing errors made on the test data.
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1. Introduction
Discourse Segmentation refers to the task of fragmenting a
document into minimal disjoint chunks of text called Ele-
mentary Discourse Units (EDUs). In the context of Rhetor-
ical Structure Theory (Mann and Thompson, 1988) or RST,
EDUs form the nodes of a discourse tree; while relations
between EDUs form arcs or edges between nodes. As a
motivating example, consider the discourse tree given in
Figure 1. EDUs labeled 1, 2 and 3 form nodes of the tree;
and arcs are labeled with ATTRIBUTION (used to indicate
instances of reported speech) and PURPOSE relations. This
example was taken from the RST-DT corpus (Carlson et al.,
2003) and the tree was constructed using the tool provided
by Gessler et al. (2019).

Figure 1: Discourse tree for a portion of text in wsj 2336:
EDUs form the nodes of the tree, and arcs represents rela-
tions.

Discourse segmentation is considered a challenging prob-
lem for several reasons. First, the boundary between syntax
and discourse is blurry (Carlson and Marcu, 2001). While
the clause is considered a basic EDU, segment boundaries
are often determined using lexical and syntactic clues. Ad-
ditionally, the amount of annotated data available is min-

imal and this makes training of data-hungry models like
neural networks difficult.
To assuage the problem of data insufficiency, syntax-free
models that leverage pre-trained representations (Wang et
al., 2018; Muller et al., 2019) from sentence encoders like
ElMo and BERT were proposed: these models achieved
very good results for the segmentation task. Likewise, the
use of syntactic features such as part-of-speech tags and
parse tree features helped achieve better results (Braud et
al., 2017; Lin et al., 2019). In fact, the latter achieved
state-of-the-art results using pointer networks (Vinyals et
al., 2015) with parse tree features.
In this paper, we propose a few changes that leverage
BERT’s (Devlin et al., 2019) structure in performing seg-
mentation. Our main contributions are:

1. We cast discourse segmentation as a token classifica-
tion problem, as opposed to sequence tagging. This
allows BERT to attend to one token at a time and not
the entire sequence, thereby making better decisions.

2. We suggest a simple multi-task learning approach that
uses the intermediate layers of BERT to carry out
part-of-speech tag prediction, and dependency relation
classification. This improves model performance, par-
ticularly for languages other than English.

3. Experiments are performed for different languages
to demonstrate the cross-lingual effectiveness of our
framework. We use multilingual BERT (abbreviated
as bert-multilingual-base1) as our sentence
encoder.

4. We also provide a qualitative explanation for what
worked in our favour via error analysis. This pro-
vides deeper insights into the model’s behaviour and
explains why we achieved better results2.

1https://github.com/google-research/bert
2The code used to carry out the experi-

ments reported in this paper is available at
https://www.github.com/takshakpdesai/discourse-segmenter.

https://github.com/google-research/bert
https://www.github.com/takshakpdesai/discourse-segmenter
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Figure 2: Model Architecture: The model attempts to classify if the masked word ‘that’ represents the beginning of a new
segment or not. The intermediate layers carry out feature prediction i.e. the POS tags and dependency relations of all tokens
with respect to masked token in the sentence.

2. Proposed Solution
Figure 2 provides a logical view of our model and its com-
ponents. Subsequent sub-sections describe the model and
related modifications/tasks.

2.1. Multilingual BERT encoder
At the heart of our model lies BERT, a powerful language
model (Devlin et al., 2019) that provides universal sentence
representations. Using BERT offers two advantages. First,
it can effectively capture syntactic, semantic and positional
dependencies between tokens and/or sub-tokens in a sen-
tence; leaving little to no room for feature engineering. Sec-
ond, it has been trained on a very large corpus: this allows
us to fine-tune pre-trained BERT models on downstream
tasks, especially when training data is minimal. This allows

us to get away with the data insufficiency problem since the
size of training corpora is small.
To work with languages other than English, Devlin et
al. (2019) released multilingual BERT: a single language
model pre-trained from multi-lingual corpora in 104 lan-
guages; using a shared multi-lingual vocabulary. Despite
being a shared language model, which could raise concerns
about its cross-lingual effectiveness, multilingual BERT
has given surprisingly good results for different language
tasks (Pires et al., 2019; Wu and Dredze, 2019).

2.2. Problem Formulation
Deep learning frameworks (Braud et al., 2017; Wang et al.,
2018) cast discourse segmentation as a BI tagging problem,
where B indicates the beginning of a new span and I indi-
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Pepsi said it will spend $ 10 million advertising the promotion
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Figure 3: An example showing the features captured for each token in the sentence: we consider the gold part-of-speech
tags and dependency relations with respect to the masked token.

cates the continuation of a previous span. As opposed to
casting it as a sequence tagging problem, we cast it as a to-
ken classification problem. Specifically, given a sequence
of tokens T = t0, t1 . . . tn, for each token ti, we present the
input to BERT as:

[CLS] t1 t2 . . . [MASK] . . . tn [SEP] ti

where the token ti is replaced by the [MASK] token. Here,
[CLS], [SEP] and [MASK] are special tokens used by
BERT. Note that the token ti is masked so as to prevent
model overfitting.

A similar idea was applied to sentence boundary detection
(Schweter and Ahmed, 2019) where a window of k charac-
ters is defined for markers such as periods, question marks,
etc., and a deep network was trained to identify if a marker
demarcates a sentence boundary or not. In this case, mark-
ers are well-defined (i.e. a sentence must end with a period,
question mark, exclamation point or quotation marks). Un-
fortunately, for discourse segmentation, such markers are
not well-defined which required us to check all tokens in
the sentence for EDU boundaries.
We conjecture that casting the problem this way allows
BERT to make better decisions as it attends to each token
and not the full sequence. This is particularly useful for
discourse segmentation as Wang et al. (2018) observed that
segmentation is a local problem and demarcating a segment
requires only on a small window of neighbouring tokens.
Trying to tag the full sequence may introduce unnecessary
noise and lead to errors.
Additionally, we define a positional vector p (Zhang et al.,
2017) for T = t1, t2...tj relative to the masked token ti as:

pj =


i− j if j <i

0 if j = i

j − i if j >i

(1)

Following Shi and Lin (2019), we embed the positional
vector and concatenate it to the encoder representations.

2.3. Joint Learning of Syntactic Features
Syntactic features are very helpful in learning language
tasks. Strubell et al. (2018) particularly observed that

jointly learning syntactic features improved the perfor-
mance of semantic role labeling systems. We extend the
idea to discourse segmentation, by jointly predicting the
following features for the sentence:

1. Part-of-speech tags of all tokens in the sentence

2. Dependency parent, child(ren) and sibling(s) of the
masked token

3. Dependency relation of parent token with respect to
the masked token

An example is provided in Figure 3. We extract part-
of-speech tags of all tokens; and the dependency parent
(and corresponding relation), child(ren) and siblings of the
masked token. For example, if the token ‘spend’ is masked,
we train the classifier to learn CCOMP relation between
‘said’ and ‘spend’; CHILD relations with respect to the to-
kens ‘it’, ‘will’, ‘$’, and ‘advertising’; SIBLING relation
with respect to the token ‘Pepsi’ and NOREL with respect
to every other token.
As shown in Figure 2, the first p layers of BERT learn the
part-of-speech tags of the words under consideration. This
layer passes information to the upper layers: d layers learn
dependency relations of other words with respect to the to-
ken. The final layer (n = 12 in case of BERT) provides the
final hidden representation of the sentence, that is fed to the
decoder for classification.
Joint training offers several advantages. First, multi-task
learning helps improve model performance as features
learned during training for syntactic features aids segmen-
tation. Second, features are only required during training,
and not during testing or tagging. This gives us an added
third advantages: we can make use of gold POS tags and
parse-trees. This is particularly advantageous because, as
Braud et al. (2017) observed, system-generated parse-trees
adversely affect segmentation as opposed to gold trees that
improved performance significantly.

2.4. Decoder
Our decoder design is fairly simple. We place a fully con-
nected layer on top of BERT that accepts the final hidden
representation of the sentence and predicts whether the to-
ken represents the beginning of a new segment or not. We
use the softmax activation function to convert the linear
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Dataset Training Validation Test
# Docs # Sents # EDUs # Docs # Sents # EDUs # Docs # Sents # EDUs

eng.rst.rstdt 309 6,672 17,646 38 717 1,797 38 929 2,346
deu.rst.pcc 142 1,773 1,788 17 207 275 17 213 294
nld.rst.nldt 56 1,202 1,350 12 257 347 12 248 344
por.rst.cstn 110 1,595 1,772 14 232 552 12 123 265
eus.rst.rstdt 84 990 1,517 28 350 604 28 320 593

Table 1: Description of how the data is distributed in each dataset. Notice that the amount of training data available for
languages like Dutch and Basque is too small.

Model eng.rst.rstdt deu.rst.pcc nld.rst.rstdt por.rst.cstn eus.rst.rstdt
P R F P R F P R F P R F P R F

Baseline 86.86 90.41 88.60 84.91 91.84 88.24 84.87 88.08 86.44 84.67 83.40 84.03 75.85 77.46 75.66
Token 95.45 94.67 95.06 94.76 86.05 90.20 97.69 86.05 91.49 92.88 88.68 90.73 87.25 80.78 83.89
Post 96.17 96.21 96.19 93.34 95.58 94.45 93.86 93.31 93.59 87.72 94.34 90.91 84.63 84.49 84.56

Depend 94.41 97.19 95.78 92.74 95.58 94.14 95.73 91.28 93.45 90.98 91.32 91.15 88.87 82.13 85.36
Both 95.24 95.48 95.36 93.81 92.86 93.33 93.02 93.02 93.02 91.60 90.57 91.08 86.02 81.96 83.94

Ensemble 96.32 97.02 96.67 92.81 96.60 94.67 94.72 93.90 94.31 89.53 93.59 91.51 85.59 85.16 85.38

Table 2: Empirical results and ablation study: As is evident from the obtained results, casting the problem as a token
classification (Token) problem led to significant improvement. Likewise, training for POS tags (Post), dependency relations
(Depend) or both (Both) improved model performance across all languages.

layer’s output to a probability distribution (over two classes
i.e. B and I).

3. Experimental Results
3.1. Data
To test the performance of our model, we experimented
with datasets in 5 different languages:

1. The RST-DT corpus (Carlson et al., 2003) in English
(eng.rst.rstdt)

2. The Potsdam Commentary corpus (Stede and Neu-
mann, 2014) in German (deu.rst.pcc)

3. The Dutch Discourse Treebank (Redeker et al., 2012)
(nld.rst.rstdt)

4. The Cross-document Structure Theory News Cor-
pus (Cardoso et al., 2011) in Portugeuse Brazilian
(por.rst.cstn)

5. Basque Discourse Treebank (Iruskieta et al., 2013)
(eus.rst.rstdt)

Some statistics on the data are included in Table 1.

3.2. Setup
We implemented our tool in PyTorch 3 and used the API
provided by researchers at HuggingFace4 to fine-tune pre-
trained BERT. All experiments were performed using 8
NVIDIA-GTX 1080 Ti GPUs in parallel.
For training, we constructed batches of size 16. We used
cross-entropy for calculating network loss and the Adam
optimizer (Kingma and Ba, 2015) for updating network
weights. The learning rate is set to 3e − 5. To tune the
hyper-parameters, we held-out a portion of the training data
as validation set (see Table 1): all hyper-parameters were

3https://pytorch.org/
4https://github.com/huggingface/transformers

tuned on this validation set. We experimented for different
values of p, d ∈ {9, 10, 11} but we did not observe any sig-
nificant difference in the F-scores (±0.15). We report the
best results for each dataset.

3.3. Empirical Results
We report our empirical results for discourse segmentation
in Table 2. As a baseline, we cast segmentation as a BI
tagging problem, following the guidelines provided by De-
vlin et al. (2019). One can see that by casting it instead as
token classification (Token), the F-score improved signifi-
cantly. In fact, simply casting the problem as token clas-
sification got us very close to the state-of-the-art for the
English RST-DT corpus (Muller et al., 2019). Likewise,
training for part-of-speech tags (Post) and dependency re-
lations (Depend) also improved the F-score for each lan-
guage. The best improvements were observed for the Ger-
man and Dutch datasets; with F-scores improving by 4.47
and 2.87 points respectively.
It can also be observed that training either for POS tags or
for dependency relations improves the F-score more signif-
icantly as compared to training for both (Both). A likely ex-
planation for this is that training for both leads to poor gen-
eralization thereby leading to comparatively poor improve-
ments. To assuage the problem, we increased the number of
training iterations, but this led to severe overfitting. In gen-
eral, ensembling (we did not consider Baseline and Both)
helped and gave us better scores when compared to these
models in isolation.

4. Analysis of the English dataset
Empirical results summarized in Table 2 show that per-
forming token classification and not sequence tagging im-
proves model performance. We saw an absolute improve-
ment of 6.46 in the F-score showing that change in formula-
tion alone helped achieve impressive results. To understand

https://pytorch.org/
https://github.com/huggingface/transformers
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the impact of casting the problem in an alternate fashion
and of the syntactic features considered, we analyze errors
made by the model on the eng.rst.rstdt dataset.

4.1. Comparison with Existing Models

We first compare the results obtained for the eng.rst.rstdt
corpus with previous work done. To ensure fair compar-
ison, we report results for discourse segmentation at the
sentence-level and not at the document-level (Braud et al.,
2017). Table 3 reports the performance of our model and
other competing systems.

Model P R F
Soricut and Marcu (2003) 84.1 85.4 84.7

Subba and Di Eugenio (2007) 85.5 86.6 86.0
Hernault et al. (2010) 91.0 87.2 89.0

Bach et al. (2012) 91.5 90.4 91.0
Feng and Hirst (2014) 92.8 92.3 92.6

Wang et al. (2018) 92.9 95.7 94.3
Lin et al. (2019) 94.1 96.6 95.4

Muller et al. (2019) 95.3 96.8 96.0
Our Model 96.3 97.0 96.7

Human 98.5 98.2 98.3

Table 3: Performance of our model and other systems on
the RST-DT dataset. Results are reported assuming parse
trees are extracted using the BLLIP parser (as used by au-
thors in the paper)

SPADE is a probabilistic system developed by Soricut and
Marcu (2003) that makes use of lexical and syntactic infor-
mation to predict segment boundaries. Subba and Di Eu-
genio (2007) designed a simple neural network framework
that makes use of similar features to carry out text seg-
mentation. Hernault et al. (2010) and Bach et al. (2012)
were the first to cast discourse segmentation as a sequence
classification problem and use biLSTM-CRFs with parse
tree features. Feng and Hirst (2014) performed segmen-
tation in two passes: the second pass uses global features
extracted from the results of the first pass to segment sen-
tences. Wang et al. (2018) used ElMo embeddings with
restricted self-attention: a mechanism that computes atten-
tion score for each token with respect to a small context
and not the full sequence. Lin et al. (2019) used pointer
networks with parse tree information to perform join dis-
course segmentation and relation classification. Muller et
al. (2019) used BERT contextual embeddings with convo-
lutional character embeddings as input to a biLSTM archi-
tecture to obtain accurate segments.

As is evident from Table 3, we were able to achieve state-
of-the-art results on the RST-DT corpus, beating the previ-
ous state-of-the-art model by an absolute 0.7 points and by
a relative 7.2 points. It can also be observed that many of
these systems were high-recall systems i.e. they end up pre-
dicting more EDUs than necessary. Our system achieved a
higher precision than all, again beating the state-of-the-art
by an absolute 1.0 points (relative 10 points).

4.2. Sentence length v/s Number of errors
We compare the proportion of errors made by the models
with respect to the length of the sentence i.e. the number of
tokens in the sentence. For the purpose of evaluation, we
consider a sentence to be incorrectly segmented regardless
of whether the type of error (Bach et al., 2012) is over (i.e.
a sentence is segmented when it should not be) or miss (a
sentence is not segmented when it should be). In Figure 4,
we provide a graph showing the proportion of errors made
by the models with respect to the sentence length. The pro-
portion of errors is calculated as the ratio of sentences that
were incorrectly tagged to the total number of sentences,
grouped by the sentence length.

Figure 4: Graphs showing the proportion of errors made v/s
the length of sentence.

As suspected, the baseline model performs poorly when
the sentences are longer. However, formulating the prob-
lem in an alternate fashion and injecting syntax make the
model perform much better. This effect is more discernible
for sentence lengths between 30 and 45, indicating that the
baseline model could not segment a large fraction of longer
sentences correctly.

4.3. Frequent Error Patterns
In Table 4, we list the 8 most frequent tokens that were
incorrectly segmented; and the total number of errors made
by each model. As one can infer from Table 4, all models
give fewer errors than the baseline model. The reduction
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in total number of errors is more than 62% highlight the
efficacy of our models. Additionally, training for syntax
further reduced these errors by more than 5%.

Token Absolute number of Errors
Baseline Token Post Depend Both

and 40 21 15 20 16
that 32 11 8 6 7
to 31 22 18 21 16
the 17 9 9 8 7
as 14 4 2 3 1
in 10 3 4 3 2
for 10 7 7 6 6
if 10 3 4 3 3

Total 608 231 187 201 200

Table 4: Table showing the number of errors made by all
models when tagging the 8 most frequent tokens.

On mapping these errors to rules (Carlson and Marcu,
2001), we identified that the following were most fre-
quently violated:

1. Confusion between infinitival complements and in-
finitival clauses: Infinitival components of verbs are
never fragmented into separate EDUs, whereas infini-
tival clauses are segmented only if that clause func-
tions as the satellite of a PURPOSE relation. The
model often confuses infinitival complements for in-
finitival clauses, which leads to tagging errors.

2. Coordination in Sentences and Clauses: Coordi-
nated sentences and clauses are broken into sepa-
rate EDUs, while coordinated verb phrases are not.
Additionally, when coordination occurs in subordi-
nate clauses, segmentation depends on whether or not
the subordinate construction would normally be seg-
mented as an EDU if it were a single clause, rather
than a number of coordinated clauses. Our model
made some errors in identifying such patterns.

3. Confusion among correlative subordinators: Cor-
relative subordinators consist of a combination of two
markers, one in the subordinate clause and the other
in the superordinate clause. Examples include ‘as ...
long as’, ‘either ... or’, etc. These should be broken
into separate EDUs, provided the subordinate clause
contains a verb. There was some confusion in cor-
rectly identifying such constructs and thus performing
accurate segmentation.

4. Punctuation: Punctuation symbols often indicates
segment boundaries. However, there may be cases
where EDUs are not segmented. For instance, paren-
thetical expressions are usually segmented as EDUs,
but if the expression is used to indicate missing infor-
mation, segmentation must not be carried out. Like-
wise, phrases separated by semi-colons and commas
are not EDUs.

While modeling segmentation as token classification
helped remove these errors, injecting syntax helped remove

these errors further. In particular, we observed that jointly
training for part-of-speech tags helped remove punctuation
errors and resolve confusions between infinitival comple-
ments and clauses. Likewise, jointly training for depen-
dency relations helped remove errors related to coordina-
tion and correlative subordinators. Concrete examples of
each error type are provided in Table 5.

5. Conclusions
Results obtained and analysis performed show how inject-
ing syntax into the model helped achieve better results. In
particular, the joint learning of syntactic features allowed
the model uncover complex syntactic patterns that could
not be captured by simply fine-tuning BERT. Further, the
use of syntactic features helped achieve solid gains for lan-
guages such as German and Dutch; highlighting both the
importance of syntax; and also certain limitations of multi-
lingual BERT.
Several complex cases of discourse segmentation could be
effectively captured by our model. We believe that hav-
ing knowledge of sentence-level semantics (Moldovan and
Blanco, 2012) may help identify such nuanced patterns
even better. This was in fact empirically proven by Lin et al.
(2019) who jointly carried out discourse segmentation and
coherence relation classification, observing an incremental
improvement in model performance.
A potential drawback of our system is that the time taken to
tag a full sequence is quite large as the model performs sen-
tence segmentation in O(n) time while other models take
O(S) time, n being the number of tokens in the document,
and S << n being the number of sentences in the doc-
ument. However, with a sufficiently large batch size; and
the availability of multiple GPUs, this bottleneck can be
practically resolved by performing sentence segmentation
in parallel.
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