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Abstract 

Post-market surveillance, the practice of 
monitoring the safe use of pharmaceutical 
drugs is an important part of 
pharmacovigilance. Being able to collect 
personal experience related to 
pharmaceutical product use could help us 
gain insight into how the human body 
reacts to different medications. Twitter, a 
popular social media service, is being 
considered as an important alternative data 
source for collecting personal experience 
information with medications. Identifying 
personal experience tweets is a challenging 
classification task in natural language 
processing. In this study, we utilized three 
methods based on Facebook’s Robustly 
Optimized BERT Pretraining Approach 
(RoBERTa) to predict personal experience 
tweets related to medication use: the first 
one combines the pre-trained RoBERTa 
model with a classifier, the second 
combines the updated pre-trained 
RoBERTa model using a corpus of 
unlabeled tweets with a classifier, and the 
third combines the RoBERTa model that 
was trained with our unlabeled tweets from 
scratch with the classifier too. Our results 
show that all of these approaches 
outperform the published methods (Word 
Embedding + LSTM) in classification 
performance (p < 0.05), and updating the 
pre-trained language model with tweets 
related to medications could even improve 
the performance further. 

1 Introduction 

Personal experience is an important piece of 
information for health-related surveillance 
activities. Understanding one’s health experience 
can help gain insight into the status of one’s health, 

changes of one’s health condition after the 
intervention, or the effects related to any 
medications one took. 

Investigating effects related to the use of 
pharmaceutical products is an important activity of 
post-market surveillance. First-hand information 
related to patients’ medication use most directly 
reflects the effects of the medication, beneficially 
or adversely. In that case, it is necessary to find 
valuable data sources and construct efficient 
methods for processing and analyzing this data. 

The widespread availability of social media has 
made it possible for people to share their personal 
experiences freely online. Twitter is one of the 
most prevalent social media services, and studies 
have shown that the data from social media such as 
Twitter has been applied to many health-related 
applications. Examples are as follows: drug 
adverse events (Bian et al. 2012), public health 
(Paul et al. 2011; Parker et al. 2013), mental health 
(Coppersmith et al. 2014; Reece et al. 2017), dental 
pain (Heaivilin et al. 2011), influenza (Lee et al. 
2013; Paul et al. 2015; Gesualdo et al. 2013; 
Aramaki et al. 2011; Byrd et al. 2016; Kagashe et 
al. 2017), breast cancer (Thackeray et al. 2013), 
and epidemic outbreak and spread detection (Ji et 
al. 2012).  

Personal experience is about a person’s 
encounters or observations related to his or her life. 
Personal experience information related to the use 
of medication is of unique value for post-market 
surveillance because it is the first-hand information 
that reflects the health condition changes due to 
medication usage. Personal Experience Tweets 
(PETs) related to medication use are a kind of 
Twitter post expressing one’s personal experience 
and information after the administration of 
medication. The types of experiences could be 
undesirable feelings caused by medications’ side-
effects, or beneficial effects that help improve a 
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medication user’s health condition. The collection 
and understanding of these experiences’ 
information can help promote the safe use of 
medications and advance our healthcare practices. 
Here are some examples of PETs related to 
medication use (the underscored text is for 
medication effects and the boldfaced for the 
medication): 

"Slow release morphine almost killed me." 
"my mother developed bleeding ulcers from 

naproxen and now they switched her to celebrex 
isnt that just as bad?" 

"Ill check it out - I have a friend on Abilify and 
hes had some personality changes, IE agitation, 
hitting stuff, ect." 

These tweets show that the effects are associated 
with a person’s experience. In contrast, we define 
a tweet not describing a personal experience as a 
non-PET. The following are some examples: 

"wish i had some xanax to put me to sleep" 
"ativan please help me get some sleep tonight" 
"i just took a dose of percocet with some 

strippers" 
The above non-PETs, albeit mentioning 

medications or containing effect expressions, do 
not reflect the personal experience. 

Extracting PETs from various kinds of Twitter 
posts is challenging because the Twitter data is of 
abundant noises, and most of the tweets may be 
irrelevant to personal experience about health 
conditions. In addition, users usually post tweets 
with informal and causal styles, without following 
the rules of grammar and/or spelling. Finally, 
Twitter users are creative in coining short text to 
include the needed information within the space 
limit. These unique characteristics make it more 
challenging to identify PETs accurately. 

2 Related Works 

Distinguishing PETs and non-PETs can be 
treated as a binary classification task. In the 
conventional machine learning field, algorithms 
require a set of manually engineered features 
extracted from the raw text and/or metadata (Jiang 
et al., 2016; Wijeratne et al., 2017), usually known 
as feature engineering, and features chosen can 
significantly impact the classifier’s performance. 
However, extracting/engineering valuable yet 
optimal features from tweets is difficult due to the 
limitation of human knowledge and understanding 
even for the domain experts. Besides, feature 
engineering extracts features that are typically 

based on the analysis of statistics regarding 
information gain usually with little or no direct 
consideration of the semantics. In other words, 
conventional machine learning with feature 
engineering methods may not be optimal for this 
task. 

Efforts of performance improvement have been 
made in previous research endeavors in the task of 
predicting personal experience tweets related to 
medication effects. In one of the earliest efforts, 
personal pronouns were considered as an important 
feature (Jiang and Zheng, 2013). Later, Alvaro and 
colleagues engineered a set of features (Alvaro et 
al., 2015), and their features include Twitter-
specific features, n-grams, punctuation elements, 
and topics, but the group decided to discard the 
topic feature due to the significant efforts required 
and its minimum merit of improving classification 
performance. A set of 22 engineered features based 
upon both textual content and metadata of tweets 
was proposed in constructing a corpus of personal 
experience tweets (Jiang et al., 2016). 
Subsequently, Calix and colleagues introduced the 
concept of deep gramulator to include a textual 
feature that contains expressions in one class but 
not in the opposite class, to improve the 
discriminatory ability of the classification (Calix et 
al., 2017). Advancement in neural embedding, 
which demonstrated state-of-art results in many 
classification tasks on textual data, motivated the 
development of a new approach of combining 
word embedding (word2vec) and a recurrent 
neural network which demonstrated a significant 
improvement of classification performance (p < 
0.05) (Jiang et al., 2018). 

Thanks to the development of word embedding 
techniques and the long short term memory 
(LSTM) neural network, Jiang et al. (2019) 
assessed a set of different word embedding 
techniques: GloVe (Pennington et al. 2014), 
fastText (Bojanowski et al. 2016) and word2vec 
(Mikolov et al. 2013) to build vector space models 
(VSM) to represent the semantics of tweets by 
learning from a corpus of 22 million unlabeled 
tweets. The vector representations of tweets were 
fed into an LSTM neural network for classification. 
All of these methods achieved better performance 
in classification measures than the previous 
methods with 22 human-engineered features using 
conventional classification algorithms (Jiang et al. 
2016). 
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Unlike the word embedding + LSTM method, 
which need to learn the VSM first and then train 
the LSTM network from scratch for classification, 
Google introduced a fine-tuning based approach by 
proposing the Bidirectional Encoder 
Representations from Transformers (BERT) model 
(Devlin et al. 2018), which achieved record-
breaking results in 18 downstream NLP tasks. 
Besides, Google’s new method relies on contextual 
information rather than term co-occurrences. After 
that, Facebook made some optimization based on 
BERT and released a Robustly Optimized BERT 
Pretraining Approach (RoBERTa) model (Liu et al. 
2019) which generated even better performance 
than BERT in downstream tasks. One important 
and useful aspect of both approaches is that the pre-
trained models can be updated with new data, 
without the need to generate a new model from 
scratch with the added data, which generally 
requires a significant amount of computation 
resources. 

In this study, we set the performance of the word 
embedding + LSTM neural network method as the 
baseline and investigated the performance 
improvements of PETs prediction with the pre-
trained RoBERTa language model. We also studied 
a procedure of updating the pre-trained RoBERTa 
language model and training the RoBERTa from 
scratch with the medication-related tweets and 
analyzing the impact on the performance change. 

3 Method 

In this work, we introduced three ways to identify 
personal experience tweets about medication 
effects by using RoBERTa language model: (1) 
Pretrained RoBERTa - adding a classifier to the 
standard pre-trained RoBERTa model and fine-
tuning the model for classification; (2) Updated 
RoBERTa - updating the pre-trained RoBERTa 
language model with our dataset first, then adding 
a classifier to RoBERTa and fine-tuning the model 
for classification; and (3) Twitter RoBERTa - 
training the RoBERTa language model with our 
corpus of unannotated tweets from scratch, then 
adding a classifier for classification. Finally, 10-
fold cross-validation was performed to gather the 
performance data, and statistical analysis was 
performed to determine if the differences in 
performance among different methods were due to 
the chance. 

The pipelines of data processing and analysis is 
illustrated in Figure 1. Our process started with 

gathering Twitter data and performing text 
encoding after preprocessing. Afterwards, the 
encoded texts were used with the RoBERTa model 
and the classifier for our methods. The left pipeline 
is for the Pretrained RoBERTa approach, the 
middle one for Updated RoBERTa, and the right 
one for Twitter RoBERTa. 

3.1 Text Encoding 

Byte-Pair Encoding (BPE) (Sennrich et al. 2015) 
and Attention Mask were applied to encode raw 
text. BPE is a sub-word level encoding method that 
uses bytes as the base sub-word units. In the 
process of tokenization, tokens like acronyms, 
abbreviations or spelling mistakes which are not in 
the vocabulary are split into known sub-word 
tokens, Compared to the word-level encoding 
method, it is flexible enough for tokenized words 
with special forms and adaptable for most of 
English documents, and also it could efficiently 
avoid most of the unknown tokens in the input text.  
A sub-word vocabulary with 50K unique tokens 
was built before pre-training, which was tested 
with our dataset to ensure that our data could be 
completely covered by this vocabulary and tweet 
text was tokenized properly without leaving any 
unknown tokens. In that case, we reused this sub-
word vocabulary to encode our data and each of the 

 

Figure 1. The pipelines of data processing.  
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tweets was converted into a sequence of indices of 
tokens in the vocabulary. 

After encoding, each tweet started with a special 
<s> token and ended with </s>. To achieve the 
fixed length of a sequence, we set the max token 
length to 64, and a special <pad> token was 
introduced to pad sequences to the max length. We 
ensured that this value of max token length could 
fit almost all of the tweets: only 0.003% of them 
were longer than 64 tokens. Also, an Attention 
Mask was applied to all of the input data to avoid 
performing attention on padding tokens. For each 
sentence, 0 is for padding tokens that should be 
masked, and 1 is for others that are not masked. 
Figure 2 shows an example of text encoding. 

3.2 Pre-training 

Pre-training the language model in a large corpus 
could help the model learn a series of general 
common properties of the language, and it is 
expected to be used in some of the downstream 
target tasks with a small dataset where it could 
perform better. The pre-training model we used is 
based upon the model of RoBERTa, whose 
structure is based on Google’s BERT model, with 
12 layers, 768 hidden neurons, 12 self-attention 
heads and a total of 110M parameters. The 
RoBERTa model was released by Facebook AI  
(Liu et al. 2019), pre-trained with masked language 
model (MLM) task: 15% of tokens were randomly 
and dynamically selected for replacement; 80% of 
them were replaced by a special token <mask>; 
10% were kept unchanged; the rest of 10% of the 
tokens were replaced by a random token in 
vocabulary. The pre-training procedure was 
performed on a total of over 160GB uncompressed 
texts for 500K steps with an 8K batch size.  

3.3 Language Model (LM) Updating 

Although the pre-trained model extracts the 
general features of linguistic expression in a large 
corpus, the dataset of our task could be in a 
different distribution. To make the pre-trained 
model adapt to our task, we updated the pre-trained 
RoBERTa model with our corpus of 10M 
unlabeled tweets before training the classifier. In 
this updating procedure, we implemented the same 
masking strategy as that of the masked LM task in 
the pre-training procedure, described previously, 
with a set of newly designated hyperparameters 
(training steps: 53K/106K/160K batch size: 64, 
optimizer: Adam, learning rate 2×10-5) 

3.4 Training RoBERTa from Scratch 

Another way to let the model learn the property and 
distribution of a new language environment is to 
train a new model from scratch with the new 
dataset. As for our task, it is also a selectable 
approach. To determine whether training the 
RoBERTa model with our corpus of tweets could 
perform better than Facebook’s pre-trained one and 
to use the updating approach in predicting personal 
experience tweets, a new Twitter RoBERTa model 
was constructed with the same corpus of tweets as 
the updating procedure use. Due to the hardware 

 

Figure 2. Example of text encoding 
 

 

Figure 3. Setup of Updated RoBERTa and Twitter 
RoBERTa 
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difference between Facebook’s and ours, a set of 
different hyperparameters were used to train it 
from scratch. (training steps: 53K/106K/160K,  
optimizer: Adam, learning rate: 5×10-5, batch size: 
64) Figure 3 illustrates the overview of the 
procedure of LM updating and training the Twitter 
RoBERTa from scratch. 

3.5 Classifier Fine-tuning 

A classifier with a simple feedforward neural 
network was constructed by following RoBERTa’s 
original design, which is adapted for RoBERTa’s 
base concepts and structure. This is also officially 
recommended to use for the most of downstream 
classification tasks by Facebook AI. The classifier 
is made up of one hidden layer containing 768 units 
and a tanh activation function followed by a 
sigmoid output. Between the RoBERTa model and 
its classifier, the first dimension of RoBERTa’s 
output tensor (also annotated as the beginning of 
sentence token <s>) was extracted and treated as 
the input of the classifier. A dropout with a rate of 
0.1 was added before the hidden layer to prevent 
overfitting. We utilized this classifier structure for 
all of our three methods and fine-tuned the whole 
model with officially recommended 
hyperparameters (epochs: 2, batch size: 32, 
optimizer: Adam, learning rate: 1×10-5). 

3.6 Baselines 

Jiang and colleagues (2018; 2019) investigated and 
published a set of outstanding methods based on 
Word Embedding algorithms and the LSTM neural 
network, which outperformed those using human-
engineered features with conventional 
classification models. Using a large corpus of 
unlabeled tweets, their approach generated a vector 
space model (VSM) to encode the words and 
trained and tested an LSTM-based classifier with a 
smaller set of annotated tweets. In our approach, 
we built the same (baseline) models by following 
the published structures and procedures: a VSM 
built by word2vec, GloVe and fastText algorithms 
with 128 dimensions and an LSTM layer with 128 
hidden units and L2 regularizer followed by a fully 
connected layer with the sigmoid output. The 
models were trained by an Adam optimizer with a 
learning rate of 2×10-4 and a batch size of 32 for 5 
epochs.  

3.7 Data 

Two corpora of Twitter data were used in our work. 

A total of 22 million raw tweets were collected 
using Twitter Streaming APIs from August 25, 
2015, to December 7, 2016, and another set of 52 
million raw tweets was collected from 2006 to 
2017 using a home-made crawler based upon the 
permission policy specified in Twitter’s robots.txt 
file. Both sets were gathered by searching tweets 
with the keywords of a set of brand and generic 
medication names. These two corpora were 
merged and filtered. After dropping duplicates and 
eliminating non-English twitters, a corpus of 10 
million tweets was collected. To study the changes 
in classification performance, the same corpus of 
12,331 annotated tweets, published on Github by 
(Jiang, et al., 2018), was utilized. 

For this task, the corpus of 10 million cleaned 
tweets were selected for training the Twitter 
RoBERTa model from scratch as well as updating 
the LM – note that the both LM updating and 
training from scratch procedures did not use any 
labels of the annotation and the annotated 12K 
tweets were excluded from the 10 million tweets. 
Interestingly, the baseline methods used the same 
10 million raw tweets to build vector space models 
of neural embedding. Likewise, the baseline 
classifiers were also trained and tested with 12,331 
labeled tweets. Table 1 lists the composition of 
annotated tweets. 

3.8 Statistical Analysis 

To determine if any differences in the results 
among different methods could be due to chance, 
we conducted statistical analyses on the results 
between our methods and baseline methods. In our 
hypothesis testing, the null hypothesis was that the 
difference between a pair of method does not exist 
(null hypothesis) while the data remain the same. 
To do so, we partitioned data into the same subsets 
for all the methods in cross-validation – that is, 
each fold has the same set of tweets for different 
methods. This treatment facilitated us to use the 
paired t-test on the performance measures of each 
pair of the method. We set the p-value threshold to 
0.05, meaning that any p-value less than 0.05 (p < 
0.05) indicates that the difference does exist and it 
is not due to chance. 

 

 PETs Non-PETs Total 
Tweet Count 2,962 9,369 12,331 

Table 1. Composition of annotated tweets. 
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Method Accuracy Precision (PET) Recall (PET) F1 (PET) AUC/ROC (PET) 
Updated 
RoBERTa(160K)1 0.873 0.732 0.760 0.745 0.933 

Updated 
RoBERTa(106K)1 0.879 0.751 0.746 0.748 0.934 

Updated 
RoBERTa(53K)1 0.877 0.734 0.775 0.754 0.932 

RoBERTa Original2 0.866 0.712 0.759 0.735 0.925 
Twitter 
RoBERTa(160K)3 0.859 0.690 0.762 0.724 0.921 

Twitter 
RoBERTa(106K)3 0.859 0.706 0.730 0.718 0.917 

Twitter 
RoBERTa(53K)3 0.855 0.699 0.709 0.704 0.911 

word2vec-LSTM 0.844 0.693 0.661 0.677 0.898 

GloVe-LSTM 0.839 0.683 0.651 0.667 0.892 

fastText-LSTM 0.842 0.681 0.663 0.672 0.891 
1 Updated RoBERTa in 160k, 106k, 53k steps 

2 Facebook’s pre-trained RoBERTa 

3 Twitter RoBERTa in 160k, 106k, 53k steps 

Table 2. Classification performance. The last 3 rows are for baseline methods.

4 Results 

To compare the performance differences between 
our methods and baseline methods, 10-fold cross-
validation was conducted for each method and the 
mean value of each classification measure was 
collected. Table 2 shows the measures of the 
classification performance between our methods 
and baselines’ (the highest values are in boldface).  

Table 3 (in appendix) lists the statistical analysis 
results of each performance measure in cross-
validation between our methods and baseline 
methods.
 

5 Discussions 

According to the results in Table 2, we can see that 
compared to baseline methods, the approaches of 
RoBERTa model with or without updating 
achieved better performance in all measures, and 
the Twitter RoBERTa model trained with our data 
also performed better except in precision, and such 
differences were confirmed to exist statistically by 
the p-values in Table 3 (p < 0.05). In general, we 
can consider that the RoBERTa models performed 
better than Word Embedding + LSTM method in 
this task. 

A noticeable improvement between pre-trained 
and updated RoBERTa models and baseline 
methods is the precision and recall, whereas the 
precision of Twitter RoBERTa model remained 
relatively unchanged at the same time. The recall is 
the sensitivity of how many true instances are 
predicted correctly and precision rates how many 

positive predictions are correct. A higher recall 
could help the model discover more potential 
positive instances and higher precision means 
more true positives (TP) and less false positives 
(FP) in the prediction. In other words, RoBERTa 
models can improve the sensitivity and identify 
PETs more precisely, resulting in more true 
positives in the predicted PET class. 

Another remarkable measure could be the 
ROC/AUC score, which was also improved 
significantly as shown by the curves in Figure 4. 
ROC (Receiver Operating Characteristic) is a 
curve plotting true positive rate (TPR, or 
sensitivity) in the y-axis and false positive rate 
(FPR, or 1-specificity) in the x-axis, and is 
commonly used to show how well the model can 
distinguish two different objects. The area under 

 

Figure 4. The ROC curves of our methods. 
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the curve (AUC) of ROC is used to quantify the 
score of ROC. The results in Table 3 show that the 
lowest p-value between our methods and baseline 
methods is ROC, which may imply that ROC was 
improved most significantly among all 
performance measures. That is to say, our methods 
can be good choices with improved ROCs in this 
task and they are much more robust in 
distinguishing PETs and non-PETs.  

Our methods also achieved a modest 
improvement in accuracy, but it could not be 
interpreted as that better accuracy leads to better 
performance. Because our dataset is imbalanced 
(PETs: non-PETs = 1: 3.16, as shown in Table 1) 
and accuracy is based upon the prediction of both 
positive and negative classes, higher accuracy 
could be attributed to the imbalance. Thus, 
accuracy is not an important measure that should 
be of concern. 

The results also show that performing LM 
updating before classifier fine-tuning could yield 
more improvement in accuracy, precision, F1, and 
AUC. Nevertheless, the p-values indicate that they 
are not significant if updating the LM for more 
steps. But as for the Twitter RoBERTa model, 
which was trained from scratch, the steps of 
training affected performances in some measures 
which were supported by our statistical analysis. 
This outcome suggests that a larger number of 
steps are needed for performance improvement 
when training from scratch, and small steps are 
enough for LM updating to achieve better 
performance than the original RoBERTa model.  

The possible reason for the improvement of 
these RoBERTa-based methods over baseline 
approaches could be attributed to the level of 
features. As is known, the features extracted by 
VSM such as word2vec, which is based upon 
word-level and co-occurrence. But RoBERTa, 
which extracts contextual-level features, maybe 
more powerful in processing tweet-like text which 
is poisoned by misspelling and incorrect 
grammars. The possible explanation for the 
performance difference between Updated 
RoBERTa and Twitter RoBERTa can be the slow 
learning process. The updating process is based on 
the pre-trained RoBERTa model, which is already 
pre-trained with a very large dataset by Facebook. 
It may be easier to adapt itself to our dataset, and 
the larger number of updating steps did less to help 
improve performance. But for Twitter RoBERTa, 
since it was trained from scratch and only 15% of 

tokens were randomly masked, the model could 
only learn a small part of sentences for each step. 
Therefore, it may take more time to learn the data 
distribution, and the larger number of training steps 
is recommended. 

6 Conclusion 

In this study, we investigated different ways to use 
Facebook’s RoBERTa model to improve 
performance in predicting personal experience 
tweets on medication use. Our results 
demonstrated that using the fine-tuning method on 
the pre-trained RoBERTa model achieved better 
classification performance than previous Word 
Embedding + LSTM methods, and the original pre-
trained RoBERTa could perform better than 
training a new RoBERTa model from scratch. 
More importantly, updating the pre-trained 
RoBERTa language model with our data could 
yield better performance. The 10-fold cross-
validation was used to test statistically the 
performance differences between our approaches 
and baseline methods. The results confirmed that 
the improvement does exist with statistical 
significance (p < 0.05). This suggests the pre-
trained RoBERTa model and LM updating method 
are better choices for this task and significantly 
boost the capability to identify personal experience 
tweets. It is conceivable that our method could 
apply to other classification tasks using Twitter 
data related to health issues. 
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A Appendices 

Method Measure RoBERTa 
RoBERTa-

Updated(53K) 

RoBERTa-

Updated(106K) 

RoBERTa-

Updated(160K) 

RoBERTa-

Twitter(53K) 

RoBERTa-

Twitter(106K) 

RoBERTa-

Twitter(160K) 

R
oB

ER
Ta

 

Acc.  5.106×10-2 7.908×10-4 1.036×10-1 2.153×10-2 2.595×10-2 7.047×10-2 

Prec. 1.793×10-1 3.950×10-3 2.075×10-1 2.344×10-1 3.248×10-1 1.071×10-1 

Recall 2.170×10-1 1.651×10-1 4.853×10-1 4.586×10-2 1.096×10-1 4.484×10-1 

F1 8.196×10-4 1.247×10-3 2.306×10-2 5.759×10-3 1.576×10-2 9.804×10-2 

AUC 1.312×10-4 7.787×10-5 2.650×10-4 2.397×10-5 6.578×10-4 3.026×10-2 

R
oB

ER
Ta

-

U
pd

at
ed

(5
3K

) Acc. 5.106×10-2 
 

3.204×10-1 2.880×10-1 6.821×10-4 4.198×10-3 9.187×10-4 

Prec. 1.793×10-1 1.774×10-1 4.660×10-1 3.713×10-2 1.694×10-1 1.699×10-2 

Recall 2.170×10-1 4.363×10-2 2.656×10-1 1.410×10-2 9.040×10-2 3.019×10-1 

F1 8.196×10-4 1.094×10-1 4.049×10-2 1.948×10-4 1.954×10-6 6.061×10-5 

AUC 1.312×10-4 8.087×10-2 5.282×10-2 9.169×10-8 2.980×10-7 7.746×10-6 

R
oB

ER
Ta

- 

U
pd

at
ed

(1
06

K
) Acc. 7.908×10-4 3.204×10-1 

 
7.762×10-2 4.148×10-5 1.415×10-5 6.621×10-5 

Prec. 3.950×10-3 1.774×10-1 1.682×10-1 5.194×10-3 1.010×10-2 9.835×10-4 

Recall 1.651×10-1 4.363×10-2 2.882×10-1 1.199×10-1 2.575×10-1 2.289×10-1 

F1 1.247×10-3 1.094×10-1 1.449×10-1 3.382×10-4 1.216×10-4 2.713×10-4 

AUC 7.787×10-5 8.087×10-2 3.416×10-1 1.357×10-7 5.519×10-7 8.113×10-6 

R
oB

ER
Ta

-

U
pd

at
ed

(1
60

K
) Acc. 1.036×10-1 2.880×10-1 7.762×10-2 

 
3.212×10-3 3.471×10-3 4.285×10-3 

Prec. 2.075×10-1 4.660×10-1 1.682×10-1 6.953×10-2 1.398×10-1 2.216×10-2 

Recall 4.853×10-1 2.656×10-1 2.882×10-1 3.748×10-2 1.779×10-1 4.702×10-1 

F1 2.306×10-2 4.049×10-2 1.449×10-1 1.828×10-4 1.204×10-3 6.101×10-3 

AUC 2.650×10-4 5.282×10-2 3.416×10-1 8.982×10-9 6.030×10-8 7.682×10-7 

R
oB

ER
Ta

-

Tw
itt

er
(5

3K
) 

Acc. 2.153×10-2 6.821×10-4 4.148×10-5 3.212×10-3  2.124×10-1 1.908×10-1 

Prec. 2.344×10-1 3.713×10-2 5.194×10-3 6.953×10-2 3.888×10-1 2.640×10-1 

Recall 4.586×10-2 1.410×10-2 1.199×10-1 3.748×10-2 2.817×10-1 2.878×10-2 

F1 5.759×10-3 1.948×10-4 3.382×10-4 1.828×10-4 1.791×10-1 2.271×10-2 

AUC 2.397×10-5 9.169×10-8 1.357×10-7 8.982×10-9 1.873×10-3 2.129×10-5 

R
oB

ER
Ta

-

Tw
itt

er
(1

06
K

) Acc. 2.595×10-2 4.198×10-3 1.415×10-5 3.471×10-3 2.124×10-1  4.596×10-1 

Prec. 3.248×10-1 1.694×10-1 1.010×10-2 1.398×10-1 3.888×10-1 1.801×10-1 

Recall 1.096×10-1 9.040×10-2 2.575×10-1 1.779×10-1 2.817×10-1 8.020×10-2 

F1 1.576×10-2 1.954×10-6 1.216×10-4 1.204×10-3 1.791×10-1 4.668×10-2 

AUC 6.578×10-4 2.980×10-7 5.519×10-7 6.030×10-8 1.873×10-3 1.630×10-3 

R
oB

ER
Ta

-

Tw
itt

er
(1

60
K

) Acc. 7.047×10-2 9.187×10-4 6.621×10-5 4.285×10-3 1.908×10-1 4.596×10-1  

Prec. 1.071×10-1 1.699×10-2 9.835×10-4 2.216×10-2 2.640×10-1 1.801×10-1 

Recall 4.484×10-1 3.019×10-1 2.289×10-1 4.702×10-1 2.878×10-2 8.020×10-2 

F1 9.804×10-2 6.061×10-5 2.713×10-4 6.101×10-3 2.271×10-2 4.668×10-2 

AUC 3.026×10-2 7.746×10-6 8.113×10-6 7.682×10-7 2.129×10-5 1.630×10-3 

Table 3a. Statistical analysis results (p values) for RoBERTa models. Values in boldface are less than 0.05. 
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Method Measure RoBERTa 
RoBERTa-

Updated(53K) 

RoBERTa-

Updated(106K) 

RoBERTa-

Updated(160K) 

RoBERTa-

Twitter(53K) 

RoBERTa-

Twitter(106K) 

RoBERTa-

Twitter(160K) 

W
or

d2
V

ec
-

LS
TM

 

Acc. 1.663×10-3 1.879×10-5 1.919×10-6 1.050×10-4 7.198×10-3 5.770×10-3 4.898×10-3 

Prec. 1.861×10-1 4.768×10-2 6.659×10-3 9.901×10-2 4.045×10-1 2.818×10-1 4.422×10-1 

Recall 2.603×10-2 1.062×10-2 3.799×10-2 2.877×10-2 1.864×10-1 5.933×10-2 2.029×10-2 

F1 1.145×10-2 1.878×10-3 2.958×10-3 3.891×10-3 7.551×10-2 2.553×10-2 1.450×10-2 

AUC 2.582×10-7 8.251×10-8 5.581×10-8 4.686×10-8 1.479×10-5 1.864×10-5 5.317×10-7 

G
lo

ve
-L

ST
M

 Acc. 9.613×10-5 8.448×10-5 1.213×10-5 2.637×10-4 1.236×10-2 1.137×10-3 5.019×10-4 

Prec. 1.005×10-1 2.234×10-2 3.395×10-3 2.055×10-2 2.617×10-1 1.686×10-1 3.822×10-1 

Recall 1.442×10-2 3.515×10-3 1.768×10-2 1.818×10-3 1.008×10-1 4.343×10-2 1.303×10-2 

F1 1.155×10-4 1.451×10-5 2.706×10-5 1.673×10-5 4.342×10-3 1.953×10-3 7.256×10-4 

AUC 7.183×10-9 1.086×10-9 3.358×10-10 1.338×10-10 1.994×10-9 1.326×10-8 2.239×10-9 

Fa
st

te
xt

-L
ST

M
 Acc. 9.961×10-5 5.171×10-5 1.029×10-6 2.716×10-4 7.583×10-3 2.108×10-3 7.676×10-3 

Prec. 3.035×10-2 1.449×10-2 1.133×10-4 2.920×10-2 1.864×10-1 1.425×10-1 3.588×10-1 

Recall 2.448×10-5 1.183×10-4 4.201×10-5 9.241×10-4 9.009×10-2 1.946×10-2 3.609×10-3 

F1 8.453×10-8 6.394×10-9 3.063×10-8 9.138×10-8 1.282×10-3 1.064×10-4 5.055×10-6 

AUC 1.011×10-8 3.002×10-9 1.344×10-8 3.410×10-9 9.257×10-8 2.562×10-7 1.066×10-8 

 

Table 3b. Statistical analysis results (p values) for baselines. Values in boldface are less than 0.05. 
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