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Abstract

Linguistics predictability is the degree of confidence in which language unit (word, part of speech, etc.) will be the next in the sequence.
Experiments have shown that the correct prediction simplifies the perception of a language unit and its integration into the context. As a result
of an incorrect prediction, language processing slows down. Currently, to get a measure of the language unit predictability, a neurolinguistic
experiment known as a cloze task has to be conducted on a large number of participants. Cloze tasks are resource-consuming and are
criticized by some researchers as an insufficiently valid measure of predictability. In this paper, we compare different language models that
attempt to simulate human respondents’ performance on the cloze task. Using a language model to create cloze task simulations would
require significantly less time and conduct studies related to linguistic predictability.

1.

Nowadays language models are the most powerful instrument
to transfer knowledge. Mostly pre-trained neural network
models are more accurate in any type of task. This ten-
dency in language processing - usage of language model (LM)
weights as a part of base model weights - took place after
word2vec announcing. Today there are three main ways to
use pre-trained LM in different natural language processing
tasks:

Introduction

e Use pre-trained LM as universal embedder for
text/sentence

¢ Fit pre-trained LM on new data (domain adaptation) and
also use as an embedder

* Fit pre-trained LM as a part of a more complex and spe-
cific model

It is important to note that the resulting system is dependent
on the quality of the underlying LM; thus strategies to com-
pare models are also in demand. We propose a new compre-
hensive way to explore properties of different language mod-
els. Comparison of langauge models is not a new topic, and
there are many different measures of their quality. Popular
modern analyses are the Google analogy task for word2vec
(Mikolov et al., 2013) and now GLUE tasks (Wang et al..
2018). However, we want to check the generative ability of
several different types of LM and compare them.

One of the key terms in natural language understanding and
speech generation is predictability. In cognitive linguistics,
it implies a confidence degree of a language unit (word, part
of speech, etc.) that can take next place in the sentence (or
text). This property of the token in the context is usually
measured in terms of the theory of probability, and it also
has some well-known probabilistic properties. For example,
the sum of the probabilities of all words which can or cannot
(in terms of common sense) follow the left context is equal
to one. A quarter-century ago these assumptions led to the
emergence of the first artificial language models (ALM).
Research papers in the field of cognitive science have shown
that correct prediction of the next word while reading a sen-
tence simplifies the perception of a language unit and its in-
tegration into the context. Incorrect prediction can lead to a
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re-analysis of the context which is why language processing is
slowed down. However, the types of dependencies between
these two facts are still not well studied.

Nowadays, in linguistic and cognitive studies, to obtain data
describing the probabilistic distribution of lexical units (for
a specific context), artificial language models of various ar-
chitectures are used or cloze tests are conducted. In a cloze
test, participants asked to replace a missing language item in
a sentence. The cloze test is frequently criticized for lack of
coverage; nevertheless, in terms of common sense, it is cloze
test which uses the so-called “human” linguistic mechanisms
of speech generation to collect the data. The ALM, in con-
trast, is basically a set of various mathematical algorithms
applied to the text corpus.

Our analysis and gold-standard is a Russian cloze test con-
ducted by Laurinavichyute et al (Laurinavichyute et al..
2018) from an eye-tracking study. We take the results of
the cloze task as a proxy for the underlying probability distri-
bution of next-word continuations of partial sentences. The
LM based on these answers we will call "human-like”. So the
uniqueness of the research is that we can compare artificial
language models with the model which approximates real hu-
man expectations about the next word for a given sequence.

It is important to note that cloze tasks require a major time
commitment and are financially expensive. One of the goals
of this study is to find out whether the actual human respon-
dents can be replaced by an artificial language model trained
on a large corpus, or, whether language models can simulate
human performance on this task. Our study compare several
language models across four “levels” of prediction: lexical
(distribution of surface forms), part-of-speech (distribution
of morphological class), and two classes of semantic predic-
tion.

Besides having importance in the field of neuro- and psy-
cholinguistics, cloze task answer generation could also po-
tentially be used for OCR and hand writing recognition, as
mentioned in the paper by Kuperberg and Jaeger (Kuperberg
and Jaeger, 2016).

2. Related Works

As Kuperberg and Jaeger claim in their “What do we mean
by prediction in language comprehension?” (Kuperberg and



Table 1: Example of stimuli sentence from RNC in cloze task with probabilities of the next word. Stimuli: “A npomwvieamo
MAHHYIO KpYyny nepeod mem, Kak eapums ee, He npooosaau?” (English translation: “Have you tried to rinse semolina before

boiling it?”)

Stimulus Next word  Predictability
A IIPOMBIBATh 1,99E-07
A TIpOMBIBAThH MaHHYIO 9,95E-06
A TIpOMBIBATh MAHHYIO Kpymy 0,091529563
A TIpOMBIBaTh MaHHYIO KPYITY nepes 0,000779675
A TpoMBIBaTh MAHHYIO KpYIly niepen TeM 0,015035226
A poMBIBaTh MAHHYIO KpYIly Hiepe]] TeM, Kak 0,966154218
A TIpOoMBIBaTh MAaHHYIO KPYITy TIepell TeM, Kak BapUTh 0,011867962
A TIpOMBIBaTh MaHHYIO KPYITy IIepe]] TeM, KaK BApUTh ee 0,04090891
A TIpoMBIBaTh MaHHYIO KPYITy IIepe]] TeM, KaK BapuTh ee, He 0,146951959
A IpOMBIBATh MAHHYIO KPYITy IIepe]] TeM, KaK BapUTh €€, He  MPOoOOBaIH 0,000829122

Jaeger, 2016), the reaction time is in direct proportion with
the predictability of the word: the more predictable the word
is the faster is the reaction. Moreover, predictability of a
word or a context defines fixation time in eye-movement
studies as a result of the language comprehension process.
This implies that language comprehension must be predic-
tive. The authors also state that as the previous context ex-
pands, the predictability of the next word increases leading to
- in cloze tests - higher accuracy of predicting the next word,
and - in eye-movement experiments - to shorter fixation du-
ration.

The literature contains several different algorithms for cloze
answer generation. In (Zhou et al., 2018) the authors state
the importance of next word prediction in language mod-
eling and its potential contribution to OCR and handwrit-
ing recognition. The authors enhance existing models with
ELMo and BERT language models and train on the CLOTH
dataset of cloze tests. BERT models show the highest per-
formance (0.86 and 0.83 accuracy scores on test dataset for
BERT Large and BERT Base respectively), as this model was
initially trained to recover masked tokens in text. At the same
time, the ELMo model’s poor performance could be due to
the lack of parameter tuning and the fact that ELMo was
trained for the next sequence word prediction.

An LSTM-based model for cloze-style machine comprehen-
sion is proposed in (Wand et al., 2018). The model con-
sists of document hierarchical structure and dynamic atten-
tion mechanism for building the representations between the
document and the question. Despite the two-layer LSTM
model with attention outperforms one-layer model, the final
best accuracy score is still only 0.76 which could be improved
by future modifications to the model.

3. Methodology
3.1. Cloze Probabilities

Cloze task described in (Taylor, 1953) is an experiment in
which one or more words are removed from a sentence and
the participants are asked to fill in the missing content. It
is commonly carried out for assessing native speakers of a
language, which is aimed to understand respondents’ com-
prehension of a language and their ability to predict miss-
ing portions of written texts (Laurinavichyute et al., 2018).
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This experiment presumes that native speakers can under-
stand context and vocabulary to identify the correct semantic
field or part of speech of a missing word.

We used the dataset with cloze task answers from (Lauri-
navichyute et al., 2018). The dataset is based on 144 sen-
tences randomly selected from the National Corpus of the
Russian Language (RNC, ruscorpora.ru) - an online corpus
of Russian texts with extensive search options. These sen-
tences were slightly edited: the authors replaced rare infre-
quent words with more frequent ones and shortened the sen-
tences when they exceeded the preset maximum length of 13
words. The stimuli sentences were subjected to the cloze task
experiment. Respondents were asked to successively predict
the next words for each context. An example of stimuli that
were shown to the participants is presented in Table [L] with
corresponding correct next words and calculated predictabil-
ity scores.

Each context received from 10 to 100 responses, not all of
which matched the correct word. The predictability of each
next word was computed as the number of correctly predicted
words divided by the total number of predicted words. The
Laurinavichyute et al. article and the full list of sentences
used in the study can be found.

3.2. Corpus-Based Probabilities

For computing corpus-based probabilities, different model
types and training corpora were selected. The goal of these
combinations is to represent some dependencies (if they ex-
ist) between model architecture, vocabulary and to compare
results.

In this research, we were solving the task of language mod-
eling - the task of predicting the next word given the cor-
pus. Several models perform well of this task type, including
HMM, LSTM, and BERT. We used pre-trained models on
our data to predict the next word for each context. These
models were trained on different corpora to see how corpora
influence model performance.

Hidden Markov Model

Markov chain theory is increasingly used in real-world com-
puting applications as it provides a convenient way to cap-
ture pattern dependencies in pattern recognition systems. For
this reason, Markov chain theory is suitable for natural lan-



Table 2: Corpus statistics. RNC is the Russian News Corpus,
and NCRL is the National Corpus of the Russian Language.

Name Texts Size (GB) Mean length
RNC 470k 2,928 176
NCRL 111k 3,210 2341
(agg) 581k 6138 1258

guage processing (NLP), where data consists of repeating se-
quences of symbols or words.

In this case, we are using bi- and tri-grams HMM not for PoS-
tagging but the prediction of the next word. To eliminate
out-of-vocabulary errors in our HMM models, we will use
Good-Turing smoothing.

LSTM

A one-layer long short-term memory (LSTM) recurrent neu-
ral network model was used (Jozefowicz et al., 2016 to cre-
ate a list of predictions for each word in the same 144 stimuli
sentences. The dimensions of the model are 2048 for the
hidden layer and 512 for the input and output layers.

BERT

Bidirectional Encoder Representations from Transformers
(BERT) (Devlin et al., 2018) is trained on a masked language
modeling objective. Unlike a traditional language modeling
objective of predicting the next word in a sequence given the
history, masked language modeling predicts a word given its
left and right context. Because the model expects context
from both directions, it is not obvious how BERT can be used
as a traditional language model (i.e. to evaluate the probabil-
ity of a text sequence) or how to sample from it. We test sev-
eral ideas: give the model all of the content, except masked
word, and using the technique(Wang and Cho, 2019) to re-
work BERT as a classical language model.

For experiments, we used BERT trained on the Russian
Wikipedia corpus (Wikipedia, 2019). To show differences
between models, we fine-tuned BERT with our corpora.

3.3. Corpora

The Russian News Corpus (Shavrina and Shapovalova, 2017)
includes newspaper articles published in the 2000s. The Na-
tional Corpus of Russian Language (Apresjan et al., 2006)
includes written texts from the middle of the 18th to the mid-
dle of the 20th century.

Some corpus statistics are presented in Table B.3].

All of our models (except LSTM) were trained separately on
the two corpora, and on their combination. Thus we examine
these models:

¢ Hidden Markov Models

Bigram HMM on RNC
Bigram HMM on NCRL
Trigram HMM on RNC
Trigram HMM on NCRL

* BERT-based models

- no fine-tuning
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— BERT fine-tuned on RNC
— BERT fine-tuned on NCRL
— BERT fine-tuned on both

¢ custom LSTM model
* hybrid model

— Bigram HMM on NCRL + BERT fine-tuned on
NCRL

The custom LSTM model was trained on a blinded NCRL
(excluding the sentences chosen for stimuli) and the RNC.
Overall, the training corpus consisted of 577 million tokens.
The model was tested on 1000 sentences from the Open-
Corpora project (Bocharov et al., 2011)) with 1,9 million to-
kens from newspaper articles, Russian Wikipedia, texts from
blogs, fiction, non-fiction, and legal documents.

Among all, there is a Bigram HMM on NCRL + BERT fine-
tuned on the NCRL model, which is by structure a combina-
tion of a bigram HMM and a BERT model. These models
were joined based on the best performance of both models:
probability distributions of HMM are used for contexts with
length less than 6 tokens, and BERT is used for longer con-
texts.

Renormalization of probabilities

To evaluate each model’s predictions, we took the first 30
most probable words. Each probability was renormalized by
dividing originally computed word-wise probability by the
sum of probabilities of the first 30 words. This way the sum
of probabilities the selected words would equal to 1.

3.4. Overview of Used Metrics

Mean accuracy

The metric is used to compute the mean of correct word pre-
diction across all contexts. Range of values from O to 1. It
was computed as a mean value of the array of accuracies.

Absolute number of correct word predictions

The metric represents the number of contexts for each pre-
diction of the correct word is non-zero.

Context consistency

The metric represents the proportion of “context consis-
tency”. It can be interpreted as the answer to the next ques-
tion: “How many contexts coincide assuming that prediction
of the correct word (for each of them) is not equal to zero for
a certain model pair?

Kolmogorov-Smirnov test

In our study, we used the two-sample Kolmogorov-Smirnov
test to find out whether two underlying one-dimensional prob-
ability distributions of model predictions differ. The null hy-
pothesis of the Kolmogorov-Smirnov test is: both samples
of predicted words come from a population with the same
probability distribution.

The Kolmogorov—Smirnov statistic is

Dy = sup [F1n(2) = Fom ()],



where I ,, and F5 ,,, are the empirical distribution functions
of the first and the second sample respectively, and sup is the
supremum function. The null hypothesis is rejected at level
aif

n—+m
Dy > c(@) o

where n and m are the sizes of first and second sample re-
spectively, and where c(a) is the inverse of the Kolmorogov
distribution at o, which can be calculated as

[ 1
—§lnoz

The advantage of the Kolmogorov-Smirnov test is that, un-
like the t-test, it can catch the difference between Gaussian
distributions with similar means but different variances.
This metric was used to compare both lexical and word class
probability distributions of cloze task, LSTM, HMM models
pairwise. The results of the metric are listed in the Results
section of this article.

c(a)

Kullback—Leibler Divergence

Cross-entropy loss, or log loss, measures the performance
of a classification model whose output is a probability value
between 0 and 1. Cross-entropy loss increases as the pre-
dicted probability diverge from the actual label. The cross-
entropy shows the difference between probability distribu-
tions p and q. Kullback and Leibler defined a similar measure
now known as KL divergence. This measure quantifies how
similar a probability distribution p is to a candidate distribu-
tion q. We used KL-divergence to compare several language
models.

Cosine Similarity

Cosine similarity was used to measure the closeness of se-
mantic vectors of predicted words between different mod-
els. It is widely used for calculating the distance between two
words. In our study, cosine similarity was used to find the
semantic probability of predicting the word which is seman-
tically close to the target word.

3.5. Part-of-Speech Probabilities

Word class probabilities were computed as follows: each
word in the model’s vocabulary (N = 500000 most frequent
words in the training corpus) and each word in the stimuli
sentences was tagged for word class and morphological fea-
tures using PyMorphy2 analyzer (Korobov, 2015) and the
predictions of the model were compared to the annotation
of the target words. A word class match was coded if the
predicted and target word belonged to the same word class.
The probability of a word class was computed by summing
probabilities of all words in the model’s vocabulary which
had the morphosyntactic feature in question. For example,
to estimate the word class probability in a sentence “A mo-
bile _ ”, where “phone” is the target word, we would sum
up probabilities of all nouns in the model’s vocabulary. For
morphologically ambiguous words (e.g., pot ‘mouth’ in the
nominative or accusative singular), all possible variants were
considered in the probability estimation.
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3.6. Probabilities for OBJECT-VERB-
FUNCTIONAL-MODIFIER

We have also tried to use different tags for our part-of-speech
tagging. Instead of using all of the tags, we thought we could
use a more generalized set of object, verb, modifier, and
functional word, because when a person mentally chooses the
next word, they might not think in terms of the usual parts of
speech, but choose generally an object, or a description of an
object, or a verb, or just some functional word.

Firstly, we converted all of the modified Pymorphy tags into
4 general sets: ’ADJ’, ’ADVB’, 'NUMR’ were generalized to
'MOD’;’INFN’ and 'PRED’ - to "'VERB’; 'NPRO’ to 'NOUN’
(Object); 'PREP’, 'PRCL’, "CONJ’ and 'INTJ’ to 'FUNC’ for
each context. Then, we have counted probabilities of these
tags in the same manner as the usual parts of speech.

We noticed that the generalized probabilities were overall
higher than with modified Pymorphy tags - further we will
refer to it as OMVF (object-modifier-verb-functional).

3.7. Semantic Comparison

After lots of trial and error, it was decided to use semantic
vectors for the comparison of cloze task results with other
models in the semantic aspect. All words were mapped into
a vector space of the model pre-trained on Wikipedia texts
(Arefyev et al., 2015). The comparison itself needed to
be dynamic because for each context a different amount of
words should have been chosen.

To compare semantic vectors for each context, firstly, we
cleared all of the words so there would be no digits, meaning-
less letters and punctuation. Then, we have built a function,
which:

1) Extracts first 10 words (we have decided that that is the
maximum amount of words for each context that would
have meaningful probabilities as all of the words after the
first ten for each model have their probabilities tends to
zero) for each of 1219 contexts;

2) Computes the mean probability of remaining words;

3) Counts the difference between the probabilities of the
first and last word and then the difference between mean
probabilities of the previous word and the next one;

4) Decides what amount of words vectors to use for each
context based on how different the first-last word differ-
ence and the mean probability difference is — if the latter
is lesser than the former, the function checks the next dif-
ference, if not — the previous amount of words would be

used for semantic comparison.

After the decision on the number of words was made, with
the help of gensim in Python a vector for each word was
extracted.

Then, MiniBatchKmeans (a modified version of the K-means
algorithm, that uses mini-batches to reduce computation
time, while at the same time trying to optimize the same
goal function (Béjar, 2010)) algorithm in sklearn was used to
find “cluster centers”, or mean semantic vector for one model
for each context. And at last, we computed cosine similarity
(also with sklearn library) for each pair of semantic vectors
for each pair of models.
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4. Results

Quantitative and Qualitative Analysis of
Cloze Task Language Model

4.1.

First of all, it is necessary to establish how many different an-
swers on average are available for each context in a language
model based on a cloze task, since it is necessary to deter-
mine how many of the most likely words will be explored in
artificial language models and test the hypothesis about the
dependence of predictability on the length of the context.
The mean quantity of predictions for the language model built
on cloze-task results is 17 words.

In Table 1], contexts with minimum variance in filling are
listed. It is worth emphasizing that in all these cases there
was no variance in respondents’ answers, i.e. all respondents
gave the same one answer for these contexts. What is more,
this predicted word was the original word from the corpus.
We classified these contexts based on their constraining abil-

1ty:
» Semantically constraining contexts (contexts #3, 4, 6, 8)
* Syntactically constraining contexts (context #1)

* Idiomatically constraining contexts (contexts #2, 5, 7, 9,
10)

The maximum number of different answers were received for
the “Ha 6omorax” (“On the Swamps”) context - 87 words,
which is explained by the absence of any limiting semantic
properties of the context.

In this regard, the study of the artificial language model dis-
tribution is meaningless, as it will always be uniform, to say,
the indicator for each context in similar histograms will be
equal to the size of the vocabulary.

Another important aspect of the study of the linguistic model
of the cloze task is the relationship between the length of the
context and the probability of predicting (i.e., predictability
of) the correct word.

The regression line reflects a high value of predictability for
contexts of length both less and more than five lexical units.
However, the lack of correlation is worth emphasizing. We
received the Pearson correlation coefficient score of 0.323
and Spearman correlation coefficient of 0.363.

According to the results of our experiment, the closest prob-
ability distribution of the correct word of all the models was
achieved with BERT trained on the literary corpus.

In this case, there is practically no correlation: Pearson cor-
relation score is 0.09, and Spearman correlation is 0.08.
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Regression line. Dependency between context length and accuracy
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Figure 1: Context length vs. lexical accuracy.

Each model was evaluated by two measures: mean accuracy
of model predictions and an absolute number of correct word
predictions. For computing mean accuracy, the mean of cor-
rect answer probabilities was taken. In case of an absolute
number of correct word predictions, a model achieved +1
score if there was at least one correct answer among all pre-
dictions.

4.2. Model Comparison on the Lexical Level

Mean Accuracy

Figure f] below shows a bar chart of the mean accuracy scores
of each model on the lexical level. As the goal of our study
was to build an algorithm, which would be the closest approx-
imation of the cloze task results (18% accuracy), we can see
that BERT (not a language model one) model scored better
than the others. Interestingly, all HMM model architectures
showed low results on the lexical level.

It is noticeable that BERT mean accuracy results are higher
than the cloze task score. This can be explained by the fact
that the model was trained on a large number of written texts
and thus had a higher chance to guess the correct word. Fol-
lowing this assumption, it is possible to infer respondents’
active vocabulary size is lower than the model’s vocabulary.
Also, we can make a hypothesis that the process of word re-
trieval by humans and by the model is performed differently,
as respondents do not always respond with the most probable
answer.

Absolute Accuracy
In terms of the absolute number of predicted words, in the



Table 3: Contexts in which minimum variance is observed in filling by one lexical unit.

1. Kaxue rmaBHbl€ JIeKapcTBa JA0JKHbBI BXOIUTD (B)
What are the main drugs that should be included (in)

B coBpeMEeHHOM OOILIECTBE CEMbsI U IIKOJIA OKA3bIBAIOT OOJIbIIOE (BIUSHUE)

In modern society, family and school have a large (influence)
3. 3ayeM eMy 3BOHUTH €CJIM OTKJIMKAETCS CIIOKOMHBIN KEHCKUIT (roJoc)
Why would he call if a calm female (voice) answers

4. Hpune gocranack OTAeNbHasi KOMHATA B IBYXKOMHATHOM (KBapTHpE)
Irina got a separate room in a two-room (apartment)

5.  OHu He e/M Lebli (IeHb)
They haven't eaten all (day)

6. Bo uzbexkaHue 0XXOroB HaJJ0 HAHECTH Ha JIMIIO HeOOJIbIIOe (KOJTMIECTBO)
To avoid burns on the face, apply a small (amount)

7. po3apl M CKBOPILIBI HAYAIM BUTh CEMEHHbIE THe3/1a HETOJAJIeKy JpyT OT (Ipyra)
Blackbirds and starlings began to twist family nests not far from each (other)

8. Cobaxky BUHOBHMILY CITy4YMBILIETOCS IIPUKA3av CeUb XOTS B 4eM Oblila ee (B1HA)
The dog responsible for the incident was ordered to be beaten, although it wasn't really her (fault)

9.  C HecKpbIBaeMoi eJKOI MPOHMEH OT3BIBAIOTCSI OHU JIPYT O (Ipyre)
With undisguised caustic irony, they speak of each (other)

10.  Onenb Gpoauit cpenu Gepes KeBa Tablid (CHer)

The deer wandered among the birches chewing melting (snow)

Figure 2: Mean accuracy histogram, lexical level.
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cloze task around 625 contexts were given at least one cor-
rect prediction. The closest to that are the results of the bi-
gram HMM model combined with BERT (with around 545
contexts with at least one correct prediction) and raw BERT
(with about 725 contexts with at least one correct prediction).

Model Consistency

Next, we compared models’ performances using an inclusion-
exclusion principle to find the percentage of overlapping an-
swers between different models. The result of this compari-
son is shown on the heat map below.

The heat map reflects information on pairwise model com-
parison, however, we are mainly interested in how close the
models are to the cloze task model. The comparison showed
that the models with the the largest overlap with the cloze
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Figure 3: Absolute accuracy histogram, lexical level.
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task are bigram HMM model combined with BERT (58% of
overlap) and BERT trained on RNC.

Kolmogorov-Smirnov Tests

At the next step, we performed Kolmogorov-Smirnov testing
to find the similarity in the probability distributions of the
model predictions. Figure [ also reflects the sum value of
the pairwise comparison of the contexts using Kolmogorov-
Smirnov testing. For convenience, all the values were nor-
malized. Observations show that the closest probability dis-
tribution is seen in the LSTM model. However, as we see,
there is a variation in metric values from 0.9 to 6.2 for differ-
ent models. Thus, we can assert that the difference between
all models and a cloze task is rather large and in some way
unacceptable.



Figure 4: Overlap heatmap, lexical level.
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Figure 5: Kolmogorov-Smirnov tests, lexical level.
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Cosine Similarity

To measure model predictions on the semantic level, the co-
sine similarity between each context’s predicted words cen-
troid vector was found. The number of words was selected
dynamically for each context by maximizing vector signifi-
cance with the minimum words. Figure B reflects the results.

Kullback—Leibler Divergence

Due to the fact that all of our models are word-level, and in
order to lower the casing variability we’ve combined all our
vocabularies into one. For this compound vocabulary, we
calculated the KL divergence of our models.

Table shows the scores for three different models with
bigram HMM trained on NCRL showing the best results. Un-
fortunately, this heat map does not show us changes in the
language model (LM) distances context-lengthwise. Top 3
lengthwise LM distances from cloze are shown in Table {.2].
As we see, the bigram models start to increase the distance
from 1 to 6 context length, but BERT, on the contrary, starts
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Figure 6: Cosine Similarity between each pair of models .
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Table 4: KL scores for three different models, all trained
on the National Corpus of the Russian Language. “Context
provided” is in number of tokens.

Context Bigram HMM BERT LSTM
1 1.34 2.17 2.01
2 1.57 2.10 1.78
3 1.84 2.07 1.84
4 1.79 1.93 1.81
5 1.91 2.02 1.92
6 1.86 1.88 1.87
7 1.99 1.77 1.89
8 1.73 1.69 1.80
9 1.97 1.55 1.63

10 2.46 1.71 1.80
11 2.79 2.68 2.17

to lower the distance up to 6 context length. For this case, we
merged the bigram model and BERT at length equal to 6.

4.3. Model Comparison on the PoS Level

Mean Accuracy

The performance of all models, except for LSTM, at the
parts of speech level, has significantly and proportionally in-
creased. This is due to a decrease in the set of classes for
which classification occurs. At this stage, the first 30 words
of each model were tagged for parts of speech. Overall, there
were 16 word classes. Notably, BERT linguistic models have
the highest scores.

Absolute Accuracy

Table 5: Distance in the KL-metric between the cloze task
and language models.

Model KL-distance to cloze
HMM 1.79
BERT 1.93
LSTM 1.84
HMM + BERT 1.71



Figure 7: Mean accuracy histogram, part-of-speech level.
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Figure 8: Absolute accuracy histogram, part-of-speech level.
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In absolute values, there is also a tendency in higher accuracy
of BERT models, which can be interpreted as follows. BERT
as a language model correctly predicts a part of the next word,
but the words themselves, rather close to the context, have a
low probability. Moreover, in many cases, they have almost
a uniform distribution equal to 0.033.

Model Consistency

The consistency of a part of speech prediction differs sig-
nificantly from the lexical level. However, when compared
with the cloze task model, we do not see a strong resemblance
with one of the artificial models. That is, there are contexts
for which a person can predict the part of speech of the next
word correctly, while the models are not able to do the same.

4.4. Model comparison on the OMVF level

Mean Accuracy
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Figure 9: Overlap heatmap, part-of-speech level.
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Figure 10: Mean accuracy histogram, object-verb-

functional-modifier level.
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Reducing the number of classes by 4 times does not lead to
an improvement in the average accuracy. Although we can
see that the models perform similarly as on the original part-
of-speech model.

Absolute Accuracy

Absolute values at the OMVF level of generalization cease to
reflect any properties of the models. This is due to the metric
calculation algorithm. The model’s indicator increases by one
each time when there is a correct answer and its probability
is not equal to 0. Accordingly, the graph reflects that in more
than 95% of cases the correct tag is present. It can be noted
that for a model with a random tag generator, this threshold
would be 25%. Such differences in magnitudes suggest pro-
ductivity at the OMVF level.

Model Consistency and Kolmogorov-Smirnov Test on OMVF

Consistency at the object-verb-functional-modifier level and
Kolmogorov-Smirnov Test are is shown in Figure
and correspondingly.



Figure 11: Absolute accuracy histogram, object-verb-
functional-modifier level.
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Figure 12: Overlap heatmap, object-verb-functional-

modifier level.
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Figure 13: Kolmogorov-Smirnov test heatmap, object-verb-
functional-modifier level.
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The last two tests reflect a contradictory trend: LSTM shows
a greater resemblance to the cloze task. Here it is necessary
to comment on probabilistic distribution. Calculation of sta-
tistical tests based on probability distributions of the models
makes the metrics far from objective, since the variation of
the number of lexical units to consider significantly impacts
the final output. Thus the results may highly differ for 25
and 30 lexical units. Moreover, artificial models allow us to
reflect distributions for the large vocabulary, whereas the vo-
cabulary of the cloze task is very limited and has many ran-
dom outliers when the context is not constraining the next
word on any level. It is disputable whether such cases should
be eliminated from the vocabulary during research or not.

5. Conclusion

One of the important results of this study is the development
of a certain set of methods (tools) for comparing the gen-
erative properties of language models. The starting point is
an unrestricted set of contexts and the probabilistic distribu-
tion of words for each of them. This data can be obtained
from all kinds of language models. Also, the re-normalized
value of frequency from the corpus can be used as a language
model for these purposes in further research. From our point
of view, the most relevant metrics (from presented above) are
Mean (Absolute) accuracy is prediction and Cosine similarity
measure computed for each pair of models.

We tested this methodology on the following models: Cloze-
task-based model, hidden Markov model (with the different
n-grams), LSTM and BERT. From the results, we have no-
ticed that the last one can predict the next word more ac-
curately, while LSTM - Cloze task pair shows that semantic
directions of k-first words for given context are more simi-
lar. However, based on all of these metrics scores, we can
conclude that Cloze-task-based model cannot be replaced by
any of the artificial language models presented in this paper
for eye-tracking experiments. In addition, it is worth notic-
ing that predictability scores computed within the Cloze task
reflect the real-world situation, but this is beyond the scope
of our study and could potentially be used in a different neu-
rolinguistic experiment.
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