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Abstract
NLP models are imperfect and lack intricate capabilities that humans access automatically when processing speech or reading a text.
Human language processing data can be leveraged to increase the performance of models and to pursue explanatory research for a better
understanding of the differences between human and machine language processing. We review recent studies leveraging different types
of cognitive processing signals, namely eye-tracking, M/EEG and fMRI data recorded during language understanding. We discuss the
role of cognitive data for machine learning-based NLP methods and identify fundamental challenges for processing pipelines. Finally,
we propose practical strategies for using these types of cognitive signals to enhance NLP models.
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1. Introduction
Machine learning methods for natural language process-
ing (NLP) are imperfect and still lack the intricate capa-
bilities that humans access automatically when processing
speech or reading a text. For instance, humans are able
to resolve coreferences and to perform natural language
inference, while machine learning methods are not nearly
as good (Wang et al., 2019). Human language processing
data can be recorded and used to increase the performance
of NLP models and to pursue explanatory research in un-
derstanding which ”human-like” skills our models are still
missing.
Linking brain activity and machine learning can increase
our understanding of the contents of brain representations,
and consequently in how to use these representations to un-
derstand, improve and evaluate machine learning methods
for NLP. Our aim in this paper is to find common patterns
and approaches that have been implemented successfully
when leveraging human language processing signals for
NLP. The main objective is to guide researchers when nav-
igating the challenges that are unavoidable when working
with cognitive data sources.
In recent years, an increasing number of studies using
human language processing for improving and evaluating
NLP models have emerged. However, consistent practices
in pre-processing, feature extraction, and using the human
data in the models have not yet been established. Physio-
logical and neuroimaging data is inherently noisy and may
also be subject to idiosyncrasy, which makes it more diffi-
cult to effectively apply machine learning algorithms. For
example, in eye-tracking, an extended fixation duration in-
dicates more complex cognitive processing, but it is not ob-
vious which process is occurring. Brain imaging signals
help to better locate cognitive processes in the brain, but it
is difficult to disentangle the signal pertinent to the task of
interest from the noise related to other cognitive processes
which are irrelevant for language processing (e.g., motor
control, vision, etc.).
In this paper, we review recent NLP studies leveraging dif-

ferent types of human language processing signals, namely
eye-tracking, electroencephalography (EEG), magnetoen-
cephalography (MEG), and functional magnetic resonance
imaging (fMRI) recorded during language understanding.
We discuss the role of cognitive data for machine learning-
based NLP methods and identify fundamental challenges
for processing pipelines. Based on this discussion, we pro-
pose practical strategies for using these types of cognitive
signals to augment NLP models. Finally, we explore the
ethical considerations of working with human data in NLP.

2. Cognitive signals
In this section, we introduce eye-tracking, EEG, MEG and
fMRI as recording techniques of cognitive signals. We de-
scribe the technical details and methodological challenges
for each technique and discuss how the signals have been
used to improve NLP models.

2.1. Eye-tracking
Eye-tracking signals are recorded with a device that tracks
the eye movements in a non-intrusive way, most commonly
using infra-red light and a camera. Depending on the sam-
pling rate of the recording device, it provides very fine-
grained temporal records of one or both eyes.
When a skilled reader reads, the eyes move rapidly from
one word to the next, sequentially fixating through the text.
Some words are not fixated at all due to an intricate inter-
play of preview and predictability effects, and some words
are fixated several times due to factors such as syntactic re-
analysis. The fact that some words are fixated several times
makes it possible to study several stages of linguistic cogni-
tive processing. Early gaze measures capture lexical access
and early syntactic processing and are based on the first
time a word is fixated. Late measures reflect the late syn-
tactic (re-)processing and general disambiguation. These
features occur in words that are fixated more than once.
Around 10–15% of the fixations are regressions, where the
eye focus jumps back to re-read a part of the text.
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NLP task Earliest reference
Part-of-speech tagging Barrett et al. (2016a)
Sentiment analysis Mishra et al. (2017b)
Named entity recognition Hollenstein & Zhang (2019)
Relation detection Hollenstein et al. (2019a)
Sarcasm detection Mishra et al. (2016)
Multiword expressions Rohanian et al. (2017)
Referential/non-referential it Yaneva et al. (2018)
Coreference resolution Cheri et al. (2016)
Sentence compression Klerke et al. (2016)
Predicting misreadings Bingel et al. (2018)
Predicting native language Berzak et al. (2017)
Predicting language proficiency Kunze et al. (2013)
Dependency parsing Strzyz et al. (2019)
Text summarization Xu et al. (2009)

Table 1: Overview of NLP tasks where eye movements
showed improvements along with the earliest reference.

Each fixation lasts on average around 200 ms, but the
variation is large and the duration of each fixation has
shown to be reliably linked to many word attributes:
syntactic, semantic, and discourse-related. The fixation
duration can thus be taken as a proxy for cognitive pro-
cessing. It is out of the scope of this paper to dig into
experimental findings, but Rayner (1998) provides an
extensive survey. This psycholinguistic line of research
has established a range of eye movement features enabling
the study of both early and late cognitive textual processing.

Eye-tracking signals in NLP
Eye movement data has successfully been leveraged to im-
prove a wide range of NLP tasks on several text levels, from
part-of-speech tagging (Barrett et al., 2016a) to text sum-
marization (Xu et al., 2009). Table 1 shows an overview of
the earliest references for each NLP task.
In NLP, the eye tracking signal can be incorporated
into models by using the scanpath which denotes the
entire fixation trajectory over a text span. Scanpaths
can reveal syntactic re-analysis, text difficulty, and other
comprehension problems. Larger-scale computational
approaches include Klerke et al. (2018), Von der Malsburg
and Vasishth (2011), Wallot et al. (2015). Furthermore,
Mishra et al. (2017a) learned the gaze representation in a
convolutional neural network directly from the scanpath
instead of manually selecting features. This might be a
promising approach to increase the amount of gaze data
available for training and avoid feature engineering.

Challenges in recording eye tracking signals
While low-cost eye-trackers and webcam-based software
(e.g., Papoutsaki et al. (2016)) have recently entered the
market, performance evaluations have shown that low
cost models have a much higher data loss (Funke et al.,
2016). Dalmaijer (2014) and Gibaldi et al. (2017) find
accuracy and precision acceptable but they mention the
low sampling rate as a constraint for research. Reading
research using eye movements are dependent on high
sampling rate and good – not just acceptable – accuracy
and precision. While lower precision can be compensated
for with larger font sizes and using only the central part

of the screen, it does not seem like the current low-cost
models are recommendable for reading research due to
these factors. Especially when building a large corpus it is
worth considering that any validity or reliability loss such
as systematic bias (for example, degrading in precision and
accuracy towards the periphery of the screen), as well as
unsystematic bias (low data quality due to low sampling
rate or large data loss), will propagate to all works using
this resource.

2.2. EEG & MEG
The electrical activity of neurons in the brain produces cur-
rents spreading through the head. These currents also reach
the scalp surface, and the resulting voltage fluctuations
on the scalp can be recorded as the electroencephalogram
(EEG). The neuronal currents inside the head produce
magnetic fields which can be measured above the scalp
surface as the magnetoencephalogram (MEG). EEG signals
reflect electrical brain activity with millisecond-accurate
temporal resolution, but poor spatial resolution. Magnetic
fields are less distorted than electric fields by the skull and
scalp, which results in a better spatial resolution for MEG.

EEG & MEG signals in NLP
EEG signals have achieved fairly good results for classify-
ing mental tasks (e.g., Zhang et al. (2018)) or text difficulty
(Chen et al., 2012). Moreover, Parthasarathy and Busso
(2017) presented a multi-task learning architecture for clas-
sifying emotions from auditory EEG stimulus. Addition-
ally, Murphy and Poesio (2010) detect semantic categories
(i.e. types of nouns, binary classification) from simultane-
ous EEG and MEG recordings, and found MEG to be more
informative for this specific task.
However, there is not much work in higher-level semantic
or syntactic NLP tasks with larger number of classes due
to the low signal-to-noise ratio. Hollenstein et al. (2019a)
achieved only modest improvements when using EEG data
for sentiment analysis, relation extraction and named entity
recognition. For a review on the use of EEG signals for
different classification tasks, including an overview of the
ML methods, the artifact pre-processing strategies, and the
input features, see Craik et al. (2019).
Further, there has been some work in understanding the
parallels between machine and EEG language processing
signals. For instance, Hale et al. (2018) showed that neural
grammar models are able to learn some of the language
processing effects that are manifested in EEG. Moreover,
Wehbe et al. (2014b) were the first to align word-by-word
MEG activity with embeddings from a recurrent neural
language model. Schwartz et al. (2019) use MEG and
fMRI to fine-tune a BERT language model (Devlin et al.,
2019) and showed that the relationship between language
and brain activity learned by BERT during this fine-tuning,
transfers across multiple participants and performs well on
downstream NLP tasks. In a similar fashion, Toneva and
Wehbe (2019) compare and interpret word and sequence
embeddings from various recent language models on
word-by-word MEG and fMRI recordings.
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Challenges in processing EEG & MEG signals
MEG and EEG data contain a large ratio of noise as well
as signals from other non-language-related processes, but
syntactic and semantic text processing is also known to con-
tribute to the signal. Since EEG merely records signals on
the brain surface, it is difficult to draw conclusions about
which brain regions are more or less helpful for NLP mod-
els. MEG allows to localize the magnetic fields to their
sources within the brain with good spatial resolution.
The main challenge lies in cleaning the M/EEG recordings
and extracting only the signals containing language pro-
cessing information. First, artifacts from motor and ocu-
lar activities have to be removed. Recently, these tedious
manual inspection and cleaning steps have been automa-
tized (e.g., Pedroni et al. (2019)), and efforts to unfold
the electrophysiological responses from overlapping, con-
tinuous stimuli are being introduced (Ehinger and Dimigen,
2019).
Neuroscientists have studied in detail how to filter the
M/EEG data based on certain effects occurring during lan-
guage understanding, and the activity occurring in certain
frequency bands. Two popular ways to analyze the EEG
signal are power spectrum analysis and event-related po-
tentials (ERPs).
In power spectrum analyses, the average power of a signal
in a specific frequency range is computed. The EEG signal
is decomposed into functionally distinct frequency bands.
These frequency ranges, which are fixed ranges of wave
frequencies and amplitudes over a time scale, are known
to correlate with certain cognitive functions. Theta activity
(4–8 Hz) reflects cognitive control and working memory
(Williams et al., 2019); alpha activity (8–12 Hz) has been
related to attentiveness (Klimesch, 2012); beta frequen-
cies (12–30 Hz) affect decisions regarding relevance, for
instance, in term relevance tasks for information retrieval
(Eugster et al., 2014): and gamma-band activity (30–100
Hz) has been used to detect emotions (Li and Lu, 2009).
Hypotheses about the role of the various M/EEG frequency
bands in language processing and more general cognitive
function are a first step, but more work is needed to estab-
lish stronger hypotheses linking language to specific fre-
quencies (Alday, 2019).
Secondly, ERPs are measured brain responses that are the
direct result of a specific sensory, cognitive, or motor event.
For instance, the N400 component, which peaks ∼400ms
after the onset of the stimulus, is part of the normal brain
response to words and other meaningful stimuli (Kutas and
Federmeier, 2000). Brouwer et al. (2017) presented a
neuro-computational model based on recurrent neural net-
works, that successfully simulates the N400 and P600 am-
plitude in language comprehension. To the best of our
knowledge, it has not yet been studied how useful ERP
features are for improving natural language understanding
tasks.

2.3. FMRI
FMRI is a neuroimaging technique that measures brain ac-
tivity by the changes in the oxygen level of the blood. This
technique relies on the fact that cerebral blood flow and
neuronal activation are coupled: When a brain area is in

use, blood flow to that area increases.
FMRI produces 3D scans of the brain with high spatial res-
olution of the signal. For statistical analyses, the brain scan
is fragmented into voxels which are cubes of constant size.
The signal is interpreted as an activation value for every
voxel. The number of voxels varies depending on the pre-
cision of the scanner and the size and shape of the partic-
ipant’s brain. The voxel location can be identified with 3-
dimensional coordinates, but the signal is commonly pro-
cessed as a flattened vector which ignores the spatial rela-
tionships between the voxels. This rather naive modeling
assumption simplifies the signal, but might lead to cogni-
tively and biologically implausible findings.
Most publicly available fMRI datasets have already under-
gone common statistical filters. These pre-processing steps
correct for motion of the participant’s head, account for
different timing of the scan slices and adjust linear trends in
the signal (Wikibooks, 2020). In addition, the scans of the
individual brains (which vary in size and shape) need to be
aligned with a standardized template to group voxels into
brain regions and allow for comparisons across subjects.
Researchers using datasets that have been collected and
published by another lab should be aware of the effect
of these probabilistic corrections. They are necessary to
further analyze the signal, but might also systematically
add noise to the data and lead to misinterpretations.

FMRI signals in NLP
In their pioneering work, Mitchell et al. (2008) measure the
brain signal of nine human participants who are instructed
to think about a concept. They average the signal for each
of the 60 concepts over multiple trials. Their analysis re-
sults indicate that it is possible to distinguish between the
correct and a random scan by computationally modeling
the relations between concepts. Their dataset has become
an evaluation benchmark to compare the cognitive plausi-
bility of different word representation models (Fyshe et al.,
2014; Søgaard, 2016; Abnar et al., 2018; Anderson et al.,
2017; Bulat et al., 2017). The presentation of individual
concepts has the advantage that the signal can be directly
linked to the experimental stimulus, but the experimental
setup is very artificial compared to authentic language pro-
cessing scenarios. Recently, fMRI datasets involving more
naturalistic language stimuli such as sentences (Pereira et
al., 2018) and even full stories (Wehbe et al., 2014a; Bren-
nan, 2016; Huth et al., 2016; Dehghani et al., 2017) have
been recorded and facilitate contextualized modeling of
language processing.1

Besides using fMRI signals to better understand and eval-
uate the structure of computational models of language,
the signal has also been used to directly improve the
performance on NLP tasks. Bingel et al. (2016) enrich
a model for PoS induction with fMRI signals, Li et al.
(2018) perform pronoun resolution, and Vodrahalli et al.
(2018) classify movie scene annotations. Recently, Toneva
and Wehbe (2019) showed that when the language model
BERT (Devlin et al., 2019) is fine-tuned to align with brain
recordings, it performs better at syntactic tasks such as

1Not all of these datasets are publicly available.
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subject-verb agreements. These result indicate a transfer of
knowledge from human language processing to NLP tasks.
So far, the reported improvements are very small and have
not yet been verified on other datasets.

Challenges in processing fMRI signals
As it takes several seconds to complete a full scan of the
brain, the measured brain response cannot provide high
temporal resolution. In addition, the hemodynamic re-
sponse to a stimulus can only be measured with a de-
lay of several seconds (Miezin et al., 2000) and it decays
slowly. As a consequence, it is not possible to directly
align fMRI responses with single words when they are pre-
sented as continuous stimuli. The delay can be modeled
using hemodynamic response functions or more complex
modeling techniques, but they do not work equally well in
all areas of the brain (Shain et al., 2019). It has not yet
been investigated conclusively whether the fMRI signal is
temporally fine-grained enough to detect syntax process-
ing signals in the human brain. Gauthier and Levy (2019)
showed experiments where only local grammatical depen-
dencies can be decoded. However, Brennan et al. (2016)
showed that for the right features (i.e. a count of tree nodes
in a probabilistic context-free grammar model) fMRI is fast
enough. More recent NLP studies avoid word-level align-
ment of fMRI data and analyse longer sequences of words
instead (Schwartz et al., 2019; Abnar et al., 2019).
The large number of voxels in the fMRI representation
leads to a very high-dimensional signal, but the number
of stimuli is usually very small for machine learning stan-
dards. In order to fit a model, the dimensionality of the
signal needs to be reduced because analysis methods such
as correlation or similarity metrics often lead to unintuitive
results when applied in high-dimensional spaces (Aggarwal
et al., 2001). From a processing perspective, data-driven
dimensionality reduction methods on the training set are
most attractive because they can work on the raw signal
and do not rely on theory-driven assumptions (Kriegesko-
rte et al., 2006). Examples are classification metrics such
as explained variance which capture how much informa-
tion a voxel contributes to a specific task (as in LaConte et
al. (2003) and Michel et al. (2011)). Another option are
dimensionality reduction methods such as principal com-
ponent analysis which reduce the dimensions while retain-
ing most of the variance between responses (Gauthier and
Levy, 2019).
Unfortunately, existing fMRI datasets for language pro-
cessing are not yet large enough to enable direct represen-
tation learning, for example using autoencoders (Huang et
al., 2017; Rowtula et al., 2018). Instead, the signal is of-
ten restricted to voxels that fall within a pre-selected set of
regions. These regions are commonly selected in a theory-
driven manner based on neurolinguistic studies (Brennan et
al., 2016; Wehbe et al., 2014a). Fedorenko et al. (2010)
proposed a method to selects regions of interest function-
ally, i.e. pooling of data from corresponding functional re-
gions across subjects. For instance, Abnar et al. (2019)
only include the voxels from the top k regions that are most
similar across different subjects given the same stimuli.
Due to the technical requirements, fMRI studies mostly use

only a small set of stimuli which makes it hard to eval-
uate the effect size and the generalizability of the results
(Hamilton and Huth, 2018). Minnema and Herbelot (2019)
perform experiments with additional data, which also lead
to the conclusion that there is simply not enough training
data available yet to learn a precise mapping. Furthermore,
experimental results are commonly not validated on addi-
tional datasets to ensure a more robust evaluation (Beinborn
et al., 2019).

3. General challenges
When we want to use cognitive signals to improve our com-
putational models, we are facing multiple modeling deci-
sions. In this section, we discuss the advantages and dis-
advantages of each recording modality of cognitive signal,
the aspects to consider when choosing a dataset, as well
as which features can be extracted from the cognitive data,
and finally, how they can be included in machine learning
models and how these should be evaluated. The decision
of which type of signal to work with and which dataset to
use depend strongly on the type of research questions that
we would like to address. In this section, we provide some
guidelines on how to approach these decisions.

3.1. Choosing the type of cognitive signals
An important aspect to take into account when choosing
a type of cognitive signal is the linguistic level on which
the signals are required: from word level, over phrase and
sentence level to discourse level. Due to the low tempo-
ral resolution and the hemodynamic lag of fMRI, it is more
appropriate to use eye-tracking or EEG of MEG data to ex-
tract word-level signals in continuous stimuli. Moreover, if
using multiple datasets from the same recording modality,
it is crucial to ensure proper pre-processing has been con-
ducted on the datasets, or to apply the same pre-processing
steps to all datasets.
Eye-tracking, as an indirect metric of cognitive load during
the different stages of reading processing, has numerous ad-
vantages. It is an accessible method to record millisecond-
accurate eye movements and has successfully been lever-
aged to improve a wide range of NLP tasks on different
text processing levels (see Table 1 for an overview). While
the improvements on precision and recall are modest, they
are consistent across tasks. The impressive body of psy-
cholinguistic research, a range of established metrics, and
the intuitive linking from features to words speak in favour
of using eye-tracking for NLP.
EEG is another recording technique with very high tem-
poral resolution (i.e. resulting in multiple samples per sec-
ond). However, as the electrodes measure electrical activity
at the surface of the brain – through the bone – it is diffi-
cult to know exactly in which brain region the signal orig-
inated. EEG signals have been used frequently for classi-
fication in brain-computer-interfaces (e.g., classifying text
difficulty for speech recognition (Chen et al., 2012)), but
have rarely been used to improve NLP tasks (Hollenstein et
al., 2019a). Moreover, there are still many open questions
regarding which EEG features are most appropriate, and
not much EEG data from naturalistic reading is yet openly
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available. MEG, however, yields better temporal and spa-
tial resolution, which makes is very suitable for NLP. Un-
fortunately not many MEG datasets from naturalistic stud-
ies are currently available.
Finally, the fMRI signal exhibits opposite characteristics.
Due to the precise 3D scans, the spatial resolution is very
high; but, since it takes a few seconds to produce a scan
over the full brain, the temporal resolution is very low. Re-
cently, fMRI data has become popular in NLP to evaluate
neural language models (e.g., Schwartz et al. (2019)) and to
improve word representations (Toneva and Wehbe, 2019).
It is useful to leverage fMRI signals if the localization of
cognitive processes plays an important role and to investi-
gate theories about specialized processing areas. Unfortu-
nately fMRI scans are less accessible and more expensive.
Evidently, human language processing recordings are very
noisy. Therefore, if possible it is advisable to work with
multiple datasets of the same modality, or to work with
multiple modalities to achieve more robust results.
It is insightful to run experiments on multiple cognitive
datasets of the same modality. This ensures that the NLP
models are not merely picking up on the noise in the cog-
nitive data, but actually learning from language process-
ing specific signals. For instance, Hollenstein and Zhang
(2019) combine gaze feature from three corpora, and Men-
sch et al. (2017) learn a shared representation across many
fMRI datasets.
Working with data from multiple modalities is also rec-
ommendable. For instance, Schwartz et al. (2019) used
both MEG and fMRI data to inform language representa-
tions, and were able to show how using both modalities
simultaneously improves their predictions. Furthermore,
Hollenstein et al. (2019b) presented a framework for cog-
nitive word embedding evaluation, where embeddings are
evaluated by predicting eye-tracking, EEG and fMRI sig-
nals from 15 different datasets. Their results show clear
correlations between these three modalities. Barrett et al.
(2018b) combined eye-tracking features with prosodic fea-
tures, keystroke logs from different corpora, and pre-trained
word embeddings for part-of-speech induction and chunk-
ing. Several methods were used to project the features into
a shared feature space and canonical correlation analysis
yielded the best results (Faruqui and Dyer, 2014).
Some studies provide data from multiple modalities
recorded at different times on different subjects, but on the
same stimulus: For example, the UCL corpus (Frank et al.,
2013) contains self-paced reading times and eye-tracking
data, and was later extended with EEG data (Frank et al.,
2015). Similarly, self-paced reading times and fMRI were
recorded for the Natural Stories Corpus (Futrell et al., 2018;
Shain et al., 2019); EEG and fMRI were recorded for the
Alice corpus (Brennan et al., 2016; Hale et al., 2018).
For some sources, data from co-registration studies is avail-
able, which means two modalities were recorded simul-
taneously during the same experiment. This has become
more popular, since all three modalities are complemen-
tary in terms of temporal and spatial resolution as well
as the directness in the measurement of neural activity
(Mulert, 2013). Recent reports attest to the feasibility of
co-registration studies for studying the neurobiology of nat-

ural reading (see Kandylaki and Bornkessel-Schlesewsky
(2019) for a review). For example, eye-tracking and EEG
recorded concurrently during reading (Dimigen et al., 2011;
Henderson et al., 2013; Hollenstein et al., 2018; Hollen-
stein et al., 2019c) and concurrent eye-tracking and fMRI
(Henderson et al., 2015; Henderson et al., 2016). Using
data from co-registration studies in NLP allows for compar-
ison on the same language stimuli, on the same population,
and on the same language understanding task, where only
the recording method differs.
Finally, the presented recording modalities of cognitive sig-
nals in this paper are complementary to each other, the in-
formation provided by each modality adds to the full pic-
ture. Hence, whether co-registration studies are leveraged
or simply data from multiple sources and multiple modal-
ities, it is highly recommendable to test all experiments
to improve NLP models on more than one dataset and/or
modality.

3.2. Selecting a dataset
Datasets of human language processing signals should be
chosen based on the research question. It is important to
decide whether controlled experiments with clearly distin-
guishable conditions are required, for instance, if infrequent
linguistic phenomena are of interest, or if natural stimuli
are favorable to analyze real-world language (Hamilton and
Huth, 2018).
As a example for controlled settings, Mitchell et al. (2008)
recorded fMRI data from a isolated word stimuli of 60 con-
crete nouns. In reading studies, serial presentation of words
has often been applied, where one word is presented at the
time on the screen (e.g., Wehbe et al. (2014a), Frank et
al. (2015)). In an EEG dataset provided by Broderick et
al. (2018), the participants also read sentences presented
word-by-word. Half of the sentences ended with a congru-
ent word and the other half with an incongruent word, so
that the difference in the N400 components could be ana-
lyzed. This manipulation facilitates the processing and iso-
lation of the cognitive signals, but it does not reflect pro-
cesses of natural reading, in which the reader has access to
full sentences or texts.
Due to the different scopes in experimental research and
NLP, it is seldom possible to directly draw conclusions
concerning features from these studies to NLP: Speaking
in broad terms, psycholinguistic and neurolinguistic stud-
ies provide evidence of human cognitive processing of text
or speech primarily through controlled experiments. The
experiment as well as the textual stimulus are carefully de-
signed in order to isolate a specific cognitive process. Data-
driven NLP works towards enabling computers to under-
stand and manipulate naturally-occurring human language
through machine learning models based on huge corpora.
The phenomena that NLP models aim to model are typi-
cally much broader and less well-defined than what is ex-
amined in psycholinguistic studies.
Recently, it has become more common to implement
naturalistic reading experiments (Hamilton and Huth,
2018). Naturalistic reading denotes self-paced reading of
naturally-occurring text without any specific task or reading
constraints, such as limiting the preview of the following
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words. This allows subjects to read at their own speed and
results in different reading times between subjects, which
calls for more elaborate pre-processing. Naturalistic read-
ing studies diverge from tightly controlled experimental de-
signs and allow the participants to read continuous stimuli,
i.e. full sentences or paragraphs spanning multiple lines
on the screen. In addition to the more natural setting, a
big advantage is the possibility to study linguistic phenom-
ena on different levels (e.g., phonemes, syllables, words,
phrases, sentences, discourse), which unfold at different
timescales in the same naturalistic stimulus such as a story.
Moreover, naturalistic experimental designs, which use lan-
guage within the rich context of stories, audiobooks, and
dialogues, produce results which are more easily generaliz-
able to everyday language use (Kandylaki and Bornkessel-
Schlesewsky, 2019). Since generalizability of results is one
of the main objectives in experimental science, the potential
importance of increased ecological validity in naturalistic
experiment paradigms is undeniable.
An example for the use of continuous, naturalistic stimuli
is the dataset by Hollenstein et al. (2018). They recorded
eye-tracking and EEG signals of participants silently read-
ing full real-world sentences. In Broderick et al. (2018)
and Shain et al. (2019) subjects listen to full stories during
EEG and fMRI recordings, respectively. In addition to
the studies mentioned in this paper, a collection of openly
available cognitive datasets useful for NLP in various
languages can be found online.2

Multilingual neurolinguistics
The majority of research in NLP, as well as most of the
available cognitive data sources is in English. However, it
is well known that language processing between native and
foreign language speakers differs in the active brain regions
(Perani et al., 1996). Moreover, second language learners
exhibit different reading patterns than native speakers (Dus-
sias, 2010).
Eye-tracking and fMRI studies on bilingualism suggest
that, although the same general structures are active for
both languages, differences within these general structures
are present across languages and across levels of process-
ing (Marian et al., 2003; Dehghani et al., 2017). In an effort
to promote eye-tracking research of bilingual reading, Cop
et al. (2017) provide an English-Dutch eye-tracking corpus
tailored to analyze the bilingual reading process.
Further, there are even differences in the processing
of dialects and standard variations, e.g., Lundquist and
Vangsnes (2018) for Norwegian dialects and Stocker and
Hartmann (2019) for variations of German. Hence, it is
not only important to take language-specific aspects into
account in the NLP methods, but it is crucial to account for
these differences in human language processing. It remains
an open questions how many of the referenced studies in
this paper would generalize to other languages.

3.3. Extracting features
This section covers different approaches to find the most
meaningful features from human language processing

2https://github.com/norahollenstein/cognitiveNLP-
dataCollection

recordings.
NLP studies that leverage human gaze signals from reading
mostly use a broad range of established features, encom-
passing both early and late measures of cognitive process-
ing. These features are then used in machine learning sys-
tems to learn patterns. Barrett et al. (2016a) use 22 features
for part-of-speech induction, Hollenstein and Zhang (2019)
use 17 features for named entity recognition, and Strzyz et
al. (2019) use 12 features for dependency parsing. Studies
that systematically test different combinations of features,
generally reveal that using a broad range of established fea-
tures, such as first, mean and total fixation duration, yield
the largest improvements (Barrett et al., 2016a; Yaneva et
al., 2018; Hollenstein and Zhang, 2019; Rohanian et al.,
2017).
Most studies combine linguistic features with gaze features
(e.g., Rohanian et al. (2017) and Yaneva et al. (2018)). Fur-
ther, Barrett et al. (2016a) use word frequency and word
length features in combination with eye-tracking features,
because the two properties explain much of the variance in
fixation duration (Just and Carpenter, 1980; Levy, 2008).
Results by Demberg and Keller (2008) and Lopopolo et al.
(2019) showed a relation between regression features and
the syntactic structure of sentences: About 40% of regres-
sions land on target words engaged in dependency relations.
Moreover, many other properties such as transitional prob-
abilities or age of acquisition could also be used. In Hol-
lenstein and Zhang (2019) and Barrett et al. (2018b), gaze
features are combined with pre-trained word embeddings to
improve performance.
All these works, however, rely on rather heavy feature engi-
neering. Contrariwise, these features can also be predicted
from text: Hahn and Keller (2016) presented an unsuper-
vised neural model of human reading by predicting the fix-
ations within sentences. Similarly, Matthies and Søgaard
(2013) predict skipping probabilities across multiple read-
ers. Moreover, Singh et al. (2016) introduced a method
where eye movements are learned in order to alleviate the
need to get the task data annotated with eye movements. A
similar approach is also used by Long et al. (2019). Com-
parably, fMRI signals have been predicted from language
model representations, e.g., Rodrigues et al. (2018) and
Abnar et al. (2018).
In general, feature engineering for M/EEG and fMRI data
is more a matter of dimensionality reduction. For instance,
most studies leveraging M/EEG data for NLP average the
signals over all electrodes or sensors (e.g., Wehbe et al.
(2014b)). Moreover, methods such as principal component
analysis are often used to reduce the dimensions of both
M/EEG and fMRI data. In the case of fMRI data, we
mention several strategies for voxel selection in Section
2.3. to reduce the number of dimensions. For M/EEG
signals, it is also possible to work with frequency band
features or ERPs based on neurolinguistic findings (see
Section 2.2.). However, these features have not yet been
explored in detail to improve NLP tasks.

Aggregating features
Controlled psycholinguistic studies include multiple sub-
jects to obtain significant differences considering the effect
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sizes of interest (Vasishth et al., 2018). In many NLP stud-
ies that use eye movements as word representations, eye
movement metrics are averaged over several readers argu-
ing for more stability and less noise, but most studies are
limited by number of words and readers in the provided
corpora (Rohanian et al., 2017; Yaneva et al., 2018; Mishra
et al., 2017b; Hollenstein et al., 2019a). But how many sub-
jects are required to obtain a robust average signal for NLP?
Gaze annotation can never be a gold annotation, irrespec-
tive of the number of readers. It is intrinsically noisy and
there is no uniquely correct reading pattern. Skilled readers
will exhibit a more idiosyncratic reading behaviour under
similar conditions. Language learners or readers with read-
ing impairments will exhibit a noisier signal, that is difficult
to use in NLP (Bingel et al., 2018). Takmaz et al. (2019)
compared aggregated gaze features and sequential features
for generating image captions.
Hollenstein et al. (2019a) used eye movement and EEG
features to improve named entity recognition, relation
classification and sentiment classification. They showed
that averaging over ten skilled native readers is able to
diminish the noise and variability between subjects, to the
extent where the average worked almost as good as the best
individual reader, for both gaze and EEG models. While
subject variability is even larger in fMRI signals, averaging
over participants can help to avoid overfitting (Bingel et
al., 2016). Moreover, Schwartz et al. (2019) showed how
a language model fine-tuned with fMRI brain activity data
transfers across multiple participants.

Word-level signals
In some studies, averages of gaze features over word types
have been used to alleviate the need of having gaze data
at test time, and even achieved better results than token-
level features (Barrett et al., 2016a; Hollenstein and Zhang,
2019). Klerke and Plank (2019) analyzed this in detail for
PoS tagging and found that content words are especially
sensitive to type-level gaze features.
For recordings of continuous stimuli, the EEG samples
have to be mapped to the points in time where a word (or
phrase) was heard or read. Hauk and Pulvermüller (2004)
presented evidence that lexical access from written word
stimuli is an early process that follows stimulus presenta-
tion by less than 200 ms. Between 200-500ms, the word’s
semantic properties are processed (Wehbe et al., 2014b).
Moreover, Dimigen et al. (2011) studied the linguistic ef-
fects of eye movements and EEG signal co-registration in
natural reading and showed that they accurately represent
lexical processing. This suggest that, in the case of read-
ing, the brain processes words when they are fixated for
the first time, so that by mapping the EEG samples to the
corresponding reading times it is possible to extract word-
level EEG features. In combination with the eye-tracking,
the high sampling rate of EEG allows us to get a defin-
able signal for each token. In case of listening, the EEG
signals can simply be mapped to the timestamps of the ut-
terances. Analogous to the type aggregation approach de-
scribed for eye-tracking signals, token-level EEG and fMRI
features can be aggregated on word type level (Hollenstein
et al., 2019a; Bingel et al., 2016). This eliminates the need

of recorded data at test time, however the results are more
promising for eye-tracking data than for brain activity.
In the case of fMRI, however, extracting token-level or
type-level signals from continuous stimuli is less recom-
mendable. A few studies have extracted token-level fea-
tures from scans of a few seconds of duration. Bingel et
al. (2016) computed individual word features for PoS in-
duction by accounting for the hemodynamic delay using a
Gaussian sliding window over a certain time window. Hol-
lenstein et al. (2019b) also account for this delay when
extraction word-level features, and then average the word
features over multiple trials from different contexts. It is
difficult to quantify how much of the information of sin-
gle word processing is captured in these signals. In fMRI
studies, models are most often trained separately for each
subject due to the large individual differences. It is, how-
ever, also possible to learn a shared representation between
subjects (Vodrahalli et al., 2018). Additionally, the signal
can be averaged if multiple trials are available per stimulus
as in Mitchell et al. (2008).

3.4. Including the features in the models
This section describes the most common machine learn-
ing methods for leveraging human cognitive processing for
NLP. In most applications of systems using human data, it
is sub-optimal to require real-time human features at test
time. For eye-tracking, there are several studies working
towards not requiring recordings during inference. We start
by outlining those methods and move to other cognitive sig-
nals thereafter.
When using human language processing data recorded
from continuous stimuli, it is intuitive to implement se-
quence labelling or sequence classification approaches. For
instance, Strzyz et al. (2019) argue in favor of using bidi-
rectional LSTMs for predicting eye-movement informa-
tion. Many of other studies have leveraged similar neural
architectures, for example, Klerke et al. (2016) and Hollen-
stein and Zhang (2019).
A basic approach is to include cognitive features as multi-
dimensional vectors to represent each word, possibly along
with other word-based features. For instace, Rohanian et
al. (2017), Barrett and Søgaard (2015) and Yaneva et al.
(2018) implemented this approach for eye-tracking data.
However, this requires gaze data at test time. Barrett et
al. (2016a) and Barrett et al. (2016b) showed that word-
type averages of gaze features yielded better results for PoS
induction than token-level features. In this case, gaze rep-
resentations are used similarly to word embeddings, with
which they can also be combined (Barrett et al., 2018b).
Klerke and Plank (2019) analyzed this in detail for PoS tag-
ging and showed that word type variance was better than in-
dividual gaze representations and less aggregated gaze fea-
tures. Additionally, Hollenstein and Zhang (2019) showed
the same advantages of type-level aggregated features for
improving named entity recognition on corpora with no
available gaze features during training and testing. How-
ever, type aggregation on EEG data has not shown the same
positive benefits (Hollenstein et al., 2019a).
Concatenating cognitive features has also been tested with
brain activity data. Bingel et al. (2016) concatenate ex-
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tracted fMRI vectors from multiple subjects with linguistic
features. Moreover, Schwartz et al. (2019) include fMRI
and MEG data to augment a language model by fine-tuning
a model trained on textual input with brain activity signals.
In addition, multi-task learning is a method of training a
system that inherently does not need human data on the test
set. Multi-task learning studies typically use only one fea-
ture, but that is most likely due to constraints in the model
architecture, i.e. an increasing number of parameters lead-
ing to longer training times. Hollenstein et al. (2019a)
trained multi-task learning models to learn eye-tracking and
EEG features at the same time as NLP tasks such as senti-
ment analysis and relation detection. Multi-task learning
has also been successful when generalizing across subjects
from EEG data, for applications such as brain-computer in-
terfaces (Alamgir et al., 2010). Leveraging eye-tracking
data, González-Garduño and Søgaard (2017), Klerke et al.
(2016) and Klerke and Plank (2019) employ a multi-task
learning setup for text compression, readability prediction,
and syntactic tagging, respectively, while also learning to
predict a gaze feature as an auxiliary task.
Lastly, another related option is to regularise the attention
of a recurrent neural network with human data for sequence
classification. Attention weights influence the relative im-
portance of each word on the model, but require large
amounts of data to be trained. Barrett et al. (2018a) used
sentences from the main dataset to update the model pa-
rameters, while sentences from a smaller, non-overlapping
eye-tracking corpus were used to only train the attention
function. Regularising the attention function could also be
done using other human measures such as EEG.

3.5. Measuring improvements
On one hand, natural language understanding models are
mostly optimized for performance on specific tasks and
typically do not transfer well to other tasks or even other
datasets (Talman and Chatzikyriakidis, 2019). On the
other hand, cognitive signals are typically constrained to
their experimental design and stimuli. These discrepancies
may lead to limitations in the possible improvements when
leveraging cognitive signals to enhance NLP models.
Indeed, the improvements achieved with cognitive signals
are often modest. Therefore, we want to highlight the im-
portance of robust baselines and proper significance test-
ing. Examples of strong baselines are, for instance, word
frequency for eye-tracking signals to ensure that the cog-
nitive features add more to the model than purely lexical
aspects; or comparing EEG and fMRI feature vectors to
random vectors to guarantee that the cognitive features con-
tain more than added dimensions of noise. Additionally,
after achieving better results than strong baseline models,
one needs to ascertain that the improvements are not due
to some artifacts in the cognitive data. Hence, it is vital
to perform suitable significance tests, such as permutation
tests (Dror et al., 2018).
Furthermore, Gauthier and Ivanova (2018) propose three
highly sensible strategies for making language decoding
studies from brain activity more interpretable: (1) commit-
ting to a specific mechanism and task, which would help to
distinctly link brain activity features to specific NLP tasks,

(2) dividing the input feature space into subsets that capture
representations optimized for a particular task, and (3) ex-
plicitly measuring explained variance to evaluate the extent
to which each model component explain the overall brain
responses.

4. Ethical considerations
To conclude this paper, we address some of the ethical con-
siderations that arise when working with human language
processing signals for NLP. As researchers in this area, we
mostly make use of existing datasets that have been col-
lected by psychology researchers. Nevertheless, the fol-
lowing ethical aspects should be taken into account.
First, we want to highlight the necessity of considering the
high-level consequences of our work. It becomes increas-
ingly relevant to examine the implications of the interac-
tion between humans and machines, between what can be
recorded from a human brain and what can be extracted
from those signals. What is the potential of the derived re-
sults? What is the objective of the final application? What
is the impact on people and society? Suster et al. (2017)
describe this aspect as the dual use of data: Applications
leveraging cognitive cues for improving NLP (and many
other machine learning applications) have the potential to
be applied in both beneficial and harmful ways.
Second, it is essential to remember the responsibility to-
wards research subjects and towards protecting the individ-
ual (Suster et al., 2017). All collected data comes from
humans willing to share their brain activity for research.
Hence, the participants as well as their data should be
treated respectfully, even if as NLP practitioners we are
leveraging provided data and not recording it ourselves. Al-
though the data is anonymized after recording, we should
refrain from drawing inferences from our models back to
single participants.
Finally, the origins of the data and any biases within them
should be considered. Most psychological studies are
based on Western, educated, industrialized, rich, and demo-
cratic research participants (so-called WEIRD, Henrich et
al. (2010)). By assuming that human nature is so univer-
sal that findings on this group would translate to all other
demographics, this has led to a heavily biased collection of
psychological data. The potential consequences of exclu-
sion or demographic misrepresentation should not be ig-
nored (Hovy and Spruit, 2016). One step further, Caliskan
et al. (2017) showed that text corpora contain recoverable
and accurate imprints of our historic biases. These biases
can be extracted from text, and are also reflected in eye
movements and brain activity recordings (Wu et al., 2012;
Herlitz and Lovén, 2013; Fabi and Leuthold, 2018). Thus,
it is very important to remember that with extensive reuse
of the same corpora these biases – participant sampling as
well as experimental biases – are propagated to many ex-
periments, and researchers should be careful in the inter-
pretation of the results.
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Gabrieli, S., and Kanwisher, N. (2010). New method
for fMRI investigations of language: defining ROIs func-
tionally in individual subjects. Journal of neurophysiol-
ogy, 104(2):1177–1194.

Frank, S. L., Monsalve, I. F., Thompson, R. L., and
Vigliocco, G. (2013). Reading time data for evaluating
broad-coverage models of English sentence processing.
Behavior Research Methods, 45(4):1182–1190.

Frank, S. L., Otten, L. J., Galli, G., and Vigliocco, G.
(2015). The ERP response to the amount of information
conveyed by words in sentences. Brain and language,
140:1–11.

Funke, G., Greenlee, E., Carter, M., Dukes, A., Brown,
R., and Menke, L. (2016). Which eye tracker is right
for your research? Performance evaluation of several
cost variant eye trackers. In Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, vol-
ume 60, pages 1240–1244. SAGE Publications Sage CA:
Los Angeles, CA.

Futrell, R., Gibson, E., Tily, H. J., Blank, I., Vishnevetsky,
A., Piantadosi, S., and Fedorenko, E. (2018). The Natu-
ral Stories Corpus. In Proceedings of the Eleventh Inter-
national Conference on Language Resources and Evalu-
ation (LREC-2018).

Fyshe, A., Talukdar, P. P., Murphy, B., and Mitchell,
T. M. (2014). Interpretable semantic vectors from a joint
model of brain-and text-based meaning. In Proceedings
of the conference. Association for Computational Lin-
guistics. Meeting, volume 2014, page 489. NIH Public
Access.

Gauthier, J. and Ivanova, A. (2018). Does the brain
represent words? An evaluation of brain decod-
ing studies of language understanding. arXiv preprint
arXiv:1806.00591.

Gauthier, J. and Levy, R. (2019). Linking artificial and hu-
man neural representations of language. In Proceedings
of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 529–539.

Gibaldi, A., Vanegas, M., Bex, P. J., and Maiello, G.
(2017). Evaluation of the Tobii EyeX eye tracking con-
troller and Matlab toolkit for research. Behavior re-
search methods, 49(3):923–946.
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