
Proceedings of LaTeCH-CLfL 2020, pages 29–41
Barcelona, Spain (Online), December 12, 2020.

29

A Survey on Approaches to Computational Humor Generation

Miriam Amin and Manuel Burghardt 
Computational Humanities Group, Leipzig University 
miriam.amin@studserv.uni-leipzig.de, 
burghardt@informatik.uni-leipzig.de 

 

Abstract 

We provide a comprehensive overview of existing systems for the computational generation of 
verbal humor in the form of jokes and short humorous texts. Considering linguistic humor the-
ories, we analyze the systematic strengths and drawbacks of the different approaches. In addi-
tion, we show how the systems have been evaluated so far and propose two evaluation criteria: 
humorousness and complexity. From our analysis of the field, we conclude new directions for 
the advancement of computational humor generation. 

1 Introduction 

Since the early 1990s, computer scientists and linguists have been trying to create jokes using algo-
rithms. Despite this longstanding research and the current evolution of powerful approaches in deep 
learning and neural networks – which are very well able to simulate human behavior and creativity, e.g. 
with the composition of pop music (Chu et al., 2017), poetry (Ghazvininejad et al., 2017) or abstract 
paintings (Li et al., 2019) – no system has been able to imitate human humor and to generate jokes like 
a human until today. From a research perspective, the task at hand is called humor generation. It is part 
of the broader field of computational humor and the output of humor generation systems are typically, 
but not exclusively, jokes. Besides the creation of humor, the following aspects are relevant for the field 
of computational humor as a whole: 

• Humor recognition is dealing with algorithms deciding whether a given sentence expresses a 
certain degree of humor (Mihalcea and Strapparava, 2005; Barbieri and Saggion, 2014; Cattle and 
Ma, 2018; Morales and Zhai, 2017). A related task is humor prediction (Chen and Lee, 2017). 

• Humor adaption systems are systems that learn a person’s humor preference and adapt their 
performance according to it (Weber et al., 2018; Winters et al., 2018).   

• Computational humor evaluation research is concerned with the problem of how to evaluate a 
humor generating system (Valitutti, 2011; Braslavski et al., 2018).  

• Computational humor applications are wide spread and range from systems that help mentally 
challenged children to learn and comprehend complex communication situations (Ritchie et al., 
2007; Shah et al., 2016) to applications that can be used to make human computer interaction 
more pleasant on the human side (Binsted, 1995; Stock, 2006; Iwakura et al., 2018).  

• Computational humor datasets and corpora are collected and published with the purpose of 
facilitating humor research methods using data analysis, statistical learning or deep learning. They 
range from data about humor norms of English words (Engelthaler and Hills, 2017), over data 
that conveys pairs of newspaper headlines with a humorous counterpart (Hossain et al., 2019) to 
multimodal data that includes not only linguistic, but also acoustic and facial expression features 
as reaction to humorous expressions in TED talks (Hasan et al., 2019).  

 
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: 
http://creativecommons.org/licenses/by/4.0/ 



30

While humor generation can be researched from both the textual and the visual perspective (Oliveira et 
al., 2016), this survey article is dedicated to providing an overview of only text-based systems and ap-
proaches for the computational generation of humor.  
Although only a minority of the existing systems refer to humor theory explicitly, we assume that it is 
necessary to also consider some of the most current linguistic humor theories when discussing different 
computational approaches to humor generation. Among the most prominent humor theories are the fol-
lowing: 

• Surprise disambiguation model (Ritchie, 1999; Minsky, 1984; Paulos, 1982; Shultz, 1974)  
• Suls‘ two-stage model (Suls, 1972) 
• Script-based semantic theory of humor (SSTH) (Raskin, 1984) and its extension, the General 

theory of verbal humor (Raskin and Attardo, 1991)  
 
These theories agree that humor is evoked by incongruity within a text. Incongruity theories assume that 
a humorous text conveys two different, incompatible interpretations (also called scripts2 or frames) that 
share a common part that allows us to shift from one script to another. One interpretation is usually more 
obvious than the other, so that the recipient begins to process only this script, until parts of the text 
contradict with the initial interpretation, revealing the before hidden, second interpretation. This sudden 
revision of understanding causes the emotions of surprise and satisfaction that is perceived as humor 
(Krikmann, 2006). The various theories differ in how the incongruity is created or resolved (Ritchie, 
1999). 

Although research on computational humor generation has been going on since the early 1990s, the 
field is still very heterogenous. Research is conducted by at least two different communities: humor 
theory/linguistics (e.g. Hempelmann, 2008; Raskin, 2012; Taylor, 2017) and natural language pro-
cessing/computational linguistics (e.g. Binsted and Ritchie, 1994; Hong and Ong, 2009; Yang and 
Sheng, 2017). There have been attempts by the humor theory community to streamline the research 
activity in a series of workshops (Nijholt, 2012), however, the vast majority of existing humor systems 
originates from the NLP community and does not seem to pick up those more theory-driven impulses. 
Interestingly enough, most of the older NLP approaches also do not take into account related and previ-
ous work and for the most part seem to exist in isolation from each other (Winters et al., 2019). After 
all, a more recent approach aims to standardize terminology and generalize the computational template-
based stream of research (Winters et al., 2019). This framework is, however, not able to capture the 
entirety of the existing systems and the only existing survey paper that aims at capturing activity in the 
field dates back to 2001 (Ritchie, 2001). With the present survey paper, we try to fill that gap by provid-
ing a comprehensive overview of the existing approaches. To be able to compare and discuss these ap-
proaches, we propose humorousness and complexity as the two main criteria for the evaluation of humor 
generation systems. By analyzing the strengths and weaknesses of the respective systems with regard to 
those criteria, we conclude directions for future research in the field. 

2 Humor Generation Systems 

Humor generation can be viewed as a special case of automatic text generation. Accordingly, the existing 
systems can be categorized as belonging to one of two major approaches to text generation: Templates 
and neural networks. Until Yang and Sheng’s publication on an LSTM RNN for joke production in 2017, 
all of the previous published systems were template-based. While the early template-based systems had 
to be equipped with handcrafted lexicons, more recent systems have a variety of external lexical re-
sources as source of material for generation.  

It is also worth mentioning that the nature of the humorous texts produced by different systems is 
rather diverse. While a number of systems was focused on the generation of question-answer jokes  
(Raskin and Attardo, 1994; Binsted and Ritchie, 1994; Ritchie et al., 2007; Sjöbergh and Araki, 2008; 
Hong and Ong, 2009; Labutov and Lipson, 2012), others aimed at creating narrative jokes (Sjöbergh 
and Araki, 2009; Yang and Sheng, 2017; Yu et al., 2018). Furthermore, three systems generate humor 

 
2 A script, also known as frame, is ‘an organized chunk of information about something’ and ‘contains information which is 
typical, such as well-established routines and common ways to do things and to go about activities’ (Attardo, 1994). In a 
broader sense, every content word can be a script, as for example ‘teacher’ or ‘workplace’. Scripts can also be more complex 
like ‘packing for holidays’. 
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through lexical replacement, in acronyms (Stock and Strapparava, 2005), proverbs (Sjöbergh and Araki, 
2008) or in SMS (Valitutti et al., 2016), and one system creates witty analogies (Petrović and Matthews, 
2013). 

In the following, we will give an overview of existing humor generation systems. Since neural net-
works have recently achieved state-of-the-art results on many tasks in natural language processing, we 
will start with the group of systems that apply them for the creation of jokes. This group, however, 
contains only two systems, whereas the vast majority (ten systems) belongs to the group of template-
based approaches.  

2.1 Neural systems 

The most recent line of work on computational joke generation trains neural networks for language 
generation in a way that the output is a short humorous text. As was already mentioned, work in this 
branch started with Yang and Sheng’s (2017) current affair jokes generator that is trained on a joke 
corpus and allows the user to specify the topics of the joke. They use an LSTM RNN as their network 
architecture and GloVe as vector representation for the training data input. As training data, the authors 
use a dataset of 7,699 jokes written by Conan O’Brien and news data in order to improve the model for 
the current affairs related language. The topic words to be selected by the user were extracted from the 
jokes with a POS-tagger, assuming that nouns typically represent topics. Additionally, the user can spec-
ify the words the joke starts with from a list (e.g. ‘I don’t know why but…’). The authors attempt to 
implement a form of incongruity by not outputting the word with the highest probability, but instead 
picking words from the vocabulary with the probability they were assigned in the output layer. For ex-
ample, for the topic words ‘Kardashian’ and ‘President’, the network generated the joke ‘Yesterday to a 
new attractiveness that allows Bill Kardashian’s wife to agree with the U .S . Presidents . In fairness , 
she said , “My spa”.’. It is evident from this example that the system is not capable of producing a 
humorous text. 

Instead of training their model on a joke corpus, Yu et al. (2018) aim at creating humor through in-
congruity by training a neural network with a seq2seq model on the Wikipedia text corpus and using one 
polysemic word and two of its meanings as input for text generation. From that, the language model 
generates two sentences, each conveying one sense of the word. In the first of the two presented pun 
models (the authors call it joint model), an encoder-decoder network is trained to generate one sentence 
containing both senses. The second model (highlight model) is an improved version that adds more 
words associated with the initial senses to the decoded sentence. That is to make sure both conveyed 
senses are transferred to the audience explicitly enough. For example, one of the triples consisting of a 
polysemic word and two of its meanings as input for the joke models could be ‘square: 1) a plane 
rectangle with four equal sides and four right angles, a four-sided regular polygon; 2) someone who 
doesn’t understand what is going on.’ For this input, the highlight model outputs ‘Little is known when 
he goes back to the square of the football club’ and the joint model generates ‘There is a square of the 
family.’ Likewise Yang and Sheng’s (2017) system, neither of the models’ output is identifiable as joke. 

In contrast to template-based humor systems that will be reviewed in the next section, neural systems 
pose no semantic or syntactic restrictions, which results in a fairly creative output. Despite the high level 
of creativity, both neural systems ultimately fail to generate actual humor. 

2.2 Template-based systems 

In linguistics, a template is understood to be a text with slots that can be filled with different variables. 
In order to compose a joke, a template needs to be associated with a schema, which is the structure 
stipulating the relationships between the variables of a template (Binsted and Ritchie, 1994). These 
relationships are typically chosen in a way to provoke incongruity and its resolution. In other words, the 
schema is the joking mechanism. The variable relations can be a lexical relationship like synonymy, 
meronymy or hyponymy, but also a phonetical relation, such as (quasi-)homonymy. All template-based 
systems need a source that provides information about relationships between words in order to fulfill the 
requirements of the schema. We propose a classification of template-based systems that focuses on the 
source of these information. It should be noted that template-based systems are typically less creative 
than neural systems, as they are in any case restricted to the constraints of the template which are pre-
defined by the creator of the template. 
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Within the template-based strand of research we primarily distinguish between systems that use ontolo-
gies for variable selection and systems that apply quantitative measures for that end. While the first 
group relies on the existence of ontologies or lexicons that store relationship information that is required 
to fill the template explicitly, the second group calculates predefined metrics on a corpus to find the best 
fit for a variable arithmetically. As a third group, we have identified hybrid systems that share properties 
of both aforementioned groups. In the following, we present the different groups with their correspond-
ing systems. 
 
Ontologies for variable selection 
Early generators make use of handcrafted ontologies that are tailored to the specific system. This in-
cludes the Light Bulb Joke Generator (LIBJOG, Raskin and Attardo, 1994) that produces jokes of the 
pattern How many <group name> does it take to screw in a light bulb? <NumberX>. One to <activity 
1> and <numberY> to <activity2>. LIBJOG uses a lexicon of social groups and their stereotypical 
activities to produce jokes such as ‘How many Californians does it take to change a light bulb? Twelve. 
One to screw it in and eleven to share in the experience.’. Over several phases from LIBJOG-1 to 
LIBJOG-4, the system became incrementally more complex, allowing for more activity fields and less 
restricted number relations.  

Binsted and Ritchie (1994) follow a similar approach by 
basing their punning riddle generator on a manually edited 
lexicon that stores lexical relationship information, such as 
synonymy, hyponymy and associated verbs and the 
phonetical feature homophony. Their system called JAPE-1 
uses question-answer templates, as for example What is 
<adjective> and <verb>?– <noun phrase>. With <noun 
phrase> as user input, JAPE fills the two remaining slots 
based on the words’ homophony, exploiting phonological 
ambiguity to induce humorousness. An example of such a 
joke is: ‘What’s green and bounces? A spring cabbage!’. 
Figure 1 illustrates the mechanism of that joke. In total, 
JAPE has 15 joke templates with schemes. 

 
Another line of systems uses freely-available ontologies and databases. Resources used by the existing 
systems are WordNet (Princeton University, 2010) for lexical relationships, ConceptNet (Speer et al., 
2017) for semantic relationships  and UniSyn (Fitt, 2002) or CMU pronouncing dictionary (Lenzo, 2007) 
for phonetical relationships. Furthermore, systems make use of thematic word lists for slang words or 
profanity. With STANDUP, Ritchie et al. (2007) present an extension of JAPE that has a user interface 
makes use of WordNet and UniSyn instead of the handcrafted lexicon.  

HAHAcronym (Stock and Strapparava, 2005) is a system that writes out common acronyms in a 
humorous manner. For example, the acronym FBI (Federal Bureau of Investigation) becomes Fantastic 
Bureau of Intimidation. HAHAcronym makes use of WordNet, augmented with domain labels for the 
entries and the CMU pronunciation dictionary to take into account word rhymes and rhythms. The sys-
tems parses a given acronym to detect the syntactical form and the highest-ranking noun phrase, which 
remains unchanged. The other words get substituted while preserving the initial letter, the word class as 
well as the overall rhyme and rhythm. A substitution is chosen by exploiting semantic field opposition.  

Sjöbergh and Araki’s (2009) ambiguous compound generator also leverages WordNet to create jokes, 
this time however focusing less on inter-word relationships, but more on the provided definitions and 
example sentences. The system consists of two modules, creating two types of jokes, each making use 
of possibly ambiguous compound nouns. The first module creates jokes with the template ‘I saw a 
<noun1> <noun2>. She (<noun1>) <WordNet example sentence>.’  For the two noun slots, the system 
selects compound nouns from WordNet where both parts also occur as single entries, the first as noun 
and the second as noun and verb. For the verb, one of the example sentences is extracted in order to 
complete the template to a joke such as ‘I saw a fish stick. She (the fish) stuck her thumb in the crack.’ 
The audience initially assumes that fish stick is a composite, as this is the more obvious interpretation. 
However, this expectation is disrupted in the second sentence, when the rear part of the supposed com-
posite turns out to be a verb. The first sentence is now reanalyzed, and the incongruity is resolved. The 

Figure 1: Illustrated example of the joke 
mechanism in JAPE. From: Binsted and 
Ritchie, 1994 
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second type of joke Sjöbergh an Araki’s system produces, follows the template ‘<WordNet definition 
<noun1> <noun2>>.’ For this, compounds are selected when they contain at least one word that is 
included in WordNet itself, and by changing one letter that word must become another word present in 
WordNet. This compound is combined with one entry that has the original compound in its WordNet 
definition. From the exemplary compound ‘god of war’ this would render ‘Ares: (Greek mythology) 
Greek god of car’. To reduce the number of jokes, the authors implement a measure of funniness and 
only output jokes above a certain threshold. The measure is calculated by the relation of the frequency 
of the selected compound between a joke corpus and a non-humorous corpus. 

Hong and Ong’s (2009) system uses WordNet’s relation synonymy and UniSyn’s pronunciation in-
formation alongside with any semantic relationship retrieved from ConceptNet. Their system creates 
punning riddles similar to Binsted and Ritchie’s JAPE. This time, however, the algorithm is designed to 
first learn question-answer joke patterns from examples and then create new jokes according to the pat-
terns. To create joke patterns, the algorithm called T-PEG marks nouns, adjectives and verbs in every 
joke from a POS-tagged joke corpus as candidate variables. For every tuple of candidate variables in a 
joke, T-PEG determines the lexical, phonetical or semantical relationship between the two variables. 
Those candidate variables with at least one relationship with another candidate are the final variables in 
the learned template. For example, from the source pun ‘Which bird can lift the heaviest weights? The 
crane.’, T-PEG extracts the sentence template ‘Which <X1> can <X3> the heaviest <X6>? The <Y1>.’ 
and the word relationships ‘X1 ConceptuallyRelatedTo X6’, ‘X6 ConceptuallyRelatedTo X1’, ‘Y1 IsA 
X1’, ‘X6 CapableOfReceivingAction X3’, ‘Y1 CapableOf X3’ and ‘Y1 UsedFor X3’. From the 39 tem-
plates the algorithm extracted, the authors found 27 (69 %) to be usable. To generate jokes, T-PEG uses 
the library of patterns and WordNet, Unisyn and ConceptNet to find fitting words for the slots and a 
keyword input from the user as a starting point.  

 
Quantitative measures for variable selection 
On the contrary to the aforementioned systems, joke generators using quantitative measures implement 
hypotheses about the nature of the relations, which are not expressed in explicit variable relationships 
but in quantitative measures, for instance n-gram co-occurrence.  

Labutov and Lipson (2012a) are the first (and only) authors to explicitly implement a linguistic humor 
theory, based on cycles within the knowledge graph of ConceptNet. The theoretic framework they refer 
to is the script-based semantic theory of humor (SSTH) (Raskin, 1984), according to which a text is 
humorous (i.e. a joke) if it satisfies the following conditions: it suits partly or completely to two different 
scripts and these two scripts are opposite. Instead of explicitly defining the relationships between the 
concepts, like in STANDUP, the authors model their as-
sumptions of how to retrieve concepts and their relations 
that form a joke from ConceptNet probabilistically. Based 
on the premise that paths in ConceptNet can be represented 
as scripts, the authors hypothesize that circuits, i.e. two 
paths that have the same root and end node, are joke can-
didates. Figure 2 shows an example of a circuit. From a 
seed concept, the algorithm performs a depth-first search 
and selects candidate paths, represented as a chain of rela-
tions between concepts. Modeling SSTH’s script overlap, 
one condition for selection of a candidate path is the max-
imum path overlap. In order to create a meaningful and 
reasonable script in human language, the maximum likeli-
hood of transition between the relations is also considered. 
The transition probabilities were learned before. From the 
found script pairs, the ones with maximum inter-script in-
congruity are selected. To measure incongruity, an algo-
rithm clusters all concepts in ConceptNet, so that related concepts form one cluster. The jokes are created 
with a small number of templates similar to the form ‘Why does the A do B? Because the A is D.’ An 
example of a joke created by the system is ‘Why is the computer hot in MIT? Because MIT is hell.’  

 

Figure 2: Example of a semantic circuit 
that constitutes a joke. From: Labutov and 
Lipson, 2012 
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Petrovic and Matthews’ (2013) approach strikes a similar chord by encoding the semantic relationships 
between the variables in a template as functions and finding the words that would minimize the result. 
This time, however, the candidate variables are calculated based on frequencies and co-occurrences 
within the Google n-gram corpus, which marks a leap towards the independence of such systems from 
ontologies and knowledge graphs. The joke template here is ‘I like my X like I like my Y, Z.’. The authors 
formulate assumptions about the variables that must be met to make the completed template funny. On 
the contrary to Labutov and Lipson (2012a), these assumptions, however, do not seem to originate ex-
plicitly from the theory of humor, but from a self-conceived heuristic of the authors. Besides the pre-
condition that X and Y are nouns and Z is an adjective, the model is based on the following hypotheses: 
(1) The adjective should be relevant to both nouns. The model calculates the co-occurrence probability 
from the Google 2-gram corpus (ignoring 2-grams with less than 1,000 occurrences). (2) The less com-
mon the attribute Z, the funnier the joke. This is encoded as the reciprocal frequency of Z in the corpus. 
(3) The more ambiguous the attribute, the funnier the joke. The authors represent this as the reciprocal 
of the number of senses of Z, retrieved from WordNet. (4) The more dissimilar the nouns are, the funnier 
the joke. To measure the similarity, the model calculates the cosine of the angle between the two nouns, 
represented as vectors of all attributes used to describe them in the corpus. Dissimilarity is represented 
as the reciprocal similarity of X and Y. Overall, Petrovic and Matthews assume that a joke is funnier, the 
higher the product of all factors is, i.e. the funniness probability, given a triple (X, Y, Z), normalized 
over all triples. For joke calculation, the authors fix one of the nouns because of limitations in computing 
capacity. An example of a generated jokes is ‘I like my relationship like I like my source, open.’. 

 
Hybrid systems  
A number of systems combine ontological and quantitative approaches. Sjöbergh and Araki (2008) pre-
sent a system performing Japanese stand-up comedy implementing three different joking techniques. 
The system starts with a proverb joke, continues with a riddle joke and ends with a joke retrieved from 
a human generated joke database. The succeeding joke is found on the base of the words used in the 
previous joke and connected by the phrase ‘Speaking of <keyword>, <next joke>’. The system generates 
proverb jokes by selecting a proverb from a list of common Japanese proverbs and changing two words 
to similar sounding dirty words. Dirty words are taken from a collection of dirty words and information 
about similar pronunciation from a list of the phonetic distances between Japanese graphemes. The prov-
erb ‘jack of all trades, master of none’ would for instance be modified to ‘jacking off all trades, mastur-
bate none’. For the riddle jokes, the system checks the nouns of the previous joke for similarity with a 
word of the dirty words list. The jokes follow the template ‘A <noun> is a <noun>, but what kind of 
<noun> is <hint>?  – <dirty word>’. The hint is a word that describes the noun as well as the dirty 
word and is generated by searching ‘a <dirty word> is <hint>’ in an internet search engine. The hint 
found is then reviewed for its co-occurrence with noun and dirty word, again using frequencies retrieved 
from a search engine. An example of such a joke is ‘“Speaking” is “speaking”, but what is a naughty 
kind of speaking? – Spanking the monkey.’.   

Similar to their approach, Dybala et al. (2008) develop a pun generator that creates Japanese puns as 
humorous responses to a user’s input as part of a conversational system. In a first step, the algorithm 
called PUNDA generates a candidate word for a pun. The user’s input is morphologically analyzed and 
if any word is parsed as a noun, this word becomes the base of the pun. Pun candidates are generated 
from the base word using one of four possible generation patterns: homophony, initial syllable addition, 
internal syllable addition and final syllable addition. For example, the following candidates can be gen-
erated from the base word katana by 1. homophony: katana, 2. initial syllable addition: akatana, ikatana, 
ukatana, … 3. final syllable addition: katanaa, katanai, katanau, … and 4. internal syllable addition: 
kaatana, kaitana, kautana, … . If any of the candidates is recognized as an actual word by a morpholog-
ical analyzer, the number of hits in a Japanese search engine is determined. The word with the highest 
hit rate is the final candidate. In a second step, a list of all sentences that contain this word is retrieved 
from a sentence database. The shortest sentence with exclamation mark, or if no such sentence is found, 
with period is selected as the final sentence. This sentence is connected to the user’s input with the 
pattern ‘Speaking of <base word>’. An example conversation could be the following: User: ‘Natsu wa 
atsui desu kedo, Toukyou hodo ja nai desu’. (The summer is hot, but not as hot as in Tokyo.) with the 
base word: natsu (summer) and the pun candidate natsukashii (emotionally attached; loved). – System: 
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Natsu to ieba, natsukashii Nose de, kyuuyuu to waiwai! (Speaking of summer, it will be fun to meet some 
old friends in my beloved Nose [a town near Osaka]!) 

Similar to Stock and Strapparava’s (2005) HAHAcronym, Valitutti et al. (2016) generate humorous 
texts by word substitution. They substitute a single word in a given short text message (SMS) that serves 
as a template. Their 2016 study is an enhanced version of a 2013 paper by the same authors (Valitutti et 
al., 2013). They assume different kinds of lexical constraints that determine the funniness of a substitu-
tion: (1) Taboo: The substitution is a taboo word (dirty word e.g.) or connoted with a taboo. (2) Coher-
ence: The substitute forms a coherent compound with its neighbors. (3) Position: The substitution takes 
place among the last words of the text. (4) Form: The substitute is phonetically or orthographically sim-
ilar to the original word. They use WordNet, the CMU pronunciation dictionary, the Google n-gram 
corpus after 1990, two online dictionaries of slang words and an example list of funny autocorrection 
mistakes from the internet, to find suitable candidates and check them for compliance with the con-
straints. As input for the manipulation they use an SMS Corpus. An example of a joke that leverages the 
constraints form and position is ‘Tmr u going to school? I meet u in pool?’ (school/pool replacement). 

3 Evaluation of Humor Generation Systems 

In order to compare the existing systems to each other, some basic measures for the quality of humor 
generation systems are needed. Although a multitude of systems has been developed so far, a standard-
ized methodology of assessing the quality of such systems is still missing. Most previous systems chose 
the humorousness of the output as an evaluation criterion. The majority of approaches was evaluated by 
means of user studies where actual humans rated the generated jokes on a Likert scale that typically 
ranges from 0 (not a joke) to 5 (really funny). The first authors to introduce this method were Binsted 
and Ritchie (1994) and many followed their example, such as Sjöberg and Araki (2008) or Hong and 
Ong (2009). Yang and Sheng (2017) as well as Valitutti et al. (2016) employ a four-step Likert scale.  
However, in most of the papers it remains unclear how the samples for evaluation were selected. Petrovic 
and Matthews (2013) for example disclose that they hand-picked the best jokes for the human assess-
ment. Obviously, it matters a lot whether the average humor of a system is calculated on the basis of 
random jokes or on the basis of jokes that were pre-selected by the authors. 

The main challenge in the design of humor evaluation measures is that humor is highly subjective and 
what makes one person laugh might not have the same effect on another person. Winters et al. (2018) 
show that the funniness judgements of jokes differ significantly among the test persons. Circumventing 
this issue, Valitutti (2011) proposes the HF (humorous frequency) as measure for the evaluation of com-
putational humor generators. He defines HF as the fraction of funny items in a randomly generated set 
of jokes. Any item is either funny or not funny, i.e. in this context humorousness has a Boolean value 
rather than a score. To calculate the HF of a system, Boolean humorousness ratings have to be assigned 
to every item of a randomly selected set of jokes generated by the system. However, how a single joke 
is assessed remains highly subjective.  

Binsted and Ritchie (1997) suggest to classify a computer-generated joke as successful when people 
cannot tell it apart from a human-generated joke, funniness left aside. Yu et al. (2018) conduct such an 
evaluation. The authors design what they call a Soft Turing Test to let test persons rate the humanness 
of the jokes generated by their system on a three-score Likert-scale (2–definitely human/0–definitely 
machine). 

What all these approaches have in common, however, is that they do not consider the humor capability 
of the systems as a whole and rather evaluate individual jokes, or, as in the case of the HF, derive an 
overall evaluation of the system from the scores of the individual jokes. Consequently, the diversity of 
the produced material is completely disregarded in these evaluations. This overlooks the fact that a sys-
tem that produces a row of almost similar jokes would not be very enjoyable for a human. Taking this 
factor into account, the humor capability of a system with a low complexity, i.e. a system that produces 
similar jokes with almost the same wording and the same production principle, should be rated lower 
than a system that produces a variety of jokes and joke mechanisms. 

To our knowledge, none of the evaluation procedures yet has attempted to apply objective criteria to 
the decision of whether a given piece of text is humorous or not. However, from the insights of humor 
theory and research, criteria for what constitutes a joke can be concluded. Consequently, a useful 
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measure would be not if a text is humorous or how funny a joke is, but rather whether a text is identifiable 
as joke or not, taking into account objective criteria.   

4 Comparison of Humor Generation Systems based on their Humorousness and Com-
plexity  

The considerations in the last section give rise to two main criteria for the evaluation of humor systems: 
humorousness and complexity. In the following, we provide a discussion of the benefits and limitations 
of different systems based on these criteria. We define humorousness as the ability of a humor system to 
output text that is identifiable as a joke or a text with a humorous intent. The above introduced incon-
gruity theories can contribute objective criteria towards this end. In this sense, a text is humorous if it 
conveys two different concepts, whose incompatibility is resolved in an unexpected way. We define 
complexity as the ability of a humor system to generate a variety of humorous texts, concerning syntac-
tical and lexical features, as well as the joking mechanism. The joking mechanism describes the way in 
which the incongruity and its resolution is evoked.  
Based on these two criteria, Table 1 provides a rating of the aforementioned systems.  Due to the lack of 
computable metrics, we do not assign scores to the single systems. Instead, we rank the systems against 
each other in terms of the introduced criteria on a scale from 1 to 3 where 1 is the highest rank. 
 

Type of joke/system name Authors Year Class H C 

Current affair joke generation Yang and 
Sheng 

2017 Neural 3 1 

Homographic pun generation Yu, et al. 2018 Neural 3 1 

Lightbulb jokes/LIBJOG Raskin and 
Attardo 

1994 Template-based 1 3 

Punning riddle generators/ 
JAPE and STANDUP 

Binsted and 
Ritchie 

1994/2007 Template-based 1 2 

HAHAcronym Stock and 
Strapparava 

2005 Template-based 2 2 

Japanese Standup Sjöbergh and 
Araki 

2008 Hybrid 2 2 

PUNDA Dybala et al. 2008 Hybrid 2 2 

Question-Answer jokes patterns Hong and Ong 2009 Template-based 1 2 

Ambiguous compound joke  
generator 

Sjöbergh and 
Araki 

2009 Template-based 2 2 

Humor as circuits in ConceptNet Labutov and 
Lipson 

2012 Template-based 1 2 

Humorous analogy generation Petrovic and 
Matthews 

2013 Template-based 1 3 

Humorous SMS generation Valitutti et al. 2016 Hybrid 2 2 

 
Table 1: Ranking of humor systems with regards to humorousness (H) and complexity (C) 
 
For the assessment of humorousness, we gave rank 3 to systems that do not fulfill the criteria for jokes 
at all and rank 1 to systems whose output is obviously identifiable as joke. Rank 2 was given to systems 
that produce text that fulfills at least some joke criteria (e.g.: Valitutti’s Humorous SMS generator intro-
duces ambiguity to the texts, but it lacks unexpectedness). However, the evaluation of the jokes could 
only consider the jokes published by the authors, usually 3-5 examples. As mentioned before, it can be 
assumed that the authors manually filtered out the best jokes for the papers. Petrović and Matthews 
(2013) among others, admit this and Hong and Ong (2009) explicitly mention that much of the output is 
not funny.  
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With regard to complexity, we assigned rank 3 to systems without template that restricts syntactical 
and lexical features, rank 2 to systems that have either a variety of different templates or template with 
variable slots that are large enough to allow a lexical diversity and rank 1 to systems that have only one 
template.  

This analysis reveals the strengths and weaknesses of the two approaches to humor generation. The 
table clearly shows that none of the systems reaches the highest rank in humorousness as well as in 
complexity. The template-based approaches fill the higher ranks for humorousness by implicitly includ-
ing humor theory through their constraints and metrics. The neural systems on the other hands are not 
capable of generating humorous text at all, scoring the lowest ranks. Nonetheless, these systems reach 
the highest scores in complexity through their learned language model, consequently being able to gen-
erate a large variety of text. The template-based approaches fail to reach that level of complexity.   

 

5 Conclusion: Toward Better Humor Generation Systems by Means of Linguistic Hu-
mor Theories 

Our survey shows that even after more than 25 years of work on humor generation, further research 
needs to be conducted in order to create a system that generates text that fulfils theory-driven criteria for 
humor and that is able to produce a variety of texts, regarding syntactical structures and joke mecha-
nisms. It is somewhat surprising that almost none of the present approaches refers to a linguistic humor 
theory explicitly. The initially introduced humor theories and their evolution, however, make very clear 
that textual humor is evoked by complex semantic mechanisms. A number of requirements about the 
involved concepts and their semantic relationships needs to be fulfilled in order to create a text that is 
actually humorous rather than just puzzling. These theories enable us to explain why some texts are 
funny and make people laugh and others do not. Hence, we believe that considering these existing humor 
theories will be an important step to overcome the limitations of existing joke generators. 

We regard the surprise ambiguation model and the SSTH as the most interesting theories. The surprise 
ambiguation model, as formalized by Ritchie (1999), defines a small set of properties and entities. Based 
on the three entities M1 – the obvious interpretation of the set-up, M2 – the hidden interpretation of the 
set-up and M3 – the meaning of the punchline, the model defines the following relations and properties 
involved in humorous texts: Obviousness (M1 is more likely than M2 to be noticed by the reader), conflict 
(M3 does not make sense with M1), compatibility (M3 does not make sense with M2), comparison (there 
is some contrastive relationship between M1 and M2) and inappropriateness (M2 is inherently odd or a 
taboo). Winters et al. (2019 and 2018) already used these properties to identify and validate a set of 
metrics that are used by machine learning algorithms to extract features from existing jokes. Also, the 
concept of humor postulated by the SSTH has very few requirements that could be formalized pretty 
easily. The SSTH even implicitly gives an instruction of how a joke can be constructed from non-hu-
morous content. In Suls’ two-stages model on the other hand, whether something is humorous or not is 
dependent on the presence of a cognitive rule. However, a cognitive rule can be anything and is therefore 
not very feasible for being modeled computationally. The GVTH focuses more on a representation of 
the differences of jokes rather than on the humor mechanism itself.  

We see great potential for the improvement of existing approaches to computational humor generation 
by taking into account these theoretical approaches to humor and hope that this survey will pave the way 
for further, more theory-driven research in this direction. 
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