Geometric Deep Learning Models for Linking Character Names in Novels

Marek Kubis
Adam Mickiewicz University in Poznan
Faculty of Mathematics and Computer Science
ul. Uniwersytetu Poznanskiego 4, Poznan 61-614, Poland
mkubis@amu.edu.pl

Abstract

The paper investigates the impact of using geometric deep learning models on the performance
of a character name linking system. The neural models that contain graph convolutional layers
are confronted with the models that include conventional fully connected layers. The evaluation
is performed with respect to the perfect name boundaries obtained from the test set and in a more
demanding end-to-end setting where the character name linking system is preceded by a named
entity recognizer.

1 Introduction

Characters are mentioned in novels in various ways. They are referred by their first names, surnames,
job titles, nick names, diminutives, honorifics and other forms that are ambiguous to some extent. This
paper investigates the impact of using geometric deep learning for the purpose of linking names that
refer to the same character. Geometric deep learning is a set of deep learning methods developed for
non-Euclidean domains (Bronstein et al., 2017). In this preliminary study we analyze the impact of
using graph convolutional networks (Kipf and Welling, 2017) and an edge based training objective on
the performance of the character name linking system built upon a non-Euclidean domain of a character
mentions graph.

The problem of linking all names that refer to the same character is a subject of multiple publications.
Elson and McKeown (2010) perform name linking with a rule-based method as a preliminary step for
attributing passages of quoted speech in narrative. The same method of linking is used by Bamman
et al. (2014) for their work on modeling character types. Coll Ardanuy and Sporleder (2014) present
another deterministic algorithm for character name resolution which is an integral part of their method
of constructing social networks from literary artworks. Vala et al. (2015) propose a multistage pipeline
for character detection that transforms the graph of character mentions by adding and removing edges
between nodes that should refer to the same character. A more general problem of character identification
which encompasses both name and pronoun resolution is discussed in the context of TV Shows by Chen
and Choi (2016) and Choi and Chen (2018). A similar problem of character reference detection is
addressed by Krug (2020) for German historic novels. A closely related task of coreference resolution
was successfully approached with various deep learning models in recent years (Clark and Manning,
2016; Wiseman et al., 2016; Lee et al., 2017).

2 Dataset

For this study we use Lalka (English: The Doll) a Polish novel by B. Prus for the purpose of training and
evaluation. All names that indicate the same character are annotated with a common character identifier
which is unique within the scope of the book. The dataset is divided into training and test set that are
roughly equal in size and consist of two consecutive sets of chapters. Although limited to one novel our
corpus with its 150000 tokens and 192 unique characters is comparable in size to the dataset used by
Choi and Chen (2018).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

127

Proceedings of LaTeCH-CLfL 2020, pages 127-132
Barcelona, Spain (Online), December 12, 2020.

For the purpose of constructing geometric models the dataset is transformed into an adequate graphical
representation of the problem. The conversion procedure has access to the entire text of the corpus and to
the character identifiers of mentions that appear in the training set. We use all names that are mentioned
in the text as a set of nodes. Two mentions [and r are connected by an edge, if one of the following cases
holds:

1. [and r share the same lemmata // e.g. Stanistawa Wokulskiego — Stanistawem Wokulskim
2. lis a prefix or a suffix of r // Stanistaw — Stanistaw Wokulski

3. [is a diminutive of r // Stasiek — Stanistaw

4. [is an abbreviated form of r // S. Wokulski — Stanistaw Wokulski

5. l and r share the same character identifier in the training set. // Wokulski — Stanistaw

3 Models

We consider two training objectives with respect to the mentions graph that we refer to as node and edge
in the rest of the paper. The first one is to predict directly the correct character identifier for every node
in the graph. This objective does not require any post-processing steps, however its main disadvantage
is the inability to predict identifiers for characters that are not present in the training set. The second
objective is to predict the equivalence relation that holds if and only if two nodes in the mentions graph
refer to the same character. This objective can be used to predict identifiers for characters that do not
appear in the training set, but it requires two additional steps in order to obtain character identifiers for the
nodes. First, one has to extract connected components from the graph induced by the predicted relation.
Second, the character identifiers have to be determined on the basis of the mentions that belong to the
same component.!

Figure 1 presents neural network architectures that are set up for the purpose of character name linking.
All of them accept at the input vector representations of nodes that belong to the mentions graph. A
single node is represented by a vector that encodes the words that belong to a mention (word_vec) and a
vector that encodes its surrounding context (ctx_vec). Architectures (a) and (b) are designed for the node
objective. They consist of a set of consecutive layers that transform node representations. The number of
neurons in the last layer is equal to the number of characters in the novel. The cross-entropy loss is used
for the purpose of training. Architecture (a) transforms node representations using conventional fully
connected layers of neurons (Linear in Figure 1). It depends solely on the vector representations of nodes
without taking into consideration the topology of the mentions graph. We confront this architecture with
(b) where fully connected layers are replaced with dedicated graph convolutional network layers (Kipf
and Welling, 2017) that utilise the edge index. This allows us to verify if there is any advantage in using
structural information for the task. For the edge objective we develop architectures that transform node
representations of (a) and (b) into representations of edges. For this purpose the AdjacentSum layer is
introduced which returns for every edge in the mentions graph the concatenation of the corresponding
node representations and their dot product, i.e.

eij = Concat(r;,rj,ri - rj)

where (i,7) € edge_index and r; is the vector representation of node 7. Furthermore, (c) and (d) are
supplied with additional edge related features denoted by edge_attr in Figure 1. We use this vector to
store textual distance between edges and to encode link types.> As in the case of (a) and (b) the only
difference between (c) and (d) is the introduction of graph convolutional layers. However, one should
notice that even though (c) does not utilise convolutions it still takes into account network topology

'For this task we select the most frequent character identifier in the connected component if any is present and fallback to
the most frequent lemma otherwise.

There are five one-hot encoded link types that correspond to the respective rules of connecting mentions defined in Sec-
tion 2.

128

due to the formulation of the edge objective and the definition of AdjacentSum. Both edge objective
architectures are trained with binary cross entropy loss to detect edges that connect mentions of the same
character.

(word_vec) (ctx_vec) (word,_vec) (ctx_vec)

GCNConv

edge_index

Dropout

GCNConv

edge_index

Dropout

AdjacentSum edge_index) | AdjacentSum

| |(—-< edge_attr) | Concat |(—-< edge_attr)

GCNConv

Concat

(a) node-lin (b) node-gcn (c) edge-lin (d) edge-gcn

Figure 1: Neural network architectures

4 Experiments

For the purpose of evaluation we confront the neural architectures discussed in Section 3 with two base-
line systems:

* base — a deterministic algorithm that memorizes all surface forms of character names that appear
in the training set together with the corresponding character identifiers and annotates the spans of
text that match the memorized surface forms with the stored character identifiers during the testing

3
phase.

* seq — a sequence to sequence model that learns a direct mapping from character names to their
identifiers using the state-of-the-art technique of contextual string embeddings for sequence label-
ing (Akbik et al., 2018).

Since the graph induction procedure depends on a proper demarcation of mention boundaries we
decided to conduct two types of experiments for every model. First, we use name boundaries detected by
the named entity recognizer learned from the mentions that appear in the training set.* This is a realistic
setup that we use to measure the end-to-end performance of the complete name linking system trained
solely from the provided dataset without access to any additional resources. Second, we repeat the same
experiment with name boundaries obtained from the test set. In this scenario the performance of the
name linking model can be measured independently from the named entity recognition technique used to
identify mention boundaries in the complete system. Results are reported separately for the entire set of

3 Any ambiguities are resolving by selecting the most frequent character identifier.

*For named entity recognition we use a procedure that closely resembles the base algorithm. First, the surface forms of
character names that appear in the training set are memorized. Then, the spans of text that match the memorized forms are
annotated in accordance with the standard IOB scheme during the testing phase.

129

characters that appear in the test set and for the characters that where already observed in the training set.
Micro F-score is the main metric used for the purpose of evaluation. Macro F-score which is a metric
that penalizes the system for bad performance with respect to the rare characters is also reported.

Let us start the analysis of the results collected in Table 1 with the more demanding scenario of the
character name linker preceded by the named entity recognizer. In this case the node-lin model presents
similar performance to seq which is not unexpected taking into account that node-lin does not utilise
topology of the mentions graph in any manner. However, if we restrict our attention to the characters
that where observed in the training part of the corpus the differences between seq and node-lin become
more apparent with the former being more performant with respect to the micro f-score and the latter
with respect to the macro f-score. Both node-lin and seq do not surpass the second baseline which is a
far simpler solution to the problem. The node-gcn model outperforms both baselines which proves that
there is a clear benefit in incorporating structural information into the model. Furthermore, the edge-
lin and edge-gcn models which incorporate the structure of the graph in the training objective perform
better than node-gcn, especially with respect to the macro f-score. One should also notice than there is
no observable advantage of using graph convolutional layers instead of linear layers in case of models
designed for the edge objective. In fact, the connected components extracted from the relations predicted
by edge-lin and edge-gcn are so similar that the overall scores do not change. Although the edge models
manifest better performance over the entire set of characters, if we focus on the characters that are present
in both parts of the corpus the node-gcn model is a clear winner. These observations remain valid for the
second evaluation scenario which utilises the mention boundaries obtained from the test set instead of
the boundaries detected by the named entity recognizer.

Micro Macro
Model Boundaries | Characters | Prec. Recall F-score | Prec. Recall F-score
base ner all 0.9384 0.7628 0.8415 | 0.2293 0.2174 0.2168
seq ner all 0.8064 0.7644 0.7848 | 0.1498 0.1790 0.1520
node-lin | ner all 0.9246 0.6790 0.7830 | 0.1952 0.1463 0.1572
node-gcn | ner all 0.9298 0.7849 0.8512 | 0.2446 0.2506 0.2454
edge-lin | ner all 0.8751 0.8714 0.8732 | 0.3914 0.3680 0.3729
edge-gen | ner all 0.8751 0.8714 0.8732 | 0.3914 0.3680 0.3729
base ner observed 0.9388 0.9416 0.9402 | 0.6531 0.6191 0.6175
seq ner observed 0.8072 0.9377 0.8676 | 0.3074 0.3796 0.3160
node-lin | ner observed 0.8521 0.8193 0.8354 | 0.5609 0.4188 0.4481
node-gecn | ner observed 0.9392 0.9680 0.9534 | 0.7208 0.7341 0.7213
edge-lin | ner observed 0.7766 0.9542 0.8563 | 0.1522 0.1516 0.1494
edge-gen | ner observed 0.7766 0.9542 0.8563 | 0.1522 0.1516 0.1494
base test set all 0.9768 0.7533 0.8506 | 0.2415 0.2193 0.2253
seq test set all 0.8064 0.7644 0.7848 | 0.1498 0.1790 0.1520
node-lin | test set all 0.7011 0.7011 0.7011 | 0.1882 0.1602 0.1565
node-gcn | test set all 0.7961 0.7961 0.7961 | 0.2446 0.2679 0.2437
edge-lin | test set all 0.9226 0.9226 0.9226 | 0.6256 0.6297 0.6195
edge-gen | test set all 0.9226 0.9226 0.9226 | 0.6256 0.6297 0.6195
base test set observed 0.9981 0.9300 0.9628 | 0.7886 0.6849 0.7189
seq test set observed 0.8072 0.9377 0.8676 | 0.3074 0.3796 0.3160
node-lin | test set observed 0.8634 0.8634 0.8634 | 0.6162 0.4930 0.5201
node-gen | test set observed 0.9823 0.9823 0.9823 | 0.8770 0.8921 0.8638
edge-lin | test set observed 0.9758 0.9758 0.9758 | 0.6498 0.6272 0.6263
edge-gen | test set observed 0.9758 0.9758 0.9758 | 0.6498 0.6272 0.6263

Table 1: Character name linking performance broken down by the source of mention boundaries and the
set of characters.

130

5 Conclusion

In this study we investigated the impact of using graph convolutional networks and the edge based train-
ing objective on the performance of the character name linking system built upon a character mentions
graph. The conducted experiments show that the structural information encoded in the mentions graph
improves the performance of the character name linking system significantly. Furthermore, there are
several interesting observations that can be drawn from the achieved results. First, the usage of graph
convolutional layers is essential in case of the node models in order to be able to outperform the baseline
models. Second, taking into consideration that node-gcn is the best performing model with respect to
the observed characters, it should be used in all situations where a training set that references all the
characters that are important for the given study is provided. Third, there is no observable performance
drop when graph convolutional layers are replaced by linear layers in the models developed for the edge
objective. However, taking into account that the model which utilizes graph convolutional layers contains
fewer parameters, it should be preferred.

Although the results presented in this preliminary study are promising, there are several issues that
require further investigation. The choice of graph convolutional networks among many geometric deep
learning models was an arbitrary one. Thus, the impact of other graphical neural network architectures
on the performance of the name linking system should be measured in the future. The dataset used for
the study, although comparable in size to the dataset used by Choi and Chen (2018), consists of only one
novel. Hence, the question of how well the obtained results generalize to novels that come from different
authors and periods is left open. Finally, taking into consideration the top performance of the node-gcn
model with respect to the observed characters, a method of indicating unobserved characters for the node
objective should be developed.

References

Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018. Contextual String Embeddings for Sequence Labeling.
In COLING 2018, 27th International Conference on Computational Linguistics, pages 1638—1649.

David Bamman, Ted Underwood, and Noah A. Smith. 2014. A Bayesian Mixed Effects Model of Literary Char-
acter. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 370-379, Baltimore, Maryland, June. Association for Computational Linguistics.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. 2017. Geometric Deep Learning: Going
beyond Euclidean data. IEEE Signal Processing Magazine, 34(4):18-42.

Yu-Hsin Chen and Jinho D. Choi. 2016. Character Identification on Multiparty Conversation: Identifying Men-
tions of Characters in TV Shows. In Proceedings of the 17th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, pages 90—100, Los Angeles, September. Association for Computational Linguistics.

Jinho D. Choi and Henry Y. Chen. 2018. SemEval 2018 Task 4: Character Identification on Multiparty Dia-
logues. In Proceedings of The 12th International Workshop on Semantic Evaluation, pages 57-64, New Orleans,
Louisiana, June. Association for Computational Linguistics.

Kevin Clark and Christopher D. Manning. 2016. Deep Reinforcement Learning for Mention-Ranking Coreference
Models. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages
2256-2262, Austin, Texas, November. Association for Computational Linguistics.

Mariona Coll Ardanuy and Caroline Sporleder. 2014. Structure-based Clustering of Novels. In Proceedings of the
3rd Workshop on Computational Linguistics for Literature (CLFL), pages 31-39, Gothenburg, Sweden, April.
Association for Computational Linguistics.

David K. Elson and Kathleen R. McKeown. 2010. Automatic Attribution of Quoted Speech in Literary Narra-
tive. In Maria Fox and David Poole, editors, Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAI Press.

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convolutional Networks.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings.

131

Markus Krug. 2020. Techniques for the Automatic Extraction of Character Networks in German Historic Novels.
Ph.D. thesis, Universitit Wiirzburg.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettlemoyer. 2017. End-to-end Neural Coreference Resolution.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 188—-197,
Copenhagen, Denmark, September. Association for Computational Linguistics.

Hardik Vala, David Jurgens, Andrew Piper, and Derek Ruths. 2015. Mr. Bennet, his coachman, and the Archbishop
walk into a bar but only one of them gets recognized: On The Difficulty of Detecting Characters in Literary
Texts. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages
769-774, Lisbon, Portugal, September. Association for Computational Linguistics.

Sam Wiseman, Alexander M. Rush, and Stuart M. Shieber. 2016. Learning Global Features for Coreference
Resolution. In Proceedings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 994-1004, San Diego, California, June.
Association for Computational Linguistics.

132

