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Abstract

This paper describes the submission to IWSLT
2020(Ansari et al., 2020) End-to-End speech
translation task by Samsung R&D Institute,
Poland. We took part in the offline End-to-End
English to German TED lectures translation
task. We based our solution on our last year’s
submission(Potapczyk et al., 2019). We used
a slightly altered Transformer(Vaswani et al.,
2017) architecture with ResNet-like(He et al.,
2016) convolutional layer preparing the audio
input to Transformer encoder. To improve the
model’s quality of translation we introduced
two regularization techniques and trained
on machine translated Librispeech(Panayotov
et al.,, 2015) corpus in addition to iwslt-
corpus, TEDLIUM2(Rousseau et al., 2014)
and Must_C(Di Gangi et al., 2019) corpora.
Our best model scored almost 3 BLEU higher
than last year’s model. To segment 2020 test
set we used exactly the same procedure as last
year.

1 Introduction

This paper describes the submission to IWSLT
2020 End-to-End Speech Translation task by Sam-
sung R&D Institute, Poland.

We propose a few improvements to our previous
system. Introducing additional training data gave
us 0.7 BLEU improvement. Spectrogram augmen-
tation techniques increased quality by 0.2 BLEU.
Encoder layer depth of 12 layers gives an increase
of BLEU by 1 point and 1.8 points when combined
with additional training data and two spectrogram
augmentation techniques. Replacing simpler con-
volutions with ResNet-like convolutional layers
gave around 0.5 BLEU improvement. Combining
all of these and increasing embedding size to 512
resulted in almost 3 BLEU improvement compared
to our last year’s model.

Document structure is as follows. Firstly we de-
scribe data preparation and augmentation. Then
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we provide system specification and training pro-
cedure used in our experiments. We describe data
segmentation algorithm used to segment test sets
TED 2019 and TED 2020. We show results of our
experiments. Finally we conclude our results.

2 Training Data

To train our system we used only IWSLT 2020 per-
missible audio corpora - iwslt-corpus, TEDLIUM?2
(Rousseau et al., 2014), Must_C corpus(Di Gangi
et al., 2019) and machine translated Librispeech
(Panayotov et al., 2015) corpus. We did not do any
further data preparation in case of iwslt-corpus and
TEDLIUM?2, we used the same data as in 2019. In
case of Must_C corpus, this year we ran a train-
ing with half of translations being synthetic. This
improved the score by 0.35 BLEU. We used the
same text translation models as last year to gen-
erate synthetic translations. Both models scored
around 33.8 and 31.1 BLEU on 512010 and ¢s:2015
sets respectively.

2.1 Data filtration

We trained English ASR system that was used to
filter iwslt-corpus and TEDLIUM?2 corpora. We
removed cases where WER score exceeded 75%
when comparing ASR output and English refer-
ence. We decided that Must_C corpus does not need
filtration. Additionally, we filtered iwslt-corpus
with regard to quality of translation using statisti-
cal dictionary-based methods. Size of the corpora
before and after filtration is shown in Table 1. We
did not filter Librispeech corpus.

2.2 Synthetic target data

TEDLIUM? corpus did not provide any German
translations, therefore we generated synthetic tar-
gets using two Transformer Big MT systems
trained with different hyperparameters on WMT
data - Paracrawl, Europarl and OpenSubtitles.
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Corpora Size Filtered Length Option Min value Max value
iwslt-corpus(ASR) 171121 158737 224h tempo 0.85 1.3
+ trans. quality 158737 126817 188h speed 0.95 1.05
TEDLIUM2 92973 90715 197h echo delay 20 200
Must-C 229703 229703 400h echo decay 5 20
Librispeech 281241 281241  1000h

Table 1: Size (number of audio utterances) of the train-
ing corpora before and after filtration. Iwslt-corpus
(ASR) is corpus filtered by ASR only. The last column
is total audio length after filtration.

Training data for these systems has been prepared
with our in-house data preparation pipeline. We
also used synthetic translations as an alternative
translation in iwslt-corpus when augmenting it. To
diversify target data as much as possible, for each
example created in augmentation process, we gen-
erated 4 translations, 2 per each MT model. Such a
technique was described in (Jia et al., 2019). Num-
ber of training examples with synthetic data are
shown in Table 6. Last year we did not exam-
ine the effectiveness of synthetic translations on
our models. This year we altered our corpus and
included synthetic translations of Must_C corpus.
This corpus was augmented 3 times and in the case
of 2 versions out of 4, synthetic translations were
used.

Corpora Ref. MT-1 MT-2
iwslt-corpus 126817 2x158737 2x158737
TEDLIUM2 0 3x90715  3x90715
Must_C 229703 229703 229703
Librispeech 281241 281241 281241

Table 2: Size (number of text lines) of the training cor-
pora with synthetic data. For each model two or three
best beam results have been used.

2.3 Data Augmentation

We augmented the data by processing the audio
files with three Sox’s effects: tempo, speed and
echo. We sampled the parameters with uniform
distribution within ranges presented in Table 3.
For each file we repeated the process four times.
Librispeech was augmented only once because it
is the largest corpus and it is out of domain. As a
result we had nearly five times larger audio corpus.
The range of speed option is very small because we
did not want our model to train on an unnaturally
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Table 3: Sox parameters value ranges used in process-
ing of audio data. Echo effect is parametrized by two
values.

sounding samples. The rationale behind using echo
option is the fact that many TED lectures have a
significant echo.

Final number of training audio examples is
shown in Table 4.

Corpora Orig.&Augm. Length
iwslt-corpus 761765  1084h
TEDLIUM2 544290 1182h
Must_C 918812  1600h
Librispeech 562482  2000h
Total 2787349  5866h

Table 4: Size of the training audio corpora with data
augmentation. Number of distinct audio and text pairs.

3 E2E Speech Translation System

In this section we will describe the architecture
and training techniques of our end-to-end spoken
language translation system. Some of these were
used in our 2019 system.

3.1 ASR Transformer for SLT

As a baseline system we used our last year’s Trans-
former architecture implemented in TensorFlow.
The Baseline Transformer has hidden layer of size
384, convolutional (kernel size 9) feed forward
layer of size 1536, 8-head self-attention, 6 encoder
layers and 4 decoder layers. Audio data is turned
into log mel spectrogram with frame size of 25
ms, frame step 10 ms and 80 filters. To log mel
spectrograms we apply 2D 3x3 convolution twice
with stride 2x2 and 256 filters and then 3x20 con-
volution to reduce the spectrogram to a 384 di-
mentional vector, exactly like in the case of ASR.
Apart from baseline, we propose changes to con-
volutional layer and increase number of encoder
layers and embedding size. Finally, our best system
has ResNet-like convolutional layer, 12 encoder
layers and embedding size of 512.



3.2 Dual learning: ASR and SLT tasks

This year we also introduced a second decoder with
ASR task, making it a multitask setup similar to
(Anastasopoulos and Chiang, 2018). A separate
dictionary of size 32k was used for this task. In
such a setup loss is calculated with two targets -
one in English and one in German. Two decoders
with different weights are simultaneously trained
on these targets; convolutional layers and encoder
are shared. An early experiment on non-augmented
data showed almost 2 BLEU increase (15.23 vs
17.15 on tst2010) compared to the same model
trained on a single task. All our trainings this year
used dual learning.

German
Transformer
Decoder

English
Transformer
Decoder

Transformer
Encoder

Resnet-like
Convolutions

Figure 1: Dual learning architecture

3.3 Spectrogram augmentation

To augment data we implemented spectrogram
masking technique described in (Park et al., 2019)
This technique involves masking the spectrogram
for a range of frequencies and periods of time. In
our implementation we chose to introduce three
such masks for frequency. The width of frequency
range is selected randomly between values 5 and
10. This means that out of 80 filters 15 to 30 are
masked. In time we chose one mask for every 300
time steps. Again, the length of such mask is ran-
dom between 10 and 20 time steps. Apart from
last year’s data augmentation techniques used in
2019, we introduced additional regularization tech-
niques - warp (Figure 2) and spectrogram noise.
We implemented warping technique similar to Park
et al.(Park et al., 2019). For each 10 time steps
in spectrogram we delete one random time step
and insert a step which is an average of two neigh-
boring steps. The result is very similar to warp
distortion - some parts of a spectrogram are shifted
to the right and some are shifted to the left. We also
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Figure 2: Original and warped spectrograms. The bot-
tom figure is an exaggerated version of warping where
much more insertions/deletions were used.

introduced a multiplicative noise on spectrogram
with a value of +- 1%. Table 5 below shows the
results of these techniques. We experimented with
randomly varying step and window size of spec-
trograms during the training. Step size was varied
between 8 and 12 ms and window size between 23
and 27 ms. This however gave mixed results and
we did not include it in the final model. Figure 5
shows clear advantage of models with warp and
spectrogram noise. The advantage of the model
with varied step/window size is dubious.

Model tst2010  tst2015  average
baseline! 26.5  21.87 24.15
warp 26.63 2242 24.41
spec. noise 26.81 21.87 24.34
step/window 26.22 22.15 24.2

Table 5: Maximal BLEU scores on two tests sets. The
last column is maximal average of two test sets for one
checkpoint.

3.4 Synthetic Must_C and Librispeech data

Addition of synthetic Must_C translations improved
BLEU score by over 0.35 BLEU. Addition of Lib-
rispeech corpus further improved BLEU by 0.35.
Table 6 below shows the results.

'the same model as 2019 primary submission but trained
for 1.2M steps which resulted with higher score than previ-
ously reported
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Figure 3: Comparison of warped and noised trainings
to baseline. Y axis is average BLEU on tst2010 and
tst2015. X axis is number of steps.

Model tst2010  tst2015 average
base 26.5 21.87 24.15
synth_mc 27.08 22.04 24.5
+ libri 2791 21.81 24.86

Table 6: Maximal BLEU scores on two test sets for
baseline, additional Must_C synthetic targets and addi-
tional Librispeech data. The last column is maximal
average of two tests set for one checkpoint.

3.5 12layer encoder

Our experience with text translation suggests it is
more efficient to increase number of layer in the
encoder rather than decoder therefore we increased
number of encoder layers to 12. Number of decoder
layers stayed the same at 4 layers. This increased
BLEU score by 1 point. Introducing warping, noise
and Librispeech corpus increased BLEU by another
0.8 BLEU. Table 7 shows the results.

Model  tst2010 tst2015 average
base 26.5 21.87 24.15
12layer  27.48  22.92 25.14
12_wal 284  23.63 25.97

Table 7: Maximal BLEU scores on two test sets. Model
12_wal is the model with 12 layers and trained on
noised and warped data with Librispeech corpus. The
last column is maximal average of two tests set for one
checkpoint.

3.6 ResNet-like convolutional layers

Another improvement to our model is ResNet-like
convolutional layers processing the spectrogram
input. The idea is to make the convolutional lay-
ers deeper instead of using large number of chan-
nels. The spectrogram input is shrinked gradually
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in both axis using 2x2 pooling. As the spectrogram
is shrinked channel, size is increasing. We start
with a smaller channel size compared to the previ-
ous solution - 64 channels instead of 256 and end
the convolutional processing with 256 channels.
Figure 4 shows architectural diagram of our solu-
tion. Replacing previous architecture with ResNet
improved the model by around 0.5 BLEU. Table
8 shows the results. Note that strictly maximal
scores do not show the improvement well. Figure
5 shows a plot of the results which proofs stable
advantage (around 0.5) of ResNet solution. We
experimented with a version without the residual
connections however decided not to include it in
the final model.

3x3 Conv 64

Layer norm and Relu

3x3 Conv X For X = 64, 128, 256

Layer norm and Relu

Residual

Layer norm and Relu

3x20 Conv 384

Figure 4: Convolutional layers architecture

Model tst2010  tst2015 average
base 26.5 21.87 24.15
resnet 27.15 21.81 24.33
- residual 27.05 21.96 24.5

Table 8: Maximal BLEU scores on two test sets. The
third row is same as ResNet model but without residual
connections. The last column is maximal average of
two tests set for one checkpoint.

3.7 Training process

We trained our models on 4 GTX 1080 Ti GPUs for
about one and a half week, which resulted in 1.2M
steps. 12layer models were trained slightly longer -
for 3 weeks because the training was slower. They
were also trained on two NVIDIA Quadro 8000
GPUs because of its memory size. Batch size
was 400000 timesteps for trainings on 1080 Ti and
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Figure 5: Comparison of Resnet trainings to baseline.
Y axis is average BLEU on tst2010 and tst2015. X axis
is number of steps.

3000000 timesteps on Quadro 8000. In the case of
all trainings (except one) 10% dropout was applied.
The final model with 12 layer and 512 embedding
size used 20% dropout. Adam Multistep optimiser
was used, effective batch size was increased 32
times.

3.8 Model averaging

For the final validation we averaged last 7 check-
points of the training. Averaging checkpoints al-
most always resulted in higher BLEU scores. We
experimented with continuation of training after
averaging but it did not give any better results.

4 Final model

In this paper we presented improvements on sim-
pler models. The final model uses a combination of
all the promising techniques together with a larger
embedding size. It would be unfeasible to perform
all of these experiments on such a large model as
its training took almost a month. However we are
very satisfied with the end result which is 3 BLEU
improvements compared to our baseline. The im-
provements from individual techniques cumulated
very well.

Model tst2010  tst2015 average
base 26.5 21.87 24.15
12_wal 28.4  23.63 25.97
+resnet” 2826 2377  26.02
+512 (final) 29.44 24.6 27.02

Table 9: Maximal BLEU scores on two test sets. The
fourth row is our final submitted system. The last col-
umn is maximal average of two tests set for one check-
point.

5 Segmentation

This year we used the same segmentation technique
as last year. It relies on dividing the audio input
densely using silence detection tool. These small
fragments are then joined together up to a certain
length depending on the length of the silence be-
tween them. Shorter distances between segments
are joined earlier. This procedure is repeated until
further joining results in segments longer than max-
imal length. Last year we determined such length
should be 11s. However, for our current best model
this distance turned out to be 15s. We used £512015
to optimize the process. We present the result in
Table 10.

6 Evaluation

We have improved our score on t5st2019 by 4 BLEU
compared to our last year’s submission. It is import-
nat to notice the difference between given and our
custom segmentation. Our method produces longer
segments than the ones in the given segmentation.
Our models seem to work much better on these
longer segments giving around 3.9 BLEU higher
scores.

tst2019
20.1

tst2019%*
23.96

tst2020
21.49

tst2020*
253

Table 10: BLEU scores for our final model. * test sets
use our custom segmentation

7 Conclusions

In this paper we have presented a significant im-
provement of translation quality of our end-to-
end model. We have shown that despite lim-
ited parallel training data, end-to-end systems can
compete with traditional pipeline systems. Using
a longer segmentation, our model outscored the
best IWSLT2019 pipeline system on zst2019(iws,
2019).
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