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Abstract

In this paper, we describe end-to-end simul-
taneous speech-to-text and text-to-text transla-
tion systems submitted to IWSLT2020 online
translation challenge. The systems are built by
adding wait-k and meta-learning approaches
to the Transformer architecture. The systems
are evaluated on different latency regimes. The
simultaneous text-to-text translation achieved
a BLEU score of 26.38 compared to the com-
petition baseline score of 14.17 on the low
latency regime (Average latency < 3). The
simultaneous speech-to-text system improves
the BLEU score by 7.7 points over the compe-
tition baseline for the low latency regime (Av-
erage Latency < 1000).

1 Introduction

Simultaneous Neural Machine Translation (SNMT)
addresses the problem of live interpretation in ma-
chine translation. In a traditional neural machine
translation model, the encoder first reads the entire
source sequence, and then the decoder generates
the translated target sequence. On the other hand,
a simultaneous neural machine translation model
alternates between reading the source sequence and
writing the target sequence using either a fixed or
an adaptive policy. This would allow the model to
avoid intolerable delay in live or streaming transla-
tion scenarios.

In this work, we build a simultaneous translation
system for text-to-text(t2t) and speech-to-text(s2t)
problems based on Transformer wait-£ model (Ma
etal., 2019a). We adopt the meta-learning approach
presented in (Indurthi et al., 2020) to deal with the
data scarcity issue in the speech-to-text translation
task. The system architecture and data processing
techniques are designed for the IWSLT 2020 on-
line translation task (Ansari et al., 2020). However,
these techniques can be applied to current and fu-
ture SNMT models as well. We conduct several
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experiments on both text-to-text and speech-to-text
problems to evaluate the proposed system. Our ex-
perimental results reveal that the proposed system
achieves significant performance gains over the pro-
vided competition baselines on both the translation
tasks.

2 Simultaneous Translation

2.1 Base Model

The machine translation task involves converting
an input sequence X = (21,22, ...,Ty), T; € Ré=
in the source language to the output sequence
y = (y1,92,-..,yk), ¥ € R% in the target lan-
guage. In the simultaneous translation task, the
model produces the output in an online fashion as
the input is read. Hence, while producing an output
yi, the complete input sequence might not have
been processed .

Our model derives from the transformer wait-
k model proposed in (Ma et al., 2019a). Similar
to (Ma et al., 2019b), the encoder consists of uni-
directional transformer blocks unlike bi-directional
transformer blocks used in the original transformer.
The decoder starts producing the translation after
having read the first k£ input units from the source
sequence. It learns to anticipate the information
which might be missing due to word order differ-
ences between the input and target sequences. The
model also supports training and testing under dif-
ferent latency regimes, i.e., different k.

In the machine translation task, the input and
output can have different lengths. This difference
is highly prominent for language pairs such as
English-Chinese. The average source to target ratio
for each language pair(r) is defined as r = |y|/|x|
and the catch-up frequency is defined as ¢ = r — 1.
For the speech-to-text translation task, |x| is set to
the length of the transcript of input waveform and
we define stride, s, which represents the number
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of frames in the source waveform to be consumed
in order to produce each target text token. Usu-
ally, s is set to 1 for the text-to-text translation
task. The wait-k model adjusts the reading speed
of the decoder according to this ratio r and stride s.
Hence, the final decoding policy of the model can
be defined by the the following equation:

gwait—k,c,s(t) = min{(k +t—1- LCtJ) * 8, ’l‘|},

where ¢(t) is the number of input units processed
in order to produce y;.

2.2 Meta Learning

Recently, (Indurthi et al., 2020) proposed a Modal-
ity Agnostic Meta-Learning (MAML, (Finn et al.,
2017)) approach to address the data scarcity issue
in the speech-to-text translation task. We adopt this
approach to train our simultaneous translation task.
Here, we briefly describe the MAML approach
used for training, for more details, please refer to
(Indurthi et al., 2020).

The MAML approach involves two steps: (1)
Meta-Learning Phase, (2) Fine-tuning Phase. In the
meta-learning phase, we use a set of related high
resource tasks as source tasks to train the model. In
this phase, the model captures the general learning
aspects of the tasks involved. In the fine-tuning
phase, we initialize the model from the parameters
learned during the meta-learning phase and train
further to learn the specific target task.
Meta-Learning Phase: The set of source tasks in-
volved in the meta-learning phase are denoted by
T'. For each step in this phase, we first uniformly
sample one source task 7 € 7" and then sample two
batches(D; and D;) of training examples. The
D is used to train the model to learn the task spe-
cific distribution, and this step is called meta-train
step. In each meta-train step, we create auxiliary
parameters (62) initialized from the original model
parameters (8). We update the auxiliary param-
eters during this step while keeping the original
parameters of the model intact. The auxiliary pa-
rameters (6%) are updated using gradient-descent
steps, which is given by,
0r = 0" —aVeml(D,;0™).

T

(1)

After the meta-train step, the auxiliary param-
eters (/%) are evaluated on D’T . This step is
called meta-test and the gradients computed dur-
ing this step are used to update the original model
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parameters(6™).

O = 0™ — BV el (D, ; 0%).¢ (2)
Exposing the meta-learned parameters((6™) to
the vast data of the source tasks I" during this phase
makes them suitable to act as a good initialization
point for the future related target tasks.
Fine-tuning Phase: During the fine-tuning
phase, the model is initialized from the meta-
learned parameters (™) and trained on a specific
target task. In this phase, the model training is car-
ried out like a usual neural network training without

involving the auxiliary parameters.

2.3 Training

We train our systems with and without using the
meta-learning approach described in Section 2.2.
In the meta-learning approach, we first pre-train the
model on the source tasks and further fine-tune on
the target task, which is represented as ‘wMT’. We
also train another model directly on the given tar-
get task without using the meta-learning approach,
represented as ‘woMT’. The meta-learning training
approach helps the low resource tasks to utilize the
training examples from the high resource source
tasks.

The source tasks used for simultaneous speech-
to-text translation are Automatic Speech Recogni-
tion (ASR), Machine Translation (MT), and Speech
Translation (ST) tasks. Unlike (Indurthi et al.,
2020), we also added the ST task as a source
task, and this improved the performance of our
system further. Even though the simultaneous text-
to-text translation task has sufficient training data,
we apply the meta-learning training approach to
learn possible language representations across dif-
ferent language pairs. We use English-German and
French-German language pairs as the source tasks
in the meta-training for the text-to-text translation
task.

The text sequences are represented as word-
piece tokens, and the speech signals are represented
as Log Mel 80-dimensional features. Usually, the
speech sequences are a few times longer than the
text sequences, therefore, we use an additional
layer to compress the speech signal and exploit
structural locality. The compression layer consists
of 3 Convolution layers with stride 2, both on the
time and frequency domain of the speech sequence.
The compressed speech sequence is passed to the
encoder layer for further processing. To facilitate



Dataset ‘ Must-C  OpenSubtitles WMT19‘ All

Pair
EnDe 229k 22.5m 38m 61m
FrDe _ _ 9.8m 9.8m
Table 1: Dataset Statistics for T2T
Waitk |y 7 8 15  Offline
Dataset
All 25.50 28.31 28.80 29.70
All + BT 25.06 28.22 28.71 _ _
All_reduced 26.04 28.57 29.07 30.27 31.20

Table 2: Comparing Datasets for T2T

the training on multiple language pairs and tasks,
we create a universal vocabulary ((Gu et al., 2018a))
for both text-to-text and speech-to-text translation
systems. The universal vocabularies are created
based on the source and target tasks.

For each simultaneous task, we train the system
on a dataset D of parallel sequences to maximize
the the log likelihood:

1|
1 o
(D3 6) = ‘ﬂzlogp V'1=0), 3
=1

where 6 denotes the parameters of the model. We
train the systems for three different latency regimes
based on the competition requirements.

3 Experiments

3.1 Datasets

3.1.1 Simultaneous Text-to-Text Translation

For the text-to-text translation task, we use the
MuST-C, IWSLT 2020, OpenSubtitles2018, and
WMT19 (presented as ‘All’ in the Table 2) for train-
ing. We evaluate our system on the MuST-C Dev
set. Our parallel corpus of WMT19 consists of
Europarl v9, ParaCrawl v3, Common Crawl, News
Commentary v14, Wiki Titles vl and Document-
split Rapid for the German-English language pair.
We also use the WMT19 German-French language
pair as one of the source tasks during the meta-
learning training phase. The statistics of the data
we use for text-to-text translation are provided in
the Table 1. We also use monolingual data from
the News crawl corpus for data augmentation using
back-translation technique. About 20M English
sentences are translated by the En-De translation
model, which was trained on the WMT19 corpus
(presented as ‘All + BT’ in the Table 2). Due to
the presence of noise in the OpenSubtitles2018
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Task Dataset Hours Sent. #
MT  Open Subtitles - 22.5m
MT WMT 19 _ 4.6m
ASR  LibriSpeech 982 233k
ASR IWSLT 19ST 272 145k
ASR MuST-C 400 229k
ASR TED LIUM 3 452 28.6k
ST Europarl-ST 89 97.9k
ST IWSLTST19 272 726k
ST MuST-C 400 918k
ST TED-LIUM3 452 537k

Table 3: Dataset Statistics for S2T

and ParaCrawl, we use only 10M randomly sam-
pled examples from these corpora (presented as
‘All_reduced’ in the Table 2).

3.1.2 Simultaneous Speech-to-Text
Translation

The speech-to-text translation models are trained
on examples collected from the Must-C, IWSLT
2020, Europarl-ST, and TED-LIUM3 datasets. The
statistics for the same are provided in the Table
3. The models are evaluated using the MuST-C
Dev set. Due to the limited availability of training
examples for the ST task, we increase the number
of training examples by using data augmentation
techniques. For data augmentation on the text side,
we use English-to-German NMT model to gener-
ate synthetic German sequences from the English
sequences. We use two NMT models and top-K
beam results to generate multiple synthetic Ger-
man sequences. These NMT models are based on
the Transformer architecture and trained on the
WMT19 dataset with different hyper-parameter
settings. For speech sequence, we use the Sox
library to generate the speech signal using dif-
ferent values of speed, echo, and tempo param-
eters similar to (Potapczyk et al., 2019). The pa-
rameter values are uniformly sampled using these
ranges for each parameter: tempo € (0.85,1.3),
speed € (0.95,1.05), echo_delay € (20,200), and
echo_decay € (0.05,0.2). We increase the size
of the IWSLT2020 ST dataset to five times of the
original size by augmenting 4X data — four text
sequences using the NMT models and four speech
signals using the Sox parameter ranges. For the
Europarl-ST, we augment 2X examples to triple
the size. The TED-LIUM3 dataset does not con-
tain speech-to-text translation examples originally,
hence, we create 2X synthetic speech-to-text trans-



Train-k* 4 7 8 26 27 28
Decode-k | BLEU AL | BLEU AL | BLEU AL | BLEU AL | BLEU AL | BLEU AL
Kt 26.04% 284 | 28.57* 5.15| 29.07 585 30.78 14.59 | 30.16 14.93 | 30.48 15.17
k-1 2432  2.06 | 2824 447 |29.07* 5.15| 30.73 1427 | 30.13 14.60 | 3048 14.89
kK —3 1798 032 |2638% 293 | 2775 3.71 | 30.69 13.58 | 30.21 13.96 | 30.49 14.27
Table 4: Varying k during Testing for T2T: k! denotes k used for training
Latency regimes Low Medium High
Methods Dataset BLEU AL &k |BLEU AL &k |BLEU AL k
Fairseq Must-C 1417 291 4| 17.28 588 8| 19.53 1237 20
woMT | All.reduced | 26.04 284 4| 29.07 585 8| 30.78 14.59 26
wMT | Allreduced | 2531 2.83 4| 2875 576 8| 30.08 14.57 26

Table 5: Comparing Training Strategies for T2T

lations using speech-to-text transcripts. Finally, for
the MuST-C datasest, we use synthetic speech to
increase the dataset size to 4X. Overall, we created
the synthetic training data of size roughly equal to
two times the original data using data augmentation
techniques described above.

3.2 Implementation Details

For the text-to-text translation, we use base
parameter settings from the Transformer model
(Vaswani et al., 2017), except that we use uni-
directional encoder. Each model is trained for 500k
steps with a batch size of 4096 tokens. The source
tasks used in the meta-training phase are English-
German and French-German language pairs. The
stride s is set to 1.

For the speech-to-text translation, the number
of encoder and decoder layers are 8 and 6, respec-
tively. The compression layer consists of three
Convolutional layers. Each model is trained for
300k meta steps and fine-tuned for another 300k
with a text batch size of 4096 tokens and a speech
batch size of 1.5M frames. The models are trained
using the multi-step Adam optimizer (Saunders
et al., 2018) with the gradients accumulated over
32 steps.

Our code is based on the Tensor2Tensor frame-
work (Vaswani et al., 2018), and we use 4*NVIDIA
P40 GPUs for all the experiments. We use the
server-client API based evaluation code provided
by the organizers of the IWSLT2020 online trans-
lation challenge. This evaluation API gives sev-
eral metrics to measure the translation quality and
latency, such as BLEU, METEOR, TER, Differ-
entiable Average Lagging(DAL), Average Lag-
ging(AL) and Average Proportion (AP). In this
paper, we report the BLEU scores along with the

65

AL. We also report the numbers from the baselines
provided by the organizing committee in the Table
5 and 7. All the results are reported on the MuST-C
Dev set, unless stated otherwise. The emission rate
r of German-English is set to 1.0. Moreover, we
use the same parameter value for £ and s during
training and testing, unless stated otherwise.

4 Results

4.1 Simultaneous Text-to-Text Translation

We train our models on different dataset sizes
which are created by using back translation and
sampling techniques and compare the performance
across these datasets. The BLEU scores with var-
ious wait-k values for models trained on differ-
ent dataset sizes have been reported in the Table
2. As we can see in the Table 2, the augmented
dataset (‘All + BT’) performs poorly compared
to the model trained on the original dataset. On
the contrary, the reduced dataset gives best perfor-
mance among all these datasets. All these models
are trained using the woMT training strategy.
Motivated by (Ma et al., 2019a), we decode the
target text using smaller & values than the £k value
used during the training. As one can observe (by
comparing the marked cells) in the Table 4, the
result obtained from a model upon decoding using
k = 7, when trained using £ = 8 is better than
the model which is both trained and decoded using
k = 7. A similar trend is also observed for &k =
4. Also, as train-k or decode-k increases, usually
the BLEU and the AL also increases. However,
this trend is limited to the low or medium latency
regimes, since the models with larger k are less
sensitive to k value and the performance degrades
as k reaches towards the input sequence length. For


https://github.com/pytorch/fairseq/blob/simulastsharedtask/examples/simultaneous_translation/docs/baseline.md

Train-k' /st 3/300 4/350 3/400 4/800 5/800
Decode-k/s | BLEU AL BLEU AL BLEU AL BLEU AL BLEU AL
kt/st 12.85 1136.11 | 14.59 1875.04 | 15.89 1940.67 | 17.95 3967.49 | 17.42 4318.34
kt—1/st 1224  897.79 | 13.88 1539.73 | 149 1653.62 | 17.79 358293 | 17.43 4002.83
kt/st—100 | 7.16 45.48 1077 71592 | 12.79 1084.11 | 17.81 3679.68 | 17.14 4027.91

Table 6: Varying k/s during Testing for S2T: k' /s! denote k/s used during training

Latency regimes Low Medium High
Methods Dataset BLEU AL k s | BLEU AL k s | BLEU AL k s
Fairseq Must-C 4.5 79228 1 320 9.3 1828.28 2 400 | 11.49 3664.19 2 800
woMT | iwslt20_aug | 6.70 106190 3 300 | 9.11 1882.17 3 400 | 12.59 402097 4 800
wMT | iwslt20_aug | 12.85 1136.11 3 300 | 15.89 1940.67 3 400 | 17.95 396749 4 800

Table 7: Comparing the Training Strategies for S2T

example, the model trained with £ = 26 has the
highest BLEU score among the models trained on
k values ranging from 26 to 28. All the models
reported in the Table 4 use the All_reduced dataset
and the woMT training approach.

We compare the wMT and woMT training strate-
gies on three latency regimes. The results have
been tabulated in the Table 5. Unlike speech trans-
lation, we did not witness any improvement in the
text-translation from the meta-learning approach.
In the Table 5, models trained using the woMT
strategy achieved a better results than the wMT
strategy. A possible reason for this might be that
the English-German text translation problem is not
suffering from data scarcity. Moreover, the number
or diversity of source tasks used for meta-learning
training is limited compared to the speech-to-text
translation source tasks. We also observe that
English-German and French-German corpus have
an overlap of over 70% German words limiting the
variability of the source tasks, which hampers the
model from learning any meta-aspects of the text
translation tasks during the meta-learning phase.
This might be the reason behind meta-training be-
ing less effective for online text-to-text task.

4.2 Simultaneous Speech-to-Text Translation

Similar to the online text-to-text task, we vary the
latency parameters while decoding the simultane-
ous speech model as well. We vary both k& and
strides(s), and report the BLEU in the Table 4. We
can see from the Table 6 that as k£ and s increase,
the BLEU score increases while AL decreases. Un-
like the text-to-text translation, decoding with de-
creased k and s does not result in any BLEU score
improvement. For instance, as seen in the Table
6, the result of model trained with 5/800(where
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k = 5 and stride s = 800) and decoded with 4 /800
shows lower performance than that of the model
both trained and decoded using 4/800. Also, a
similar trend can be observed between the models
trained with 3/400 and 3/300. As we can see in the
last two columns, the BLEU score decreases as k
increases from 4 to 5 for s = 800. This is similar to
what we observed in the text case as well, increas-
ing k in the high latency regime leads to a drop in
the performance. All the models reported in the
Table 6 are trained using the augmented datasets
and the wMT training approach.

Finally, we explore the effectiveness of the meta-
learning approach for the online speech-to-text
translation task for the three latency regimes. In the
Table 7, we can easily see that there is a significant
BLEU score gap between models trained using the
wMT and woMT training strategy. The results show
that our meta-learning approach improves the per-
formance of the models in all the latency regimes.
Compared to the online text-to-text translation task,
the meta-learning approach in the online speech-to-
text task exploits many sub-problems with a variety
of source tasks such as ASR, MT and ST. Also,
the speech-to-text task suffers severely from the
data-scarcity issue as compared to the text-to-text
task, and using the meta-learning approach helps
overcome this issue.

5 Related Work

Simultaneous Translation: The earlier works in
simultaneous translation such as (Cho and Esipova,
2016; Gu et al., 2016; Press and Smith, 2018; Dalvi
et al., 2018) lack the ability to anticipate the words
with missing source context. The wait-k model
introduced by (Ma et al., 2019a) brought in many
improvements by introducing a simultaneous trans-



lation module which can be easily integrated into
most of the sequence to sequence models. Ari-
vazhagan et al. (2019) introduced MILk which is
capable of learning an adaptive schedule by using
hierarchical attention; hence it performs better on
the latency quality trade-off. Wait-k and MILk
are both capable of anticipating words and achiev-
ing specified latency requirements by varying the
hyper-parameters.

Speech to Text Translation: Most of the exist-
ing systems tackle the problem of simultaneous
speech to text translation using a cascaded pipeline
of online ASR and MT systems.

Previous works such as (Niehues et al.,
2016);(Ari et al., 2020) propose re-translation
strategies for simultaneous speech translation, but
their use case is limited to settings where output
revision is allowed.

Although there has been some work towards
making an end-to-end offline speech translation
modules, the paucity of training datasets remains
a bottleneck. The work done by (Ma et al., 2019a)
cannot simply be extended to the domain of simul-
taneous speech translation as we discussed earlier.
Similar to our model (Gu et al., 2016) also uses a
pre-trained model for the simultaneous translation
task. However, they use a full-sentence model dur-
ing pre-training, unlike ours. Our proposed model
alleviates these issues, both our pre-training and
fine-tuning training phases are done in an online
fashion, hence avoiding any train-inference discrep-
ancies. Our model has a controllable latency which
can be specified by k.

Meta Learning: Meta-Learning approaches
have been particularly useful with low resource
problems since they inherently learn to adapt
to a new problem with less training examples.
Andrychowicz et al. (2016); Ha et al. (2016)
focuses more on the meta policy while MAML
system proposed by (Finn et al., 2017) focuses
more on finding a good initialization point for the
target tasks. The work done by (Indurthi et al.,
2020) and (Gu et al., 2018b) employ the MAML
algorithm for low resource settings in offline
speech-to-text and text-to-text translation task. In
this work, we adopt these strategies to the online
translation tasks.
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6 Conclusion

In this work, we develop an end-to-end simulta-
neous translation system for both text-to-text and
speech-to-text tasks by using the wait-k method
and the meta-learning approach. We evaluate the
proposed system with different data settings and
latency regimes. We explore the effectiveness of
the meta-learning approach for the online transla-
tion tasks. The meta-learning approach proves to
be essential in settings where the training data is
scarce. Compared to the baseline provided in the
competition, both online text-to-text and speech-
to-text models achieved significant BLEU score
improvements.
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