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Abstract

Translationese is a phenomenon present in
human translations, simultaneous interpreting,
and even machine translations. Some trans-
lationese features tend to appear in simulta-
neous interpreting with higher frequency than
in human text translation, but the reasons for
this are unclear. This study analyzes trans-
lationese patterns in translation, interpreting,
and machine translation outputs in order to
explore possible reasons. In our analysis we
(i) detail two non-invasive ways of detecting
translationese and (ii) compare translationese
across human and machine translations from
text and speech. We find that machine trans-
lation shows traces of translationese, but does
not reproduce the patterns found in human
translation, offering support to the hypothesis
that such patterns are due to the model (human
vs. machine) rather than to the data (written vs.
spoken).

1 Introduction

In recent years, a growing body of work has pointed
to the presence, across different genres and do-
mains, of a set of relevant linguistic patterns with
respect to syntax, semantics and discourse of hu-
man translations. Such patterns make translations
more similar to each other than to texts in the same
genre and style originally authored in the target
language. These patterns are together called “trans-
lationese” (Teich, 2003; Volansky et al., 2015).

Linguists classify translationese in two main cat-
egories: (i) source’s interference, or shining-though
as put forward by Teich (2003). For example, a
translation replicating a syntactic pattern which
is typical of the source language, and rare in the
target language, displays a typical form of shining-
through; (ii) aherence or over-adherence to the tar-
get language’s standards, that is normalisation. For
example, translating a sentence displaying marked

order in the source with a sentence displaying stan-
dard order in the target it a typical example of over-
normalization. Nonetheless, translationese’s main
causes remain unclear (Koppel and Ordan, 2011;
Schmied and Schäffler, 1996).

Translationese displays different patterns de-
pending on the translation’s mode and register: a
typical example is simultaneous interpreting, which
shows translationese patterns distinct from those
observed in written translations (Bernardini et al.,
2016). We can interpret differences as either (i) an
effect of the limitations of the human language ap-
paratus that constrain translations, (ii) an inevitable
effect of the structural and semantic differences be-
tween languages; or (iii) a combination of the two.
To test these hypotheses, it is common to compare
human translations (HT) produced under different
circumstances, e.g. written translation versus simul-
taneous interpreting, following the assumption that,
if translationese is a product of human cognitive
limitations, translations produced under higher cog-
nitive constrains should present more evident trans-
lationese symptoms. Machine translation (MT)
does not have any human cognitive limitation, but
current state-of-the-art systems learn to translate us-
ing human data, which is affected by translationese.
On the other hand, unlike human translators, most
standard modern MT systems still work at the level
of individual sentences (rather than document or
dialog) unaware of the surrounding co-text and con-
text. Taking these observations into account, this
paper explores the following research questions:

Q1 . Does machine translation replicate the
translationese differences observed between text
and speech in human translation?

Q2 . Do different machine translation architec-
tures learn differently enough to display distinctive
translationese patterns?

We study translationese in speech and writ-
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ten text by comparing human and machine trans-
lations to original documents. Specifically, we
present a comparison between three MT architec-
tures and the human translation of spoken and writ-
ten language in German and English, exploring the
question of whether MT replicates the differences
observed in human data between text-based and
interpreting-based translationese.

While some aspects of translationese tend to ap-
pear in simultaneous translation of speech with
higher frequency than in translation of text, it is
unclear whether such patterns are data- or model-
dependent. Since machine translation does not
have the cognitive limitations humans have (in
terms of memory, online processing, etc.), MT
systems should fail to replicate the differences be-
tween text and speech translationese observed in
human translations, if such differences are due to
the limits of human cognitive capacities.

Assuming that MT engines are trained only on
translated texts and not on simultaneous interpret-
ing, so that they cannot simply learn to mimic in-
terpreting’s translationese signal, the differences
between text and speech translationese observed in
human translation vs. interpreting are not expected
to the same extent in MT if they are an effect of
human cognitive limitations. If, on the other hand,
translationese patterns in text and speech are due to
characteristics inherent in the two modes of expres-
sion, MT systems’ translationese patterns should
mimic human translationese patterns.

The paper is organized as follows. Section 2
presents related work. Section 3 introduces the
translationese measures and Section 4 the data and
translation systems used in our study. Section 5
presents our results, comparing human with ma-
chine translations and comparing MT architectures
among themselves. Section 6 concludes the paper.

2 Related Work

Translationese seems to affect the semantic as well
as the structural level of text, but much of its effects
can be seen in syntax and grammar (Santos, 1995;
Puurtinen, 2003). An interesting aspect of trans-
lationese is that, while it is somewhat difficult to
detect for the human eye (Tirkkonen-Condit, 2002),
it can be machine learned with high accuracy (Ba-
roni and Bernardini, 2006; Rubino et al., 2016).
Many ways to automatically detect translationese
have been devised, both with respect to textual
translations and simultaneous interpreting (Baroni

and Bernardini, 2006; Ilisei et al., 2010; Popescu,
2011). Simultaneous interpreting has shown spe-
cific forms of translationese distinct from those
of textual translation (He et al., 2016; Shlesinger,
1995), with a tendency of going in the direction
of simplification and explicitation (Gumul, 2006).
Due to the particularly harsh constraints imposed
on human interpreters, such particularities can be
useful to better understand the nature and causes
of translationese in general (Shlesinger and Ordan,
2012).

The features of machine translated text depend
on the nature of both training and test data; and
possibly also on the approach to machine trans-
lation, i.e. statistical, neural or rule-based. The
best translation quality is achieved when the train-
ing parallel corpus is in the same direction as the
test translation, i.e. original-to-translationese when
one wants to translate originals (Lembersky et al.,
2013). In this case, more human translationese fea-
tures are expected, as systems tend to learn to repro-
duce human features. The effects of translationese
in machine translation test sets is also studied in
Zhang and Toral (2019a). In fact, texts displaying
translationese features seems to be much easier to
translate than originals, and recent studies advise
to use only translations from original texts in or-
der to (automatically) evaluate translation quality
(Graham et al., 2019; Zhang and Toral, 2019b). By
contrast, Freitag et al. (2019) show a slight pref-
erence of human evaluators to outputs closer to
originals; in this case the translation is done from
translationese input, because, as noted by Riley
et al. (2019), the best of the two worlds is not possi-
ble: one cannot create original-to-original corpora
to train bias-free systems. Aranberri (2020) ana-
lyzed translationese characteristics on translations
obtained by five state-of-the-art Spanish-to-Basque
translation systems, neural and rule-based. The au-
thor quantifies translationese by measuring lexical
variety, lexical density, length ratio and perplex-
ity with part of speech (PoS) language models and
finds no clear correlation with automatic translation
quality across different test sets. The results are
not conclusive but translation quality seems not to
correlate with translationese. Similar results are ob-
tained by Kunilovskaya and Lapshinova-Koltunski
(2019) when using 45 morpho-syntactic features
to analyze English-to-Russian translations. Van-
massenhove et al. (2019) noted that statistical sys-
tems reproduce human lexical diversity better than
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neural systems, for English–Spanish and English–
French even if transformer models, i.e. neural, are
those with the highest BLEU score. However, their
transformer model did not use subword segmenta-
tion putting a limit on the plausible lexical diversity
it can achieve.

In our study, we focus on English (en) and Ger-
man (de) texts and compare the presence of trans-
lationese in human translations and interpreting,
and in machine translations obtained by in-house
MT engines. Differently to Aranberri (2020), we
develop the MT engines to have control on the train-
ing data, since the aim of this work is not to study
how translationese features correlate with trans-
lation quality, but the presence of translationese
features themselves. To measure them, we use
two metrics: part-of-speech (PoS) perplexity and
dependency parsing distances. We use them as
complementary measures, perplexity to model PoS
sequences of linguistics objects in sentences (lin-
ear dimension), and dependency distance to model
their syntactic depth (hierarchical dimension).

3 Translationese Measures

3.1 Part-of-Speech Perplexity

Our first measure to detect translationese is based
on the assumption that a language model is able to
capture the characteristic PoS sequences of a given
language . Since grammatical structures between
languages differ, a language model trained on Uni-
versal Part of Speech sequences of English will
on average display less perplexity if exposed to an
English text than if exposed to a German text. Fol-
lowing the same logic, if two models, one trained
on English and one on German, were to progress
through the PoS sequences of an English transla-
tion showing strong German interference, we could
expect the English model’s perplexity scores to rise,
while the German model’s perplexity would stay
relatively low (Toral, 2019). On the other hand, if
the English translation were displaying normalisa-
tion, we would expect the English model to display
a lower perplexity than the German one. Perplex-
ity is defined as the exponentiation of the entropy
H(p):

2H(p) = 2−
∑

x
p(x) log2 p(x) (1)

where p(x) is the probability of a token x (possibly
given its context), and − log2 p(x) is the surprisal
of x. While surprisal measures in bits the uncer-
tainty in a random variable taking a certain value

x, entropy measures the weighted average surprisal
of the variable.

3.2 Universal Dependencies
A syntactic analysis examines how the elements of
a linguistic sequence relate to each other; for our
purposes, those elements are words of a sentence.
We employ the framework of Universal Depen-
dencies (UD), which expresses syntactic relations
through dependencies: each element depends on
another element, its head (Nivre et al., 2019). In
UD, in contrast to most other dependency frame-
works, the head is the semantically more salient
element and the dependent modifies the head. The
top-level head is the root of a sequence, which is
typically the main verb of the matrix clause. For
instance, in the sentence The great sailor is waiv-
ing, the and great modify and depend on sailor,
while sailor and is modify and depend on waiving,
which is the root of the sentence. Figure 1 illus-
trates a dependency analysis of this example. The
UD framework aims to be universal, i.e. suitable
for all of the world’s languages, and there are a
large number of resources and tools available.1

An analysis of dependency lengths could help to
identify translation artifacts. If a source language
is shining-through, the translation’s dependency
lengths will be closer to the source language’s aver-
age; and vice versa for normalisation. Explicitation
will lead to longer, and simplification to shorter
distances compared to originals.

Figure 1: Visualizing a simple sequence in the Uni-
versal Dependencies framework, incl. dependency dis-
tances (red numerals below a dependency arch/edge).

We use spaCy’s parser2 to parse our corpora.
An evaluation of 2000 head tags taken from ran-
domly sampled sentences gives an accuracy rate of
91.2% and 93.6% for the German spoken and writ-
ten originals, respectively, and 95.0% and 95.8%
for English, as evaluated by a senior linguist. Sen-
tences shorter than 3 tokens were excluded, as such
sequences typically lack a verb and thus a root.

1See https://universaldependencies.org/
for details.

2https://spacy.io

https://universaldependencies.org/
https://spacy.io
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We then use those parses for a macro-analysis of
the syntactic structures, viz. an analysis of average
summed distances. This analysis measures for each
word the distance in words to its head. In Figure 1,
the distance from the to its head is 2, from great to
its head, it is 1. The sum of distances for the exam-
ple is 6. In the following, we average the summed
distances per sentence length. The measure can be
interpreted as a proxy of (cumulative) processing
difficulty/complexity of a sequence, where long dis-
tance structures are regarded as more complex than
structures with shorter distances. Particle verbs il-
lustrate this. In Mary picked the guy that we met
the other day up, the particle up has a long distance
to its head and the sequence is relatively hard to
process. This contrasts to Mary picked up the guy
that we met the other day, where the distance be-
tween particle and verb is short, which reduces the
cognitive load. This dependency-based measure is
taken from Gibson et al. (2019) and Futrell et al.
(2015) and builds on work by Liu (2008).

4 Experimental Settings

4.1 Corpora

Originals and Human Translations. We used
human written texts and speech transcriptions to
train and test our language models and to extract
part of our syntactic distance measures. We use
datasets that belong to the same genre and register
but to different modalities: transcriptions of Euro-
pean Parliament speeches by native speakers and
their interpreted renditions (EPIC-UdS, spoken),
the written speeches and their official translations
(Europarl-UdS, written) (Karakanta et al., 2018).
Table 1 summarizes the number of sentences and
words for each of the six categories:

1. Original written English
2. Original written German
3. Original spoken English (transcript)
4. Original spoken German (transcript)
5. English to German translations
6. English to German interpreting (transcript)

For each corpus, we train the PoS models on
3000 random sentences and evaluate on the remain-
ing data. We tokenized our data using NLTK (Bird
and Loper, 2004) and performed universal PoS tag-
ging via spaCy. We train our language models
using a one-layer LSTM with 50 units (Chollet
et al., 2015). Due to the small dimensions of the

vocabulary (17 PoS), 5 iterations over 3000 sen-
tences suffice to converge. In our experiments, we
measure the average perplexity of each model on
unseen human data from of each category, and on
the translations produced by three MT architectures
in two different settings (see Section 4.2).

MT Training Data. In order to adapt our ma-
chine translation engines to the previous modalities
as much as possible, we gather two different cor-
pora from OPUS (Tiedemann, 2012), one of them
text-oriented (Ct) and the other speech-oriented
(Cs). The distribution of their sub-corpora is shown
in Table 2. Note that we do not include Europarl
data here so that there is no overlap between MT
training and our analysis data.

Note also that our speech data (TED talks and
subtitles) is still made up from translations and not
simultaneous interpreting. This is important since
it prevents MT systems from simply mimicking
interpreting’s pronounced translationese.

All datasets are normalised, tokenized and true-
cased using standard Moses scripts (Koehn et al.,
2007) and cleaned for low quality pairs. Dupli-
cates are removed and sentences shorter than 4
tokens or with a length ratio greater than 9 are dis-
carded. We also eliminate sentence pairs which are
not identified as English/German by langdetect3

and apply basic cleaning procedures. With this,
we reduce the corpus size by more than half of
the sentences. In order to build balanced corpora
we limit the number of sentences we used from
ParaCrawl to 5 million and from Open Subtitles
to 10 million. With this, both Ct and Cs contain
around 200 million tokens per language. Finally,
a byte-pair-encoding (BPE) (Sennrich et al., 2016)
with 32 k merge operations trained jointly on en–
de data is applied before training neural systems.
After shuffling, 1,000 sentences are set aside for
tuning/validation.

4.2 Machine Translation Engines

We train three different architectures, one statistical
and two neural, on the corpora above.

Phrase-Based Statistical Machine Translation
(SMT). SMT systems are trained using standard
freely available software. We estimate a 5-gram
language model using interpolated Kneser–Ney dis-
counting with SRILM (Stolcke, 2002). Word align-
ment is done with GIZA++ (Och and Ney, 2003)

3https://pypi.org/project/langdetect/

https://pypi.org/project/langdetect/
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Europarl-UdS EPIC-UdS
lines tokens lines tokens

German Translation 137,813 3,100,647 German Interpreting 4,080 58,371
Written German 427,779 7,869,289 Spoken German 3,408 57,227
Written English 372,547 8,693,135 Spoken English 3,623 68,712

Table 1: Corpus collections used to train our language models: Europarl-UdS (written) and EPIC-UdS (spoken).
German translation and interpreting are both from English.

lines de tokens en tokens Ct Cs

CommonCrawl 2,212,292 49,870,179 54,140,396 3 3

MultiUN 108,387 4,494,608 4,924,596 3 3

NewsCommentary 324,388 8,316,081 46,222,416 3 3

academia career limiting moves Rapid 1,039,918 24,563,476 148,360,866 3 3

ParaCrawl-5M 5,000,000 96,262,081 103,287,049 3 7

TED 198,583 3,833,653 20,141,669 7 3

OpenSubtitles-10M 10,000,000 85,773,795 93,287,837 7 3

Total clean Speech 13,379,441 187,551,444 197,175,542 7 3

Total clean Text 9,121,710 198,340,602 207,434,038 3 7

Table 2: Text-oriented (Ct) and speech-oriented (Cs) corpora used for training the MT systems.

and both phrase extraction and decoding are done
with the Moses package (Koehn et al., 2007). The
optimization of the feature weights of the model is
done with Minimum Error Rate Training (MERT)
(Och, 2003) against the BLEU (Papineni et al.,
2002) evaluation metric. As features, we use the
language model, direct and inverse phrase probabil-
ities, direct and inverse lexical probabilities, phrase
and word penalties, and lexicalized reordering.

The neural systems are trained using the
Marian toolkit (Junczys-Dowmunt et al., 2018)
in a bidirectional setting {en,de}↔{de,en}:

RNN-Based Neural Machine Translation
(RNN). The architecture consists of a 1-layer
bidirectional encoder with complex GRU units (4
layers) and a decoder also with complex GRUs (8
layers). The tied embeddings have a dimension
of 512 and hidden states with a size of 1024,
using the Adam optimizer (Kingma and Ba, 2015)
with β1=0.9, β2=0.98 and ε=1e-09 and a growing
learning rate from 0 to 0.0003. Label (0.1) and
exponential smoothing, dropout of 0.1 and layer
normalisation are also applied.

Transformer Base Neural Machine Translation
(TRF). We use a base transformer architecture
as defined in Vaswani et al. (2017), that is, a 6-

layer encoder–decoder with 8-head self-attention, a
2048-dim hidden feed-forward, and 512-dim word
vectors. Optimization algorithm, dropout, smooth-
ings and learning rate (with warmup till update
16,000) are the same as for RNN.

5 Experimental Results

Below we present the translationese characteristics
in the different modalities found in our study.

5.1 Human Translationese

5.1.1 Perplexity
The PoS perplexity scores of our language mod-
els on human data shows that, as expected, each
model’s perplexity is at its lowest when confronted
with data from the same category. Since the amount
of data differs among modalities, we checked that
10 independent partitions of the data lead to the
same results. Translation and interpreting models
are least perplexed by unseen instances of their own
categories, and are not confused by original written
or spoken data: translation and interpreting display
indeed detectable and idiosyncratic patterns.

Figure 2 shows perplexity scores in a matrix
where the x-axis reflects the data on which the lan-
guage models have been trained, and the y-axis
reflects the partition of data on which the PoS mod-



285

Figure 2: Perplexity of each universal PoS language
model (x-axis) on unseen data from each category (y-
axis).

els are tested. The diagonal corresponds to train-
ing and testing in the same modality and language
and, consequently, shows the lowest perplexities
as said before. Leaving the diagonal of the matrix
aside, we see that German translations are least per-
plexing for the model trained on written German,
and vice-versa, written German sequences are least
perplexing for the model trained on German trans-
lation. The German translation model displays its
highest perplexity on English, and the written En-
glish model is more perplexed by German transla-
tions than by German originals. These observations
seem to point away from shining-through, and to
point instead towards the presence of normalization
in German translation and interpreting.

Interpreting differs from translation. While Ger-
man translation sequences are of low-perplexity for
the written German model, German interpreting
sequences are quite perplexing for the spoken Ger-
man model, and in general present higher levels of
perplexity than translation for all German models.
Unlike German translation, the interpreting model
returns high perplexity on all datasets except its
own. This particularity of interpreting data was pre-
viously noted (Bizzoni et al., 2019) and ascribed to
structural over-simplification, as a possible effect
of the cognitive pressure on interpreters.

5.1.2 Syntax: Dependency Length

The corresponding analysis for our syntax measure
is presented in Figure 3, the top left and top cen-
ter plots. For written spoken data in both German
and English, the summed dependency distances in-
crease as sentence lengths increase, as one would

expect. Translations from English into German
are slightly less complex than German originals.
The same applies to English–German interpreting.
This is in contrast with translations from German
into English, that are somewhat more complex than
the English originals. For German–English inter-
preting, there is no difference to the originals. Ar-
guably, the fact that English-to-German transla-
tions are less complex than German originals and
that German-to-English translations are more com-
plex than English originals is an artifact of source
language shining-through. Notice that discrepan-
cies between curves are more evident for long sen-
tences, and that sentences in spoken texts are sys-
tematically shorter than in written text.

5.2 Human vs. Machine Translationese

Effects of translationese are expected in MT out-
puts as long as the systems are trained with human
data which is rich in translationese artifacts. In
this section, we compare the translationese effects
present in human translations with those present
in TRF translations, the state-of-the-art MT archi-
tecture. For comparison, our bidirectional TRF
trained with text-oriented data achieves a BLEU
score of 35.5 into English and 38.1 into German
on Newstest 2018, and 33.0 and 36.2 respectively
when trained with speech-oriented data. MT sys-
tems have been trained using the corpora described
in Table 2. Data has not been classified according
to translationese, but one can assume4 that most of
the corpora will be original English. This would
create a bias towards human-like translationese in
German translations.

The single translationese feature that seems to
be most characteristic of the output of our MT
model is structural shining-through, a character-
istic present in human translations, but that appears
to become particularly relevant in various MT out-
puts, specially the ones translating German written
modality into English. Figure 4 shows low per-
plexities when the written German language model
is used on the translated text into English (5.9 vs.
7.3 for the English model on the English transla-
tion). According to the MT training data distribu-
tion, this feature cannot be due to data biases but
to the MT architecture itself. At the same time,

4Riley et al. (2019) quantified the amount of original Ger-
man texts in the WMT18 data with a 22%. Their corpora
only differ from ours by lacking Europarl and by including in
addition TED talks and OpenSubtitles. The authors report an
F1=0.85 for their classification.
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Figure 3: Averaged summed dependency distances, y-axis, per sentence length, x-axis, for German HTs (top left)
and for English HTs (top center). The same incl. HTs and MTs for translations of written English to German
(top right), spoken English to German (bottom left), written German to English (bottom center), and for spoken
German to English (bottom right).

target language normalisation, which is a promi-
nent translationese feature in human translations,
appears less evident in our MT output. In this case,
normalisation is only slightly more prominent in
translations into German with a perplexity of 6.9 in
translated text and 7.0 in translated speech, where
translations into English score 7.3 and 6.9 respec-
tively. We also checked if the content of the MT
training data is relevant for the conclusions and
might bias the comparison with interpretings and
translations for instance. To this end, we use the
text-oriented MT engine to translate speech, and
the speech-oriented MT engine to translate text.
In our experiments, we reach equivalent perplexi-
ties for written text data whichever engine we use
but, for speech, perplexities are in general higher
when the text-oriented MT is used. This could
be expected, but we attribute the noticeable effect
only on spoken data due to its completely different
nature.5

5Whereas clean transcriptions as TED talks are used to
train our speech-oriented engines, Europarl data include many
speech-distinctive elements such as hesitations, broken sen-
tences and repetitions: but / is / euh what/ what’s most difficulty

Possibly due to the larger presence of shining-
through, machine translations from English to Ger-
man appear to behave quite differently from ma-
chine translations from German to English. While
differences due to the source and target language
naturally exist in human translations, the MT
output appears more sensitive to such variations.
Summed parse tree distance Figure 3 show how
TRF outputs are more complex than English origi-
nals and translations/interpretings but have a simi-
lar degree in the German counterparts. We found
that machine translation seems to over-correct
translationese effects, again not following the char-
acteristics of training data.

5.3 Translationese across MT Architectures

The previous section summarizes the differences
between a state-of-the-art MT system and human
translations/interpretings, but one could expect dif-
ferent behaviors for other architectures. In the fol-
lowing, we present a detailed analysis of each ar-

bringing in prisoners from Guantánamo because we see them
to be a security euh risk.
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Figure 4: Perplexity per language and mode. Language: German to English and English to German. Mode: written
and spoken.

chitecture for our two measures independently.

5.3.1 Perplexity
The results for PoS perplexities are illustrated in
Figure 4.

Results on SMT. German language models re-
turn on average higher perplexities on SMT than
English models, and translations into English are
on average less perplexing than translations into
German, which hints at English to German shining-
through. The observed absence of shining-through
in the human data confirms this hypothesis, since
our German translation and interpreting models are
highly perplexed by SMT data, indicating that this
kind of translation presents structural patterns that
differ from human translationese. It also differs
from neural systems in the sense that SMT seems
to better reproduce the structure of the MT training
corpus. SMT is acknowledged to translate more
literally, while NMT tends to be more inspirational,
and this trend is observed in our setting too.

Results on RNN. English models show higher
perplexities when tested on any translated Ger-
man than when tested on translated English, and
German models show more perplexity for German
translations than for English ones. German trans-
lation and interpreting models reverse the pattern,
showing lower perplexity on German translations
than on English translations. This seems to point
to a more complex phenomenon, possibly a mix
of shining-through and normalization, but it seems
to be less perplexing for the models trained on
translation and interpreting. RNN’s translation pat-
terns are clearly closer to human translationese than
SMTs.

Results on TRF. While RNN data attains the
lowest average perplexity, our Transformer man-

ages to attain the lowest single scores —reaching in
some cases lower perplexities than the ones elicited
by human equivalents. Consistently, the highest
TRF perplexities are lower than the highest perplex-
ities of the other systems. The single model display-
ing the lowest perplexity on this data is German
Translation, followed by written German, while
spoken German shows the highest perplexity, fol-
lowed by German Interpreting. Written German
shows low-level perplexities on German transla-
tions, in accordance with the German translation
model; but also lower perplexities on English trans-
lations, which instead spark significant perplexities
in the German translation model. This behavior
seems to point to a “stronger than human” shining-
through of German into English, which makes En-
glish translations less surprising for German than
for English but perplexes a model trained on the
patterns of human translations. Models trained on
spoken data also appear more perplexed than mod-
els trained on written data, hinting at a presence
of “written patterns” in speech translation that does
not appear in human data.

5.3.2 Syntax: Dependency Length
The results for the syntactic macro-analysis of de-
pendency lengths are illustrated in Figure 3 (top
right and all bottom plots).

Results on SMT. Similarly to the trends ob-
served with perplexities, the SMT translations di-
verge the most of all models. Translations into Ger-
man of English speech and text lack the complexity
of the German originals and are even considerably
less complex than human interpreting/translation.
Translations into English of German speech are
also less complex than the HTs, in contrast to other
models. The model is only in line with human
translations and other models when it comes to
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translations of German text.

Results on RNN. Overall, RNN translations
come out really well for this measure, meaning
that they are able to mimic human outputs. Transla-
tions of English texts into German are in line with
German originals, translation of English speech is
slightly more complex than the HTs. Translations
of German speech and texts into English are very
close to the HTs.

Results on TRF. The TRF translations of En-
glish texts into German come out really well, i.e.
close to the HTs – the TRF comes closest of all
models here. Translations of English speech also
comes close to the HTs. However, TRF translations
of German speech into English is overly complex
in comparison to the HTs. Translations of German
texts are slightly more complex than the HTs.

6 Conclusions

Crossing PoS perplexity scores and syntactic de-
pendency lengths, we draw some conclusions about
the difference between human and machine struc-
tural translationese in text and speech. We sum-
marize our findings as preliminary answers to the
questions posed in the Introduction.

Q1. The structural particularity displayed by
human interpreting is not replicated by MT mod-
els: machine translation of spoken language is not
as marked as human interpreting. Human writ-
ten translations are similar to comparable originals,
while interpreting transcripts appear different from
all other datasets, at least based on our measures.
This feature fails to appear in any of the machine
translations. If we look at MT models’ outputs
going from SMT to TRF, we see that written lan-
guage perplexity for the target decreases, without
getting smaller than the human “lower bound”. For
spoken language, perplexity in MT seems to outdo
human levels with ease: for example, TRF reaches
7.2 where human perplexity is 12 (English to Ger-
man Interpreting). This apparent improvement on
speech-based data could confirm the idea that the
special features of interpreting depend on the cog-
nitive overload of human translators rather than to
a systematic difficulty of translating speech.

Q2. Overall, we see a decrease of perplexity and
an increase in syntactic complexity when moving
from SMT to RNN to TRF, hinting at a tendency for
SMT to produce over-simplified structures, while

neural systems seem able to deal better with the
complexity of their source. Figures 3 and 4 show
these trends. With respect to the syntactic measures,
we see clear tendencies in the human translations.
The MTs, however, are more heterogeneous: trans-
lations by the SMT often over-simplify in contrast
to the HTs, translations by the neural systems come
out reasonably close to the HTs, i.e. close to orig-
inals, but they are sometimes more complex. In
general the statistical engines show more evident
signs of syntactic simplification than both human
and neural translations. This can be the result of
having a phrase-based translation (SMT) in con-
trast to sentence-based translations (humans and
neural systems). The difference between architec-
tures is less strong for the grammatical perplexi-
ties, where machine translation displays in general
higher levels of structural shining-through than hu-
man translation, and lower levels of normalization,
presenting more sensibility to the source language
than human translation.

In general, while we find evident differences in
translationese between human and machine trans-
lations of text and speech, our results are com-
plex to analyze and it would be wise not to over-
interpret our findings. In future work, the impact of
the difference in the amount of available data and
languages involved for written and spoken texts
should also be analysed. Machine translations do
present symptoms of structural translationese, but
such symptoms only in part resemble those dis-
played by human translators and interpreters, and
often follow independent patterns that we still have
to understand in depth. This understanding can
help in improving machine translation itself with
simple techniques such as reranking of translation
options, or more complex ones such as guiding the
decoder to follow the desired patterns or rewarding
their presence. For this, a complementary study
on the correlation of translation quality with our
translationese measures is needed.
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