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Abstract

Automatic speech recognition (ASR) systems
are primarily evaluated on transcription accu-
racy. However, in some use cases such as sub-
titling, verbatim transcription would reduce
output readability given limited screen size
and reading time. Therefore, this work fo-
cuses on ASR with output compression, a task
challenging for supervised approaches due to
the scarcity of training data. We first inves-
tigate a cascaded system, where an unsuper-
vised compression model is used to post-edit
the transcribed speech. We then compare sev-
eral methods of end-to-end speech recognition
under output length constraints. The exper-
iments show that with limited data far less
than needed for training a model from scratch,
we can adapt a Transformer-based ASR model
to incorporate both transcription and compres-
sion capabilities. Furthermore, the best perfor-
mance in terms of WER and ROUGE scores
is achieved by explicitly modeling the length
constraints within the end-to-end ASR system.

1 Introduction

Automatic speech recognition (ASR) has become
ubiquitous in human interaction with digital de-
vices, such as keyboard voice inputs (He et al.,
2019) and virtual home assistants (Li et al., 2017).
While transcription accuracy is often the primary
goal when designing ASR systems, in some use
cases the readability of outputs is crucial to user
experience. A prominent example is subtitling for
TV. In this case, the audience need to multitask,
i.e. simultaneously watch video contents, listen to
speech utterances, and read subtitles. To avoid a
visual overload, not every spoken word needs to
be displayed. Meanwhile, the shortened subtitles
must still retain the meaning of the spoken content.
Moreover, large deviations from the original utter-
ance are also undesirable, as the disagreement with
auditory input would create a distraction.

To compress the subtitles, one straightforward
approach is to post-process ASR transcriptions.
The task of sentence compression has been well-
studied (Knight and Marcu, 2002; Clarke and La-
pata, 2006; Rush et al., 2015). In extractive com-
pression (Filippova et al., 2015; Angerbauer et al.,
2019), only deletion operations are performed on
the input. Despite the simplicity, this approach
tends to produce outputs that are less grammati-
cal (Knight and Marcu, 2002). On the other hand,
abstractive compression (Cohn and Lapata, 2008;
Rush et al., 2015; Chopra et al., 2016; Yu et al.,
2018) involves more sophisticated input reformu-
lation, such as word reordering and paraphrasing
(Clarke and Lapata, 2006). For the task of com-
pressing subtitles, however, the extent of rewriting
must be controlled in order to retain consistency
with spoken utterances.

From a practical point of view, building a sen-
tence compression system typically requires train-
ing corpora where the target sequences are sum-
marized. For most languages and domains, there
exists scarcely any resource suitable for supervised
training. This low-resource condition is even more
severe for audio inputs. To the best of our knowl-
edge, currently there is no publicly available spo-
ken language compression corpora.

Given the challenges outlined above, this work
investigates ASR with output compression. We
test our approaches on German TV subtitles. The
combination of this task and the use case is to the
extent of our knowledge previously unexplored.

The first contribution of this work is a compar-
ison of cascaded and end-to-end approaches to
generating compressed ASR transcriptions, where
the former consists of separate ASR and compres-
sion modules, and the latter integrates transcription
and compression. The experiments show that our
sentence compression module trained in an unsu-
pervised fashion tends to excessively paraphrase,
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whereas the end-to-end model can be better adapted
to the task of interest. Secondly, we show that,
after fine-tuning on a small adaption corpus, an
ASR model can perform transcription and com-
pression simultaneously. Without being given ex-
plicit length constraints, the adapted model shows
increased recognition accuracy on rare words as
well as paraphrasing capabilities to produce shorter
outputs. Furthermore, by explicitly encoding the
length constraints, we achieve further performance
gains in addition to those brought by adaptation.

2 Task

The task of creating readable subtitles for video
contents has several unique properties. First, due
to limited screen size and reading time, not every
spoken word needs to be transcribed, especially
when utterances are spoken fast. A full transcrip-
tion could even hamper user experience due to poor
readability. Second, although output shortening is
typically realized by deleting non-essential words,
the output is not only deletion-based. A real-life ex-
ample from the German TV program Tagesschau1

shown in Table 1 contain rephrasing (from “freed
from” to “without”) in addition to word removal
(dropping the word “ethically”). A further require-
ment is that the subtitles should stay reasonably
authentic to the spoken contents, only modifying
them when necessary. Otherwise, the disagreement
with audio contents could become distracting to the
audience.

Within the framework of common NLP tasks, the
task of generating readable subtitles combines ASR
and abstractive compression, while being subjected
to the additional requirements as outlined above.

Spoken: Befreit vom fraktionszwang soll das Parlament
wohl nach der Sommerpause die ethisch schwierige Frage
debattieren. (Freed from pressure from the coalition party,
the parliamentary should debate the ethically difficult ques-
tion after the summer break.)
Subtitle: Ohne Fraktionszwang soll das Parlament wohl
nach der Sommerpause die schwierige Frage debattieren.
(Without pressure from the coalition party, the parliamen-
tary should debate the difficult question after the summer
break.)

Table 1: Examples of TV subtitles compared to actual
spoken words. Underlined words are the differences
between the spoken words and the subtitles.

1https://www.tagesschau.de/

3 ASR with Output Length Constraints

3.1 Baseline ASR Model with Adaptation

For the baseline ASR model, we use the Trans-
fomer architecture (Vaswani et al., 2017) similar to
that by Pham et al. (2019). As there is no spoken
language compression corpus available to us that
is large enough for training an end-to-end model
from scratch, we first train an ASR model without
output compression, and then adapt it to our task of
interest using a small web-scraped corpus. In the
first training stage, the model is solely trained for
transcribing speech. In the fine-tuning stage, we let
the model continue training at a reduced learning
rate on the adaptation corpus with shortened tran-
scriptions. The intended goal of adaptation is to let
the model learn the compression task on the basis
of the transcription capability acquired before.

3.2 End-to-End Length-Constrained ASR

With the baseline introduced above, the ASR model
is not aware of the compression task until the adap-
tation step. If the model already has a sense of
output length constraints earlier, i.e. when train-
ing for the ASR task, it could better utilize the
abundance of training data. Motivated by this hy-
pothesis, we inject information about the allowable
output lengths using a count-down at each decod-
ing step, as illustrated in Figure 1. In a vanilla
decoder, the hidden state at position i would ingest
an embedding of the previously generated token.
With the count-down for target length t, decoder
state yi additionally ingests a representation of the
number of allowed output tokens, t− i.

y0 y1 y2 ... yt

t t− 1 t− 2 ... 0

w1 w2 w3

Figure 1: An illustration of the length countdown dur-
ing decoding. The values are represented with learned
embeddings or trigonometric encoding.

We explore two ways to represent the length
count-down. The first one utilizes length embed-
dings learned during training, motivated by the
approach Kikuchi et al. (2016) proposed. Given a

https://www.tagesschau.de/
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target sequence of length t, at decoding time step
i, the input to decoder hidden state yi is based on
a concatenation of the previous state yi−1 and an
embedding of the remaining length

yi−1 ⊕ emb(t− i), (1)

where emb(t− i) is an embedding of the number
of allowed tokens. To keep the same dimension-
ality as that of the original word embedding, the
output from Equation 1 further undergoes a linear
transformation followed by the ReLU activation.

With the length embedding approach, the model
learns representations of different length values
during training. Therefore, learning to represent
rarely-encountered lengths may be difficult.

The second method modifies the trigonomet-
ric positional encoding from the Transformer
(Vaswani et al., 2017) to represent the remaining
length rather than the current position. This method
has been applied in summarization (Takase and
Okazaki, 2019) and machine translation (Lakew
et al., 2019; Niehues, 2020) to limit output lengths.
Motivated by these examples from related sequence
generation tasks, we explore the “backward” posi-
tional encoding in ASR models.

With the original positional encoding, for input
dimension d ∈ {0, 1, . . . , D − 1}, the encoding at
position i is defined as{

sin(i/10000d/D), if d is even
cos(i/10000(d−1)/D), if d is odd.

(2)

The backward positional encoding is the same
as Equation (2), except that the current position i
is replaced by the remaining length t− i. Given a
target sequence of length t, the length encoding at
decoding step i becomes{

sin((t− i)/10000d/D), if d is even
cos((t− i)/10000(d−1)/D), if d is odd.

(3)

Like the positional encoding, the length encod-
ing is also summed together with the input embed-
ding to decoder hidden states. Moreover, since the
encoding is based on sinusoids, it can be easily ex-
trapolated to lengths unseen during training. This
is a potential advantage over the learned length
embeddings.

3.3 Unsupervised Sentence Compression
Compared to training ASR models to jointly
perform transcription and compression, a more

straightforward approach is to post-edit ASR out-
puts using a compression model. However, training
such a model in a supervised fashion requires reli-
able target sequences. Due to the scarcity of suit-
able training corpora, we choose an unsupervised
approach inspired by multilingual translation (Ha
et al., 2017; Johnson et al., 2017).

Similar to in Niehues (2020), this approach re-
lies on a multilingual translation system that is
trained on several language pairs. At training time,
language tokens are embedded together with the
source and target sentences. At test time, the model
is given the same source and target language token,
which is a translation direction unseen in training.
Since the multilingual training enables zero-shot
translation, the model is able to reformulate the
input in the same language. To achieve output
compression, the length constraints introduced in
Section 3.2 are applied in the decoder.

4 Experiment Setup

4.1 Datasets

Table 2 provides an overview of audio corpora we
use. The baseline ASR model is trained on the Ger-
man part of LibriVoxDeEn (Beilharz et al., 2020), a
recently released corpus consisting of open-domain
German audio books. Since the corpus creators did
not suggest a train-dev-test partition, we split the
dataset ourselves. The test set contains the follow-
ing books: Jonathan Frock2, Jolanthes Hochzeit
and Kammmacher.

For the spoken language compression adaptation
corpus, we collect spoken utterances and subtitles
from the German news program Tagesschau from
1 January to 15 August 2019. To control for record-
ing condition and disfluency, we exclude interviews
or press conferences and only keep utterances from
the news anchors. The utterances are segmented
based on the start and end time of subtitles. Since
the timestamps do not always precisely correspond
to utterance boundaries, we manually verify the
test set and edit when necessary.

For the unsupervised compression system, we
use the multilingual translation corpus from the
IWSLT 2017 evaluation campaign (Cettolo et al.,
2017). It consists of English, German, Dutch, Ital-
ian and Romanian parallel sentences based on TED

2In the recordings of Jonathan Frock, we found some
sections with misaligned utterances therefore incorrect tran-
scriptions. The following sections are excluded from our test
set: 00006 jonathanfrock, 00007 jonathanfrock.
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Dataset Total length (h:m) Total utterances Average length (s) Total words

LibriVoxDeEn (train) 469:21 206,490 8.18 3,622,560
LibriVoxDeEn (test) 5:17 2,446 7.78 51,314
Tagesschau (adapt) 37:28 11,559 11.67 243,728
Tagesschau (test) 46 213 13.01 4,864

Table 2: Corpus statistics.

talks. All 10 × 2 translation directions are used
in training. At test time, the model is given the
same source and target language tag (German in
our case) in order to generate summarization in the
same language. We use the positional embedding
introduced in Section 3.2 for length control.

4.2 Preprocessing

We use the Kaldi toolkit (Povey et al., 2011)
to preprocess the raw audio utterances into 23-
dimensional filter banks. We choose not to ap-
ply any utterance-level normalization to allow for
future work towards online processing. For text
materials, i.e. audio transcriptions and the transla-
tion source and target sentences, we use byte-pair
encoding (BPE) (Sennrich et al., 2016) to create
subword-based dictionaries.

4.3 Hyperparameters

For the ASR model, we adopt many reported val-
ues in the work of Pham et al. (2019), including
the optimizer choice, learning rate, warmup steps,
dropout rate, label smoothing rate, and embedding
dimension. There are several parameters that we
choose differently. The size of the inner feed for-
ward layer is 2048. Moreover, we use 32 encoder
and 12 decoder layers, and BPE of size 10,000. For
the compression model, we use a Transformer with
8 encoder and decoder layers each.3

5 Experiments

5.1 Post-Editing with Compression Model

To gain an initial understanding of the task, we
start with a more controlled setup, where the test
utterances are transcribed by a commercial off-the-
shelf ASR system. The transcriptions are then post-
processed with our compression model.

First, we analyze the level of desired output com-
pression by contrasting the lengths of the off-the-
shelf transcriptions against those of the references.

3The code is available at https://github.com/
quanpn90/NMTGMinor/tree/DbMajor.
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Figure 2: Histogram of compression rate on the test set.
Ratios lower than 1 are outliers where the off-the-shelf
ASR model terminates decoding prematurely.

Ground-truth: (17 words) Allerdings können Aus-
nahmeanträge gestellt werden, von Pendlern und von
Stuttgartern, was Tausende auch bereits getan haben.
(However, commuters and Stuttgarter can apply for
exception-permits, which thousands have already done.)
Reference: (6 words) Es können aber Ausnahmeantrge
gestellt werden. (However, exception-permits can be ap-
plied for.)

Ground-truth: (13 words) In der Debatte über neue
Regeln für Organspenden gibt es einen ersten Gesetzen-
twurf. (There is a first draft law in the debate about new
rules for organ donation.)
Reference: (12 words) In der Debatte über neue Regeln
für Organspenden gibt es einen Gesetzentwurf. (There is a
draft law in the debate about new rules for organ donation.)

Table 3: Two examples of various levels of compres-
sion, where the first shortens from 17 to 6 words, and
the second only removes one word.

In Figure 2, we plot the distribution of the ratio be-
tween transcription lengths and target lengths over
the test set. The first observation is that most of the
transcriptions require shortening, as shown by the
high frequencies of ratios over 1.

Moreover, the compression ratio varies across
different utterances. Table 3 shows two examples,
where the first compressed from 17 to 6 words,
while the second only deletes one word. When
inspecting the original videos, we notice that the
first example contains many other visual contents,
some also in text form, whereas the second exam-
ple only involves the new anchorwoman speaking.
The examples showcase that the level of desired
compression depends on various factors, such as

https://github.com/quanpn90/NMTGMinor/tree/DbMajor
https://github.com/quanpn90/NMTGMinor/tree/DbMajor
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Model Ratio (output to desired length) WER R-1 R-2 R-L

Off-the-shelf ASR 1.09 41.5 75.9 58.9 72.6
+ compression 0.95 69.1 55.7 29.5 51.6

Baseline ASR 1.21 57.7 65.2 43.6 61.9
+ compression 1.00 74.3 48.5 23.3 44.7

Table 4: Word error rate and summarization quality on the test set by cascading two separate models for ASR and
sentence compression.

Ground-truth Es ist kurz nach Mitternacht, als plötzlich ein Auto in eine Gruppe von Menschen
steuert, die ausgelassen ins neue Jahr feiern. It is just after midnight, when a car
suddenly drives into a group of people who joyfully celebrate the new year.

Reference Kurz nach Mitternacht steuert ein Auto in eine Gruppe von Menschen, die ins neue
Jahr feiern. Just after midnight a car drives into a group of people who celebrate the
new year.

Unsupervised
compression

Kurz nach Mitternacht fährt ein Auto plötzlich in eine Gruppe von Leuten, die das
nächste Jahr feiern. Just after midnight a car suddenly drives into a group of people
who celebrate the next year.

Ground-truth Unter dem Eindruck der Massenproteste hatten sich zuletzt auch hochrangige Militärs
von ihm abgewandt. Under the impression of mass protests, senior military officials
have finally also turned away from him.

Reference Unter dem Eindruck der Proteste wandten sich zuletzt auch hochrangige Militärs ab.
Under the impression of protests, senior military officials finally also turned away.

Unsupervised
compression

Unter dem Eindruck von Massenprotestieren waren auch hochrangige Militärs von
ihm entfernt. Under the impression of mass protesting, senior military officials were
also distanced from him.

Table 5: Examples outputs of the unsupervised compression model, where undesired paraphrasing is underlined.
English translations are in gray.

the amount of visual information simultaneously
shown on the screen. Therefore, a globally fixed
compression rate would not be suitable.

To comply with length constraints, the ASR out-
puts are shortened by the unsupervised sentence
compression model. As the system is trained based
on subwords, we use the number of BPE-tokens in
the reference as target length. The first two rows in
Table 4 contrast the output quality before and after
compression, as measured in case-insensitive word
error rate (WER), and ROUGE scores (Lin, 2004).4

To our surprise, compression has a large negative
impact on the outputs in all four metrics, creating a
gap of over 20% absolute. Via an exhaustive man-
ual inspection over the test set, we find that the un-
supervised compression model tends to paraphrase
much more frequently than the references. While

4Ideally, these metrics should be accompanied by an inde-
pendent human evaluation, which we could not perform due
to resource constraints.

the paraphrased output is often valid both gram-
matically and semantically, the deviation from the
references leads to higher WER and lower ROUGE
scores. Two examples are given in Table 5, where
several synonym replacements appear in the com-
pression outputs, e.g. “fährt” for “steuert” (both
“drives”), “Leute” for “Menschen” (both “people”),
“nächste Jahr” for “neue Jahr” (“next year” for “new
year”). In all these places, the references keep the
original spoken words unchanged. Given the nature
of our task, it is indeed undesirable to paraphrase
excessively, as subtitles that are too different from
the original spoken utterances could create a cogni-
tive overload to users.

Considering these downsides, an ASR system
is trained from scratch to provide more flexibility
of structural modification. On our self-partitioned
LibriVoxDeEn test set, we achieve a WER of 9.2%.
The compression performance is reported in the
lower section of Table 4. As this model is only
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Model Ratio (output to desired length) WER R-1 R-2 R-L

Baseline ASR 1.12 57.7 65.2 43.6 61.9
+adapt 1.05 38.5 76.8 58.7 74.4
+adapt+stop decoding 0.96 39.9 74.6 57.0 72.6

Table 6: Word error rate and summarization quality on the test set by the baseline ASR model. Fine-tuning on
in-domain data is beneficial for both shortening outputs and increasing transcription quality.

Reference In Brasilien ist Präsident Bolsonaro vereidigt worden.
In Brazil new president Bolsonaro has been inaugurated.

Before adaptation In Brasilien ist der neue Präsident voll zu Narro vereidigt worden.
In Brazil the new president “voll zu Narro” has been inaugurated.

After adaptation In Brasilien wurde der neue Präsident Bolsonaro vereidigt.
In Brazil the new president Bolsonaro was inaugurated.

Table 7: Example outputs of the ASR model before and after adapting to the compression task. After adaptation,
the model can perform shortening by changing tense, and correctly recognize the proper noun “Bolsonaro”. English
translations are below each sentence in gray.

trained on LibriVoxDeEn audio books, its perfor-
mance suffers from the train-test domain mismatch.
This is exhibited by the gap of nearly 10% to the off-
the-shelf system, which is trained on larger volume
of data from various domains. Moreover, the tran-
scription errors by the ASR system carry over as the
input of the compression model, which is further
disadvantageous to the final output quality. Lastly,
similar to previous observations, post-processing
by the compression model has a negative effect in
terms of the evaluation metrics.

Overall, the performance of the unsupervised
compression model suffers from paraphrasing. As
an anonymous reviewer suggested, the aggressive
paraphrasing can be remedied during decoding. For
example, given a large beam size, we can select
candidates that contain less paraphrasing. Other-
wise, training with a paraphrasing penalty could
also alleviate the problem. While we have not
explored these methods here, they would indeed
provide a more complete picture when comparing
the cascaded and end-to-end approach.

5.2 Fine-Tuning ASR Model for Compression

Our baseline ASR model is trained on a different
domain than the test set, and only for the transcrip-
tion task. To improve performance on our task of
interest, we apply fine-tuning on the adaptation cor-
pus. The results are in Table 6. For easy visual
comparison, the pre-adaptation performance in the
first row is repeated from Table 4. Contrasting the
performance before and after adaptation, we see no-

ticeable gains brought by adaptation in terms of all
four quality metrics. Moreover, as evidenced by the
reduced ratio of output to desired length, the model
already performs shortening, despite not having
received explicit length constraints. Table 7 shows
an example where the adapted model changes verb
tense to reduce output length. Specifically, by us-
ing the simple past (“wurde vereidigt / was inau-
gurated”) instead of the present perfect tense (“ist
vereidigt worden / has been inaugurated”), the out-
put becomes shorter. Meanwhile, we also observe
the correct transcription of the proper noun “Bol-
sonaro”, which was mistakenly transcribed to the
phonetically-similar “voll zu Narro” before adap-
tion. This illustrates that the adaptation step en-
ables the model to improve recognition quality and
compress its outputs simultaneously.

Despite the positive observations, the desired
length constraints are not yet fully satisfied, as
shown by the ratio of 1.05 between output to de-
sired lengths. To examine the scenario of fully
obeying the length constraints, we stop decoding
once the number of allowed tokens runs out. The
result is reported in the last row of Table 6. The
ratio of 0.96 is lower than 1 because of a few in-
stances where decoding stops before the count-
down reaches zero. As the same output sequence
can be constructed by different BPE-units, choos-
ing longer subword units earlier on can lead to
reaching the end-of-sequence token before deplet-
ing the number of allowed tokens. Lastly, from the
quality metrics in the last row of Table 6, we see
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Model Ratio (output to desired length) WER R-1 R-2 R-L

(1): Baseline (satisfy length) 0.97 55.1 62.5 41.5 60.4
(2): + adapt 0.96 39.9 74.6 57.0 72.6

(3): Length embedding 1.00 57.8 61.9 40.5 59.8
(4): + adapt 0.96 39.3 74.3 55.2 72.5

(5): Length encoding 1.00 57.4 62.6 40.7 60.1
(6): + adapt 0.96 38.6 75.1 56.4 73.2

Table 8: Word error rate and summarization quality by the models with length count-down. Adaptation results in
large gains. The model with length encoding outperforms the baseline and the one with length embedding.

Reference [... 75 tokens] Sea-Watch spricht von einer politisch motivierten Blockade, um
Rettungsaktionen zu verhindern. Sea-Watch speaks of a politically motivated
blockade to prevent bailouts.

Len. Encoding [... 83 tokens] Die Hilfsorganisation Sea-Watch spricht von einer politisch
motivierten Blockade. The aid organization Sea-Watch speaks of a politically
motivated blockade.

Len. Embedding [... 82 tokens] Die Hilfsorganisation Sea-Watch spricht von einer politisch
motivierten Blockade zu verhinder. The aid organization Sea-Watch speaks of a
politically motivated blockade to prevent.

Table 9: Comparison of length encoding and length embedding models (after adaptation). When facing exception-
ally long outputs, the length embedding model tends to stop abruptly, producing non-grammatical half-sentences.

that the forced termination of decoding comes with
higher WER and lower ROUGE scores, indicating
reduced output quality when fully satisfying the
target length constraints.

5.3 Models with Explicit Length Constraints

While the baseline ASR model achieves some de-
gree of compression after adaptation, it cannot fully
comply with length constraints. Therefore, the fol-
lowing experiments examine the effects of training
with explicit length count-downs. In Table 8, we
report the performance of the ASR models with
length embedding or encoding, as introduced in
Section 3.2. For a complete comparison, in the first
two rows of Table 8, we also include the baseline
performance with forced termination of decoding.

Rows (3) and (5) show the performance of the
two length count-down methods before adaptation.
As the ratios of output to desired length are equal
to 1, the models are always faithful to the given
length constraints. This shows the effectiveness
of injecting allowable length in training. However,
we also observe that there is no quality gain over
the baseline in row (1). To investigate the reason
for this, we experimented by decoding one sam-
ple sequence with different allowable lengths. As

we gradually reduce the target length, the mod-
els first shorten their outputs by removing punc-
tuation marks. Afterwards, instead of shortening
the outputs by summarization, they stop decoding
when running out of allowed number of tokens.
Indeed, during training, the models are only incen-
tivized to accurately transcribe the spoken utter-
ance and to stop decoding when the count-down
reaches zero. The same behavior therefore carries
over to test time. Contrary to abstractive summa-
rization (Takase and Okazaki, 2019) and machine
translation (Lakew et al., 2019), in ASR, an input
sequence has one single ground-truth transcription
rather than multiple viable outputs. This could lead
to a different level of abstraction than required in
summarization or translation models. These obser-
vations with the unadapted model also highlight
the importance of the subsequent fine-tuning step.

The results after adaptation are reported in rows
(4) and (6). The large improvement in WER and
ROUGE scores is in line with the previous find-
ing when adapting the baseline. When decoding
with length count-down, we define the target out-
put length as the minimum of the baseline output
length and the reference length. This ensures the
same output-to-desired length ratio as the baseline
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in row (1). Here, the first observation is that the
length encoding model in row (5) outperforms the
baseline in three of the four evaluation metrics.
This suggests that it is beneficial to represent the
constraints explicitly during training. Moreover,
the length encoding model also consistently outper-
forms its embedding-based counterpart. This could
be because the length encoding can extrapolate to
any length values, and is equipped with a sense of
relative differences between numerical values at
initialization. On the other hand, the length em-
bedding would need to learn the representation for
different lengths during training. When inspecting
the outputs for long utterances, we found that the
embedding model is more likely to abruptly stop,
such as the example shown in Table 9.

6 Related Work

6.1 Length-Controlled Text Generation

Controlling output length of natural language gen-
eration systems has been studied for several tasks.

For abstractive summarization, Kikuchi et al.
(2016) proposed two methods to incorporate length
constraints into LSTM-based encoder-decoder
models. The first method uses length embedding
at every decoding step, while the second adds the
desired length in the first decoder state. For con-
volutional models, Fan et al. (2018) used special
tokens to represent quantized length ranges, and
provides the desired token to the decoder before
output generation. Liu et al. (2018) adopted a more
general approach, where the decoder directly in-
gests the desired length. More recently, Takase
and Okazaki (2019) modified the positional encod-
ing from the Transformer (Vaswani et al., 2017) to
encode allowable lengths. Makino et al. (2019) pro-
posed a loss function that encourages summaries
within desired lengths. Saito et al. (2020) intro-
duced a model that controls both output length and
informativeness.

For machine translation, Lakew et al. (2019)
used both the length range token and reverse length
encoding. Niehues (2020) used the length embed-
ding, encoding, as well as a combination of the orig-
inal positional encoding and length count-down.

6.2 Sentence Compression

Our task of length-controlled ASR outputs is re-
lated to sentence compression, as the transcriptions
can be compressed in post-processing. An early
approach of supervised extractive sentence com-

pression was by Filippova et al. (2015), who pro-
posed to predict the delete-or-keep choice for each
output symbol. Angerbauer et al. (2019) extended
this approach by integrating the desired compres-
sion ratio as part of the prediction label. Yu et al.
(2018) proposed to combine the merits of extrac-
tive and abstractive approaches by first deleting
on non-essential words and then generating new
words. For unsupervised compression, Fevry and
Phang (2018) trained a denoising auto-encoder to
reconstruct original sentences, and in this way cir-
cumvented the need for supervised corpora.

7 Conclusion

In this work, we explored the task of compressing
ASR outputs to enhance subtitle readability. This
task has several unique properties. First, the com-
pression is not solely deletion-based. Moreover,
unnecessary paraphrasing must be limited to main-
tain a consistent user experience between hearing
and reading.

We first investigated cascading an ASR module
with a sentence compression model. Due to the
absence of supervised corpora, the compression
model is trained in an unsupervised fashion. Exper-
iments showed that the outputs generated this way
do not suit our task requirements because of unnec-
essary paraphrasing. We then adapted an end-to-
end ASR model on a small corpus with compressed
transcriptions. Via adaptation, the model learned to
both shorten its outputs and improve transcription
quality. Nevertheless, the given length constraints
were not fully satisfied. Lastly, by explicitly inject-
ing length constraints via reverse positional encod-
ing, we achieved further performance gain, while
completely adhering to length constraints.

A direction for future work is to incorporate
more diverse measurements of output length as
well as complexity. In this work, we measured
length by the number of BPE-tokens. While this
typically corresponds to the output length perceived
visually, a more direct metric would be the number
of characters. Moreover, output complexity, such
as the proportion of long words, is also important
for readability and therefore worth exploring. In
a broader scope, as an anonymous reviewer sug-
gested, a way to alleviate the resource scarcity for
end-to-end ASR compression is to augment the
training data with synthesized utterances from sum-
marization corpora. We expect the augmentation to
be complementary to our approaches in this work.
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