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Abstract

AppTek and RWTH Aachen University team
together to participate in the offline and simul-
taneous speech translation tracks of IWSLT
2020. For the offline task, we create both cas-
caded and end-to-end speech translation sys-
tems, paying attention to careful data selection
and weighting. In the cascaded approach, we
combine high-quality hybrid automatic speech
recognition (ASR) with the Transformer-based
neural machine translation (NMT). Our end-
to-end direct speech translation systems ben-
efit from pretraining of adapted encoder and
decoder components, as well as synthetic data
and fine-tuning and thus are able to compete
with cascaded systems in terms of MT qual-
ity. For simultaneous translation, we utilize
a novel architecture that makes dynamic deci-
sions, learned from parallel data, to determine
when to continue feeding on input or generate
output words. Experiments with speech and
text input show that even at low latency this ar-
chitecture leads to superior translation results.

1 Introduction

When developing English→German speech trans-
lation systems for the IWSLT 2020 evaluation, we
had the following goals:
• To obtain the best possible translation quality

with the baseline cascaded approach. This in-
cludes data filtering, weighting, and domain
adaptation for the MT component, hybrid
ASR (Section 2.1) with a strong recurrent lan-
guage model (LM) for the ASR component,
and a preprocessing scheme that converts the
written English source text into spoken forms
with hand-crafted rules for numbers, dates,
abbreviations, etc. (Section 2.2).
• Starting from the best cascaded system for

text and speech input in terms of data com-
position, to design and implement an archi-
tecture that obtains the best possible transla-

tion quality for simultaneous speech transla-
tion at different levels of latency, learning a
flexible read/output strategy from the under-
lying linguistic qualities of aligned parallel
data. Our simultaneous translation approach
is described in Section 3.
• For the end-to-end direct speech translation,

to benefit as much as possible from the model
components of the cascaded approach, in-
cluding pre-training encoder/decoder parts, an
adapter component, and using synthetic data
at different levels (see Section 4), and try to
obtain translation quality that reaches the level
of our best cascaded approach.

Traditionally, RWTH/AppTek can train strong
attention-based LSTM models, which still compete
on-par with Transformer-based architectures on
some language pairs and translation tasks. There-
fore, we train both LSTM and Transformer base
and big models (Vaswani et al., 2017). For the
simultaneous translation task, we choose LSTM
models for their simpler architecture that allows
for an easier modification of the encoder and de-
coder process to partial input and prediction of
chunk boundaries, as will be discussed in Section 3.
For the offline translation tasks, our final submis-
sions are ensembles of different encoder-decoder
architectures, as well as ensembles of cascaded and
end-to-end direct speech translation systems.

2 Cascaded Speech Translation

2.1 Automatic Speech Recognition

Our ASR systems are based on hybrid
LSTM/HMM model (Bourlard and Wellekens,
1989; Hochreiter and Schmidhuber, 1997) and
attention models (Bahdanau et al., 2015).

2.1.1 Hybrid LSTM/HMM model
The acoustic model has been trained on a total of
approx. 2300 hours of transcribed speech including
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EuroParl, How2, MuST-C, TED-LIUM (exclud-
ing the black-listed talks), LibriSpeech, Mozilla
Common Voice, and IWSLT TED corpora.

As described in (Matusov et al., 2018), we apply
an automatic re-alignment process to improve the
quality of the TED talk segmentations. We use
the TED-LIUM pronunciation lexicon. The acous-
tic model takes 80-dim. MFCC features as input
and estimates state posterior probabilities for 5K
tied triphone states. It consists of 4 bi-directional
(BiLSTM) layers with 512 units for each direction.
Frame-level alignment and state tying are obtained
from a bootstrap model based on a Gaussian mix-
ture acoustic model. We train the network for 10
epochs using the Adam update rule (Kingma and
Ba, 2015) with Nesterov momentum and reducing
the learning rate using the Newbob scheme.

The baseline language model is a simple 4-gram
count model trained with Kneser-Ney smoothing
on all allowed English text data (approx. 2.8B run-
ning words). The vocabulary consists of the same
152k words from the training lexicon and the out-
of-vocabulary rate is far below 1%.

In addition, we train a neural LM with noise
contrastive estimation (NCE) loss (Gutmann and
Hyvärinen, 2010). The model estimates the distri-
bution over the full vocabulary given the uncon-
strained history starting from the sentence begin.
It learns 128-dim. word embeddings that are pro-
cessed by two LSTM layers with 2048 units each.
The output of the second LSTM layer is projected
by a linear bottleneck layer onto 512 dimensions.
We use the frequency sorted log-uniform distribu-
tion to sample 1024 negative examples for NCE
loss calculation. This training approach results in a
self-normalized model (Gerstenberger et al., 2020),
which allows for an efficient, single-pass decoding
with the neural LM (Beck et al., 2019).

The streaming recognizer implements a ver-
sion of chunked processing (Chen and Huo, 2016;
Zeyer et al., 2016), which allows to use the same
BiLSTM-based acoustic model in both offline and
online speech translation applications.

2.1.2 Attention Model
Following the work of LSTM-based attention ASR
models (Zeyer et al., 2019), we apply a 6-layer
BiLSTM encoder of 1024 nodes with interleaved
max-pooling resulting in a total time reduction fac-
tor of 6 and a 1-layer LSTM decoder with a size
of 1024 equipped with a single-head additive at-
tention. We use a variant of SpectAugment (Park
et al., 2019) for data augmentation. A layer-wise

pre-training strategy similar to (Zeyer et al., 2018b)
is applied during training for a more stable and
faster initial convergence. We start with a small
encoder (small in depth and width, i.e. number
of layers and hidden dimensions) and then grow
it over time. It means, we add layer by layer till
the 6th layer, and increase the dimension till 1024
nodes. With each pre-training epoch, we grow the
network in terms of both the number of layers and
the number of hidden dimensions. Moreover, con-
nectionist temporal classification (CTC) (Graves
et al., 2006) as an additional loss is used on top of
the speech encoder during training.

The models are trained using the Adam opti-
mizer, dropout probability of 0.1 and label smooth-
ing. We employ a learning rate scheduling scheme
with a decay factor in the range of 0.8 to 0.9 based
on perplexity on the development set. We apply
byte-pair-encoding (BPE) (Sennrich et al., 2016b)
with 5k merge operations with a dropout of 0.1.
The beam size of 12 is used during the search with-
out an extra language model. To enable the pre-
training of the components, the same architecture
is used in the speech encoder side of our direct
speech translation models.

2.2 Written-to-Spoken Text Conversion
The large majority of MT parallel data comes from
text sources and thus includes punctuation marks,
digits, and special symbols. We apply additional
preprocessing to the English side of the data to
make it look like speech transcripts produced by
the ASR system. We lowercase the text, remove all
punctuation marks, expand common abbreviations,
especially for measurement units, and convert num-
bers, dates, and other entities expressed with digits
into their spoken form. For the cases of multiple
readings of a given number (e.g. “one oh one” and
“one hundred and one”), we select one randomly, so
that the system can learn to convert alternative read-
ings in English to the same number expressed with
digits in German. Because of this preprocessing,
our MT systems learn to insert punctuation marks,
restore word case, and convert spoken number and
entity forms to digits as part of the translation pro-
cess. The same preprocessing is applied to the
English monolingual data that is used in language
model training of the ASR system.

2.3 Data Filtering and Domain Adaptation
For NMT training, we utilize the parallel data al-
lowed for the IWSLT 2020 evaluation. We divide
it into three parts: in-domain, clean, and out-of-
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domain. We consider data from the TED and
MuST-C corpora as in-domain and use it for sub-
sequent fine-tuning experiments, as well as the
“ground truth” for filtering the out-of-domain data
based on sentence embedding similarity with the
in-domain data. As “clean” we consider the News-
Commentary, Europarl, and WikiTitles corpora and
use their full versions in training.

To reduce the size of the training data, we ap-
ply a filtering approach based on sentence simi-
larity. We train monolingual GloVe word embed-
dings (Pennington et al., 2014) both on the source
and the target side of the data. Following Arora
et al. (2017) we use a weighted average over the
word embeddings of a sentence to generate a fixed-
size sentence embedding. To obtain a sentence pair
embedding, we concatenate the source and target
sentence embedding of each bilingual sentence pair.
Afterwards we employ k-Means clustering from
the scikit-learn toolkit (Pedregosa et al., 2011) in
the sentence pair embedding space.

After obtaining a set of clusters, we use the in-
domain data to determine which clusters should
be used for training. This is done by selecting all
clusters which contain a non-negligible portion of
the in-domain data using a fixed threshold n. We
apply this technique to the noisy and out-of-domain
corpora, namely ParaCrawl, CommonCrawl, rapid
and OpenSubtitles. With the tuned threshold n =
5.0% we achieve a data reduction of around 45%
(from 42.5M to 23.3M lines) and an improvement
in the system performance of 1.6 % BLEU on the
development set (from 30.7% to 32.3% BLEU).

A similar approach is applied to the German
monolingual data allowed by the IWSLT 2020 eval-
uation that we incorporate into the MT training us-
ing back-translation (Sennrich et al., 2016a). First,
from the billions of words of allowed text data
we extract only sentence portions of at least four
words which are enclosed in quotes. Especially in
the news texts, these often represent quoted speech
and thus may be more suitable to be used in train-
ing of speech NMT systems. Then, we apply the
monolingual variant of the sentence embedding
similarity approach described above to select 7.9M
sentences. To create the synthetic parallel data, we
translate these sentences into English with a De-En
NMT Transformer base model that is trained on
the in-domain and clean parallel data.

2.4 Neural Machine Translation
We employ the base and big Transformer model
with multi-head attention. The base Transformer

model consists of a self-attentive encoder and de-
coder, each of which is composed of 6 stacked
layers. Every layer consists of two sub-layers: a 8-
head self-attention layer followed by a rectified lin-
ear unit (ReLU). We apply layer normalization (Ba
et al., 2016) before and dropout (Srivastava et al.,
2014) and residual connections (He et al., 2016)
after each sub-layer. All projection and multi-head
attention layers consist of 512 nodes followed by a
feed-forward layer equipped with 2048 nodes.

In comparison, the architecture of the big Trans-
former model incorporates 16-head self-attention
sub-layers. Furthermore, all projection and atten-
tion layers consist of 1024 nodes and each feed-
forward layer consists of 4096 nodes.

All models are trained on a single GPU and in-
creased the effective batch size by accumulating
gradient updates before applying them with a fac-
tor of 2 and 8 for the base and big Transformer
respectively. All models are trained using Adam
optimizer with an initial learning rate of 0.0003
and 1M lines per checkpoint. We apply a learning
rate scheduling based on the perplexity on the vali-
dation set for a few consecutive evaluation check-
points. Label smoothing (Pereyra et al., 2017) and
dropout rates of 0.1 are used. The source and target
sentences are segmented into subwords using Sen-
tencePiece (SP) (Kudo and Richardson, 2018) with
a vocabulary size of 20K and 30K respectively.

3 Simultaneous Translation

In simultaneous translation a stream of source
words is translated into a stream of target words
without relying on the context of a full sentence.
In this process, the system has to make decisions
on when to read further input and when to produce
partial translations. Hence, there is an inherent
compromise between latency and MT quality.

3.1 Alignment-based Chunking

We develop a novel model architecture, based on of-
fline LSTM models which are similar to Bahdanau
et al. (2015). The approach is described in full de-
tail in Wilken et al. (2020). Our model consists of
a multi-layer BiLSTM encoder, a unidirectional de-
coder and an attention mechanism. We expand the
forward encoder with an additional binary output
trained to predict chunk boundaries in the incom-
ing source word stream. These chunk boundaries
mark positions where enough context for transla-
tion is present to trigger a translation. We generate
training examples for such chunks based on sta-
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tistical word alignment, created using the Eflomal
Toolkit (Östling and Tiedemann, 2016). The chunk
sequence of a sentence pair is defined such that it
is monotonic1, no word in the chunk is aligned to a
word outside the chunk, and chunks are of minimal
size. By this, reordering happens only within the
chunks, thus in terms of word alignment the source
side of a chunk provides enough information to
continue the partial translation monotonically.

We shift the extracted source boundaries by D
positions to the right such that the first words after
the actual boundary provide context for the bound-
ary detection component. Furthermore, we im-
prove the chunk extraction described above by re-
moving a chunk boundary if the target word follow-
ing it is important as context for translation of the
last word in the candidate chunk. Details are given
in (Wilken et al., 2020). The words in the chunks
are converted to SP subword sequences prior to the
training of the simultaneous NMT system.

3.2 Streaming ASR

For the speech-to-text condition we use the cas-
caded approach, integrating the streaming version
of the ASR system described in Section 2.1 into the
decoder. We send 1-second chunks of the incoming
audio into the ASR system. We have to alter the
ASR system to output the common prefix of all
hypothesized transcriptions in the beam, such that
words in the output are guaranteed to not change
due to further evidence. For each 1-second chunk
we check whether new words were generated by
the ASR. If so, we pass them to the encoder of
the MT system. From that point on, translation
happens as described in the next section.

3.3 Online MT Decoding

For each word in the input stream, we first apply
subword splitting. Then we feed the subwords into
the forward encoder one by one, producing the en-
coding of that subword and a boundary decision.
If a boundary is predicted, all source words of the
current chunk are fed into the backwards encoder.
After that, the decoder produces the translation at-
tending to the forward and backwards encodings of
all words of the sentence read so far. Here, we per-
form the beam search with a beam size of 12. For
length normalization, we divide the scores by I0.9,
I being the target length. To know when to stop
decoding of a chunk, we predict the target chunk

1Given a pair of subsequent chunks, the first word of the
second chunk immediately follows the last word of the first
chunk on the source and target side.

Training data\Running words EN DE

DST 7.5M 8.1M
ASR1 32.9M -
MT2 309.8M 289.9M
SYNTH SPEECH3 4.2M 5.0M
SYNTH TRANS4 32.9M 37.3M
BT5 125.2M 117.3M

Table 1: Data size. 1Contains the ASR portion of DST
data; 2contains the MT supervised data of DST data;
3additional synthetic DST data by synthesizing bilin-
gual MT data (using TTS model); 4additional synthetic
DST data by translation ASR transcriptions; 5back-
translation of German monolingual data.

boundaries via a binary translation factor (Wilken
and Matusov, 2019). A hypothesis in the beam is
considered final as soon as a boundary is predicted.
The states of the forward encoder and the decoder
are kept across chunks. The backward encoder is
initialized for each chunk. In both encoder and
decoder we feed an embedding of the boundary
decision into the next recurrent step, analogous to
label feedback of the target word.

4 End-to-End Direct Speech Translation

The direct speech translation models have been
trained using direct speech translation (DST) train-
ing data including MuST-C, IWSLT TED, and Eu-
roParl corpora, i.e. a total of approx. 420 hours of
transcribed and translated speech (see Table 1). We
remove all sequences longer than 75 tokens and all
utterances longer than 6000 frames.

The end-to-end models are based on encoder-
decoder architectures. The LSTM-based speech
encoder uses 6 stacked BiLSTM layers with inter-
leaved max-pooling layers in between to reduce the
utterance length with a factor of 6. We apply layer-
wise encoder pre-training w.r.t. both the number of
layers and dimensions. The CTC loss is used on
top of speech encoder except in pre-training. All
other parameters are similar to ASR training; thus,
we also apply SpectAugment in all of our DST
experiments similar to (Bahar et al., 2019b).

The text decoder is based on the decoder of MT
models, as illustrated in Figure 1, using either the
LSTM or the Transformer topology. In LSTM se-
tups, the decoder is equipped with a 1-layer unidi-
rectional LSTM with cell size 1024 and single-head
additive attention. All tokens are mapped into a
512-dimensional embedding space. Both base and
big Transformer decoders are based on the archi-
tecture explained in Section 2.4.

To solve the data sparseness problems of DST
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ST encoder

Pre-trained ASR encoder

Adaptor

BiLSTM ×Le

Attention

ST decoder

Pre-trained MT decoder

LSTM/Self-Attention ×Ld

English Speech

German Text

Figure 1: Overview of the DST model with pretrain-
ing and an adaptor. Shallow grey blocks correspond to
pre-trained components, and dark grey blocks are fine-
tuned on the DST task.

training, we explore various strategies to augment
the data by leveraging weakly supervised data, i.e.
ASR and MT training data. Our high-quality Trans-
former big model has been employed to generate
synthetic DST training data by automatically trans-
lating the correct transcripts of ASR training data
(Jia et al., 2019). SYNTH TRANS refers to machine-
translated ASR training data. As listed in Table 1,
we translate the whole ASR training data (32.9M
words) resulting in 37.3M German tokens and com-
bine it with the original DST data, weighting each
set equally. Similarly, we create synthetic DST
training data by generating speech from the source
side of an MT parallel corpus (Jia et al., 2019). We
refer to it as SYNTH SPEECH, and its statistics can
be found in Table 1. Our text-to-speech synthe-
sis (TTS) model is trained on ASR LibriSpeech
dataset as described in (Rossenbach et al., 2020).
Using the TTS model, we synthesize 800k random
samples (total of 5M words as listed in Table 1)
from the OpenSubtitles corpus pre-filtered as de-
scribed in Section 2.3. Again, the generated data is
uniformly mixed with the original DST data.

To further leverage the weakly supervised data,
we apply pre-training of both the encoder and de-
coder with an adaptor layer in between. Initializa-
tion of model components using pre-trained ASR
and MT models is a common transfer learning strat-
egy to reduce dependency on scarce DST train-
ing data. We pre-train the encoder using our ASR
model explained in Section 2.1, and the decoder
using our MT model, either the LSTM attention
or Transformer, as described in Section 2.4. Af-
ter initialization with pre-trained components, we
fine-tune on the DST training data. As proposed

in (Bahar et al., 2019a), in order to familiarize
the pre-trained text decoder with the output of the
pre-trained speech encoder, we insert an additional
adaptor layer which is a BiLSTM layer between the
encoder and decoder. We train the adaptor compo-
nent jointly without freezing the parameters in the
fine-tuning stage. An abstract overview is shown
in Figure 1.

5 Experimental Results

In this section we report results for offline cascaded
and direct speech translation, as well as for simulta-
neous NMT under various training data conditions.

Acoustic training of the baseline model and
the HMM decoding have been performed with
the RWTH ASR toolkit (Wiesler et al., 2014).
All neural models have been built with RE-
TURNN (Doetsch et al., 2017; Zeyer et al., 2018a)
using Sisyphus framework (Peter et al., 2018).

The number of running words of all training cor-
pora is presented in Table 1. The data used for
training the NMT models is referred to as MT and
contains the in-domain, clean, and filtered bilin-
gual data as defined in Section 2.3. On the other
hand, BT denotes the parallel data obtained through
back-translating the filtered monolingual data (see
also Section 2.3). When the concatenation of MT

and BT is used for training, we over-sample the in-
domain and clean part of MT 5 times. We remove
transcriber comments and emulate the ASR output
using the preprocessing described in Section 2.2.

As heldout tuning sets, we use the concatenation
of the TED dev2010, tst2014, and MuST-C dev
corpora. As heldout test data, we use TED tst2015,
MuST-C tst-HE and MuST-C tst-COMMON.

We report case-sensitive BLEU (Papineni et al.,
2002) and TER (Snover et al., 2006) scores. For
simultaneous NMT, also the average lagging (AL)
metric (Ma et al., 2019) is reported. To measure
AL, we have integrated our online decoder into
the server-client implementation of IWSLT 2020
within the fairseq framework (Ott et al., 2019).

5.1 ASR Quality

For training of the ASR component used in the
cascaded approach, we first pool the data from all
available corpora, removing utterances that can not
be aligned using a baseline model trained on the
IWSLT TED corpus, resulting in 2300h of aligned
audio. The performance of the model trained on
this data is shown in the first line of Table 2. To
understand the contribution of the various data
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# Model TED MuST-C MuST-C
AM LM tst2015 tst-HE tst-COM

Hybrid HMM
1 LSTM 4-gram 8.7 10.5 13.1
2 LSTM 4-gram 11.1 9.4 11.5
3 LSTM LSTM 9.6 7.5 9.9

Attention
4 LSTM None 6.9 7.7 10.6

Table 2: ASR word error rate results in [%].

sources, we train a model for each corpus. Based
on the accuracy on the dev set we decide to exclude
EuroParl and How2 data sets, as they appear to be
the worst match for the target domain. The second
line shows that fine-tuning on the “matched” sub-
set (about 85% of the total training data) does not
lead to a consistent reduction of WER. Still, we
decide to proceed with this acoustic model, based
on the experience with the single corpus experi-
ments. Finally, switching to the neural LM (see
Section 2.1.1) considerably improves the accuracy
on the test sets shown in line 3. This final system
is used in the cascaded translation approach. The
attention ASR model described in Section 2.1.2 has
been trained using 2300h meaning 32.9M words.
As shown in Table 2, the performance of the LSTM
model (line 4) is competitive to the hybrid HMM
model. We use LSTM speech encoder for all of our
direct ST modeling in pre-training.

5.2 ASR Output for MT Fine-Tuning

For cascaded speech translation, both offline and
simultaneous, we apply fine-tuning on the DST
corpora. with correct source transcripts. In addi-
tion, we augment this data with the MuST-C and
TED tst2010 through tst2013 sets, the source side
of which is generated using the hybrid HMM (see
Table 2 line 2). All fine-tuning systems employ an
initial learning rate of 0.0008. The simultaneous
systems and the offline Transformer base model
trained on the MT+BT data (see Table 1) are fine-
tuned using 100k lines per checkpoint, whereas the
other offline models use 1M lines per checkpoint.

5.3 Offline Speech Translation

The results for the offline speech translation sys-
tems are presented in Table 3. The first line shows
the results obtained when translating the ground
truth source text of the test sets with a Transformer
base model trained on the MT data, thus eliminat-
ing potential speech recognition errors. The prepro-
cessing on the source side emulates the ASR output
by applying lower-casing, removing punctuation

marks and removing transcriber comments.
Line 2 through 8 present the results of translating

the output of the hybrid HMM ASR system (see
Table 2 line 3). In comparison to the first line, we
see a significant loss of up to 3.5% BLEU when
translating the ASR output (line 2). Fine-tuning
this model as described in Section 5.2 leads to a
performance gain of up to 1.9% BLEU (line 3).

Furthermore, we train models on the MT+BT

data (line 4 to 8). Although the Transformer base
model in line 4 outperforms the corresponding
model in line 2, applying fine-tuning (line 5) does
not yield better performance than the fine-tuned
model in line 3, which can be traced back to the
over-sampled clean data. The big Transformer
models in line 6 and 7 outperform the base models
in lines 4 and 5, respectively.

Overall, the fine-tuned big model (line 7) per-
forms better on tst2015 and tst-HE, whereas the
fine-tuned base model trained without oversam-
pling and back-translated data (line 3) performs
better on tst-COMMON. Our final submission (line
8) consists of the ensemble of the fine-tuned mod-
els in line 5 and 7 and yields the best performance
on average. The results obtained translating the
output of the attention ASR system (see Table 2
line 4) using the ensemble of the two models (line
5 and 7) are listed in line 9.

5.4 Direct Speech Translation
The fourth block of Table 3 shows the results of
direct speech translation where we do not rely on
intermediate transcriptions. In the first set of exper-
iments, our DST models are based on the LSTM
attention architecture where both encoder and de-
coder are composed of LSTM units (line 10 to
12). The LSTM attention model outperforms the
Transformer model. Again, pre-training the entire
network (plus a BiLSTM layer as an adaptor in
between) yields improvements of 2.9% BLEU and
4.3% TER on average across all test sets indicating
that pre-training is an effective strategy to lever-
age the supervised ASR and MT training data in
practice.

Augmenting ASR data with automatic transla-
tions (SYNTH TRANS) shows slightly worse results
(line 12), which might be due to domain mismatch.
In line with our pure MT and ASR experiments,
we combine our strong speech LSTM encoder with
our powerful text decoder, i.e. big Transformer
(lines 13 to 16). As shown, this combination pro-
vides additional gain over vanilla pre-trained mod-
els. These lines differ in terms of training data
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TED MuST-C MuST-C
tst2015 tst-HE tst-COMMON

# System BLEU TER BLEU TER BLEU TER Training data composition

Pure text MT
1 Transformer base 31.2 52.3 28.5 55.8 31.3 50.1 MT

Cascaded hybrid ASR→MT
2 Transformer base 29.0 56.6 26.3 58.9 27.8 54.7 MT+ASR

3 + fine-tune 30.2 55.7 28.1 57.2 29.7 53.1 MT+ASR

4 Transformer base 29.8 56.1 27.2 57.8 28.3 54.9 (MT+BT)+ASR

5 + fine-tune 30.1 55.7 28.2 56.7 28.8 55.7 (MT+BT)+ASR

6 Transformer big 30.5 55.2 27.9 56.7 28.7 54.6 (MT+BT)+ASR

7 + fine-tune 30.9 55.2 28.6 56.3 28.8 55.5 (MT+BT)+ASR

8 Ensemble (5, 7) 30.9 55.2 28.7 56.4 29.7 54.5 (MT+BT)+ASR

Cascaded attention ASR→MT
9 Ensemble (5, 7) 30.3 54.2 28.3 56.9 28.8 55.3 (MT+BT)+ASR

End2end Direct DST
10 LSTM-attention 23.6 64.1 22.1 63.3 24.3 59.1 DST

11 + pretraining 26.0 59.1 24.7 60.1 27.9 54.3 DST+ASR+MT

12 + pretraining 25.0 61.0 24.3 60.3 26.7 55.7 (DST + SYNTH TRANS)+ASR+MT

13 + big Transformer decoder 26.4 58.2 24.6 59.3 29.1 53.8 DST+DST+MT

14 + big Transformer decoder 26.1 58.6 25.1 58.8 28.7 53.8 DST+ASR+MT

15 + big Transformer decoder 25.9 59.3 24.1 63.5 27.0 55.9 (DST + SYNTH SPEECH)+ASR+MT

16 + big Transformer decoder 27.0 58.3 25.1 61.3 27.3 55.8 (DST + SYNTH TRANS)+ASR+MT

17 + fine-tune 26.8 58.6 25.1 62.3 27.9 55.3 (DST + SYNTH TRANS)+ASR+MT

18 Ensemble (13, 17) 27.2 57.9 25.5 60.7 29.4 53.3
19 Ensemble (13, 15, 16, 17) 28.0 57.3 26.5 58.1 29.6 53.4

Table 3: Offline speech translation results measured in BLEU [%] and TER [%].

which is used either for pre-training or for fine-
tuning. For instance, in line 13, we use the ASR
model trained on the DST (in-domain) data for pre-
training the encoder whereas line 14 corresponds
to the ASR model trained on all (in-domain and
out-of-domain) ASR data. In lines 15 and 16, we
use additional augmented data. In general, ASR
data augmented with synthetic translations can help
the model, while synthesized speech for the MT
data is less effective and still performs worse than
the model using DST data only (see lines 14, 15).
Another aspect to consider is that the additional
synthetic data we generate might be out-of-domain.
Therefore, we fine-tune on top of generated data to
mitigate the domain gap (line 17). This approach
improves the results on the tst-COMMON set. In
the end, to benefit from all data variations, we do
an ensemble of models that outperforms all single
ones.

With data augmentation, pre-training, fine-
tuning, and careful architecture selection, a com-
bination of LSTM encoder and big Transformer
decoder, we obtain comparable results and even on
par on tst-COMMON set and close the gap between
the cascaded and the direct models.
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20.8
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Figure 2: BLEU vs. Average Lagging latency for a
unidirectional 6-encoder 2-decoder system, generated
by varying the maximum chunk size using the values
C ∈ {5, 6, 7, 8, 9, 10, 20}. The results are computed
for the tst-HE dataset.

5.5 Simultaneous Speech Translation

We present results for simultaneous speech and text
translation models fine-tuned on a concatenation of
the MuST-C and TED training data. In the case of
speech translation models, the fine-tuning is done
as described in Section 5.2. All simultaneous mod-
els use 30k SP units for the source and target side.

Table 4 displays the results for the simultaneous
speech translation task. In the upper part, we pro-
vide the results for the offline Transformer base sys-
tem trained on the same data for reference. The re-
sults are shown for the reference transcript, and the
streaming ASR output. In the middle of the table,
we list multiple simultaneous NMT systems with
varying settings. We enforce a maximum source-
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TED MuST-C MuST-C
tst2015 tst-HE tst-COMMON

System BLEU TER BLEU TER AL BLEU TER
Offline baseline, Transformer (MT+BT training data)

using reference transcript 32.7 50.9 30.1 54.3 32.6 48.9
using streaming ASR 28.6 56.3 26.0 59.2 26.4 57.3

Simultaneous NMT (AL ≤ 4s)
6enc, 2dec, C=10, D=2 24.3 60.8 22.6 63.1 3.95s 22.4 60.2
6enc, 4dec, C=10, D=2 25.1 59.5 22.2 63.1 3.94s 22.3 60.0
6enc, 2dec, C=6, D=3 23.3 62.1 21.9 64.7 3.98s 22.3 61.3
2x4enc, 1dec, C=6, D=3 23.8 60.9 22.3 63.1 3.99s 22.3 61.0
6enc, 2dec, C=20, D=4 24.9 61.2 23.0 63.0 4.45s 22.1 62.0

Table 4: Experimental results (in %) for simultaneous NMT of speech, IWSLT 2020 English→German. C refers
to the enforced maximum chunk size, D indicates the boundary decision delay.

TED MuST-C MuST-C
Avg. tst2015 tst-HE tst-COMMON

System AL BLEU TER BLEU TER BLEU TER
Simultaneous NMT

6enc, 2dec, D=2 4.55 30.5 52.5 29.0 54.6 30.3 50.4
6enc, 2dec, D=3 5.21 30.5 52.6 28.9 55.4 29.8 51.0
6enc, 2dec, D=4 5.99 30.3 52.7 29.1 54.0 30.5 50.3
2x4enc, 1dec, D=3 5.33 29.9 53.4 29.0 54.9 30.7 50.4

Table 5: Experimental results (in %) for simultaneous NMT of text input, IWSLT 2020 English→German, D
indicates the boundary decision delay.

side chunk size C and vary the source boundary
delay D to achieve a latency below 4 seconds on
tst-HE. We compare a unidirectional architecture
of 6 LSTM encoder layers and 2 or 4 LSTM de-
coder layers to a bidirectional model. The model
has two stacks of 4 forward and 4 backward LSTM
encoder layers, concatenated at the top-most layer.
The model uses 1 LSTM decoder layer. We observe
that training with a lower delay D=2 and relaxing
the maximum chunk size (C=10) produces better
results than training with a larger delay (D=3), and
using a smaller (C=6). The lower row shows re-
sults for a system with C=20, achieving a latency
of 4.45 seconds. We note that the model makes
dynamic decisions to decide on the source chunk
boundaries that directly influence the latency.

Table 5 shows the results for simultaneous text
translation. We compare unidirectional and bidirec-
tional models with different latencies. All models
use a fixed maximum chunk size of C=20. The
models are trained with different delay values. We
observe that even with a delay D=2 the model
is able to learn reasonable chunk boundaries that
achieve lower latency than higher-delay models
and also maintain a comparable performance.

Figure 2 illustrates the performance on tst-HE
against average lagging (AL) latency. The latency
is varied by changing the maximum chunk size
C. The model used is a unidirectional 6-encoder
2-decoder model trained with delay D=2. We ob-
serve little improvement when increasing the max-

imum chunk size beyond C=7. At C=7, AL is
equal to 3.84s with a performance of 22.2% BLEU,
comparable to 22.3% BLEU obtained when setting
C=20 (corresponding to AL=4.02s). This is likely
due to the learned chunking that is able to set the
boundaries without the need for external interven-
tion by capping the chunk size. On the other hand,
reducing the maximum chunk size to 5 and 6 to-
kens reduces latency, but also reduces translation
context and therefore hurts performance.

6 Final Results

Compared to last year’s submission, the results
of both cascade and direct offline speech transla-
tion models have improved. The cascade system
shows an improvement of 2.0% BLEU compared to
the 2018 submission. The MT quality of the direct
model almost reached the one of the cascade model,
obtaining a huge improvement of 12.4% BLEU.
The performance on the tst2019 and tst2020 test
sets is shown in Table 6, as evaluated by the IWSLT
2020 server. Our primary cascade and direct sys-
tems correspond to the lines 8 and 19 of Table 3
respectively. The contrastive systems which are
single models correspond to the lines 7 and 17 of
the table. We see that the provided reference seg-
mentation negatively affects the MT quality. In con-
trast, the segmentation obtained by our hybrid ASR
model yields segments which apparently are more
sentence-like, include less noise and thus can be
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better translated. On the condition with automatic
segmentation, the difference between our cascade
and direct models ranges from 1.8 to 2.3 BLEU

points. This holds both for our primary ensem-
ble submission and the contrastive single systems,
which have lower BLEU scores by 1% or less as
compared to the ensembles. More results can be
found in (Ansari et al., 2020).

System
TED TED

tst2019 tst2020
BLEU TER BLEU TER

reference segmentation
cascade (primary) 21.0 67.2 22.5 65.2
direct (primary) 19.2 71.2 20.5 70.1

automatic segmentation
cascade (primary, ensemble) 23.4 63.5 25.1 61.4
direct (primary, ensemble) 21.6 66.2 23.3 64.8
cascade (contrastive, single) 23.2 63.6 24.6 61.9
direct (contrastive, single) 20.9 67.2 22.3 66.5

Table 6: AppTek/RWTH IWSLT 2020 submission for
offline speech translation, BLEU and TER scores in %.

7 Conclusions

In this paper, we summarize the results of the joint
participation of AppTek and RWTH Aachen Uni-
versity in the IWSLT 2020 evaluation. For the first
time, we present simultaneous translation results
on real speech from our hybrid streaming ASR sys-
tem. With a latency of 4 seconds they are only 4
BLEU points behind our strong cascaded offline
NMT baseline. This baseline still exhibits the best
results in the offline speech translation task, but
our direct single end-to-end system, with careful
architecture selection, pre-training, and data aug-
mentation, is almost able to compete with our best
cascaded system, obtaining a BLEU score of 29.1
vs 29.7% on MuST-C tst-COMMON set. On the
TED tst2015 set, the ensemble of our direct end-
to-end systems yields a BLEU score of 28.0%, ex-
actly reaching AppTek’s cascaded system results
at IWSLT 2018, obtained one and a half years ago.
At that time, our first DST prototype scored only
17.1% BLEU on the same test set. This shows the
fast and tremendous progress of our direct speech
translation research.
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