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Abstract

Subtitling is becoming increasingly important
for disseminating information, given the enor-
mous amounts of audiovisual content becom-
ing available daily. Although Neural Machine
Translation (NMT) can speed up the process
of translating audiovisual content, large man-
ual effort is still required for transcribing the
source language, and for spotting and seg-
menting the text into proper subtitles. Cre-
ating proper subtitles in terms of timing and
segmentation highly depends on information
present in the audio (utterance duration, natu-
ral pauses). In this work, we explore two meth-
ods for applying Speech Translation (ST) to
subtitling: a) a direct end-to-end and b) a clas-
sical cascade approach. We discuss the benefit
of having access to the source language speech
for improving the conformity of the generated
subtitles to the spatial and temporal subtitling
constraints and show that length1 is not the
answer to everything in the case of subtitling-
oriented ST.

1 Introduction

Vast amounts of audiovisual content are becom-
ing available every minute. From films and TV
series, informative and marketing video material,
to home-made videos, audiovisual content is reach-
ing viewers with various needs and expectations,
speaking different languages, all across the globe.
This unprecedented access to information through
audiovisual content is made possible mainly thanks
to subtitling. Subtitles, despite being the fastest and
most wide-spread way of translating audiovisual

1Speaking of subtitles and their optimum length of 42
characters per line, we could not help but alluding to the book
and series The Hitchhiker’s Guide to the Galaxy by Douglas
Adams, where the number 42 is the “Answer to the Ultimate
Question of Life, the Universe, and Everything”, calculated
by a massive supercomputer named Deep Thought for over
7.5 million years.

content, still rely heavily on human effort. In a typi-
cal multilingual subtitling workflow, a subtitler first
creates a subtitle template (Georgakopoulou, 2019)
by transcribing the source language audio, timing
and adapting the text to create proper subtitles in
the source language. These source language subti-
tles (also called captions) are already compressed
and segmented to respect the subtitling constraints
of length, reading speed and proper segmentation
(Cintas and Remael, 2007; Karakanta et al., 2019).
In this way, the work of an NMT system is already
simplified, since it only needs to translate match-
ing the length of the source text (Matusov et al.,
2019; Lakew et al., 2019). However, the essence
of a good subtitle goes beyond matching a prede-
termined length (as, for instance, 42 characters per
line in the case of TED talks). Apart from this spa-
tial dimension, subtitling relies heavily on the tem-
poral dimension, which is incorporated in the sub-
title templates in the form of timestamps. However,
templates are expensive and slow to create and as
so, not a viable solution for short turn-around times
and individual content creators. Therefore, skip-
ping the template creation process would greatly
extend the application of NMT in the subtitling
process, leading to massive reductions in costs and
time and making multilingual subtitling more ac-
cessible to all types of content creators.

In this work, we propose Speech Translation as
an alternative to the template creation process. We
experiment with cascade systems, i.e. pipelined
ASR+MT architectures, and direct, end-to-end ST
systems. While the MT system in the pipelined
approach receives a raw textual transcription as in-
put, the direct speech translation receives temporal
and prosodic information from the source language
input signal. Given that several decisions about the
form of subtitles depend on the audio (e.g. subtitle
segmentation at natural pauses, length based on ut-
terance duration), in this work we ask the question
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whether end-to-end ST systems can take advan-
tage of this information to better model the subti-
tling constraints and subtitle segmentation. In other
words, we investigate whether, in contrast to text
translation (where one mainly focuses on returning
subtitles of a maximum length of 42 characters), in
speech translation additional information can help
to develop a more advanced approach that goes
beyond merely matching the source text length.

Our contributions can be summarised as follows:

• We present the first end-to-end solution for
subtitling, completely eliminating the need of
a source language transcription and any extra
segmenting component;

• We conduct a thorough analysis of cascade vs.
end-to-end systems both in terms of transla-
tion quality and conformity to the subtitling
contraints, showing that end-to-end systems
have large potential for subtitling.

2 Background

2.1 Subtitling

Subtitling involves translating the audio (speech)
in a video into text in another language (in the case
of interlingual subtitling). Subtitling is therefore a
multi-modal phenomenon, incorporating visual im-
ages, gestures,2 sound and language (Taylor, 2016),
but also an intersemiotic process, in the sense that
it involves a change of channel, medium and code
from speech to writing, from spoken verbal lan-
guage to written verbal language (Assis, 2001).

The temporal dimension of subtitles and the re-
lation between audio and text has been stressed
also in professional subtitling guidelines. In their
subtitling guidelines, Carroll and Ivarsson (1998)
mention that: “The in and out times of subtitles
must follow the speech rhythm of the dialogue, tak-
ing cuts and sound bridges into consideration” and
that: “There must be a close correlation between
film dialogue and subtitle content; source language
and target language should be synchronized as far
as possible”. Therefore, a subtitler’s decisions are
guided not only by attempting to transfer the source
language content, but also by achieving a high cor-
relation between the source language speech and
target language text.

2While we recognise the importance of the visual dimen-
sion in the process of subtitling, incorporating visual cues in
the NMT system is beyond the scope of this work.

In addition, subtitles have specific properties in
the sense that they have to conform to spatial and
temporal constraints in order to ensure compre-
hension and a pleasant user experience. For ex-
ample, due to limited space on screen, a subtitle
cannot be longer than a fixed number of charac-
ters per line, ranging between 35-43 (Cintas and
Remael, 2007). When it comes to the temporal
constraints, a comfortable reading speed (about 21
chars/second) is key to a positive user experience.
It should be ensured that viewers have enough time
to read and assimilate the content, while at the same
time their attention is not monopolised by the sub-
titles. Lastly, the segmentation of subtitles should
be performed in a way that facilitates comprehen-
sion, by keeping linguistic units (e.g. phrases) in
the same line. For the reasons mentioned above,
subtitlers should ideally always have access to the
source video when translating. However, working
directly from the video can have several drawbacks.
The subtitler needs to make sense of what is said
on the screen, deal with regional accents, noise,
unintelligible speech etc.

One way to automatise this labour-intensive pro-
cess, especially in settings where several target lan-
guages are involved, is creating a subtitle template
of the source language (Georgakopoulou, 2019).
A subtitle template is an enriched transcript of the
source language speech where the text is already
compressed, timed and segmented into proper sub-
titles. This template can serve as a basis for trans-
lation into other languages, whether the translation
is performed by a human or an MT system.

In the case of templates, optimal duration, length
and proper segmentation are ensured, since the
change of code between oral and written in the
source language has already been curated by an
expert. Due to the high costs and time required,
creating a subtitle template is not a feasible solution
both for small content creators and in the case of
high volumes and fast turn-around times.

In the absence of a subtitle template, an auto-
matic transcription of the source language audio
could seem an efficient alternative. However, Au-
tomatic Speech Recognition (ASR) systems pro-
duce word-for-word transcriptions of the source
speech, not adapted to the subtitling constraints,
and where all information coming from the speech
is discarded. This purely textual transcription is
then translated by the MT system. Therefore, it is
highly probable that a higher post-editing effort is
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required not only in terms of translation errors, but
chiefly for repairing the form of the subtitles.

Direct, end-to-end speech translation receives
audio as input. Therefore, the model receives two
types of information from the spectrogram: 1) in-
formation about the temporal dimension of the
speech, e.g. duration, and 2) information related
to the frequency, such as pitch, power and other
prosodic elements. While intonation and stress
are mostly related to semantic properties, speech
tempo directly affects the compression rate of sub-
titles, and pauses often correspond to prosodic
chunks which can determine the subtitle segmen-
tation. Given that, it is worth asking the question
whether access to this information can lead to better
modelling of the subtitling constraints and subtitle
segmentation.

2.2 Speech translation

Traditionally, the task of Speech-to-Text Transla-
tion has been addressed with cascade systems con-
sisting of two components: an ASR system, which
transcribes the speech into text, and an MT system,
which translates the transcribed text into the target
language (Eck and Hori, 2005). This approach has
the benefit that it can take advantage of state-of-the-
art technology for both components and leverage
the large amount of data available for both tasks.
On the other hand, it suffers from error propagation
from the ASR to the MT, since transcription errors
are impossible to recover because the MT compo-
nent typically does not have access to the audio.
Several works have attempted to make MT robust
to ASR errors (Di Gangi et al., 2019b; Sperber
et al., 2017) by working on noisy transcripts.

One further drawback of the cascaded approach,
particularly relevant for the task of subtitling, is
that any transcript, no matter how accurate, is sub-
ject to information loss in the semiotic shift from
the richer audio representation to the poorer text
representation. This limitation has been addressed
in the past in speech-to-speech translation cascades
chiefly for improving the naturalness of the synthe-
sised speech and for resolving ambiguities. This
has been performed through acoustic feature vec-
tors related to different prosodic elements, such
as duration and power (Kano et al., 2013), empha-
sis (Do et al., 2015, 2016) and intonation (Aguero
et al., 2006; Anumanchipalli et al., 2012).

By avoiding intermediate textual representations,
end-to-end speech translation (Bérard et al., 2016)

can cope with the above limitations. However, its
performance and suitability for reliable applica-
tions has been impeded by the limited amount of
training data available. In spite of this data scarcity
problem, it has been recently shown that the gap be-
tween the two approaches is closing (Niehues et al.,
2018, 2019), especially with specially-tailored ar-
chitectures (Di Gangi et al., 2019c; Dong et al.,
2018) and via effective data augmentation strate-
gies (Jia et al., 2019). Despite an increasing amount
of works attempting to improve the performance of
ST for general translation, there has been almost
no work on comparing the two technologies on spe-
cific problems and applications, which is among
the focus points of this work.

2.3 Machine Translation for subtitling

Despite the relevance of developing automatic so-
lutions for subtitling both for the industry and
academia, there have been very limited attempts to
customise MT for subtitling. Previous works based
on Statistical MT (SMT) used mostly proprietary
data and led to completely opposite outcomes. Volk
et al. (2010) developed SMT systems for the Scan-
dinavian TV industry and reported very good re-
sults in this practical application. Aziz et al. (2012)
reported significant reductions in post-editing effort
compared to translating from scratch for DVD sub-
titles for English-Portuguese. On the other hand,
the SUMAT project (Bywood et al., 2013, 2017), in-
volving seven European language pairs, concluded
that subtitling poses particular challenges for MT
and therefore a lot of work is still required before
MT can lead to real improvements in audiovisual
translation workflows (Burchardt et al., 2016).

Recently, after the advent of the neural machine
translation paradigm, Matusov et al. (2019) pre-
sented an NMT system customised to subtitling.
The main contribution of the paper is a segmenter
module trained on human segmentation decisions,
which splits the resulting translation into subtitles.
The authors reported reductions in post-editing ef-
fort, especially regarding subtitle segmentation. On
a different strand of research, Lakew et al. (2019)
proposed two methods for controlling the output
length in NMT. The first one is based on adding
a token, as in Multilingual NMT (Johnson et al.,
2017; Ha et al., 2016), which in this setting rep-
resents the length ratio between source and target,
and the second inserts length information in the
positional encoding of the Transformer.



212

The application of MT (either SMT or NMT)
in the works described above is possible only be-
cause of the presence of a “perfect” source lan-
guage transcript, either for the translation itself or
for computing the length ratio. To our knowledge
today, no work so far has experimented with direct
end-to-end ST in the domain of subtitling.

3 Experimental Setup

3.1 Data

For the experiments we use the MuST-Cinema cor-
pus (Karakanta et al., 2020),3 which contains (au-
dio, transcription, translation) triplets where the
breaks between subtitles have been annotated with
special symbols. The symbol <eol> corresponds
to a line break inside a subtitle block, while the
symbol <eob> to a subtitle block break (the next
subtitle comes on a different screen), as seen in the
following example from the MuST-Cinema test set:

This kind of harassment keeps women <eol>
from accessing the internet – <eob>
essentially, knowledge. <eob>

We experiment with 2 language pairs,
English→French and English→German, as
languages with different syntax and word order.
The training data consist of 229K and 275K
sentences (408 and 492 hours) for German and
French respectively, while the development sets
contain 1088/1079 sentences and the test sets
542/544 sentences.

3.2 MT and ST systems

The Cascade system consists of an ASR and an
MT component. The ASR component is based
on the KALDI toolkit (Povey et al., 2011), fea-
turing a time-delay neural network and lattice-
free maximum mutual information discriminative
sequence-training (Povey et al., 2016). The au-
dio data for acoustic modelling include the clean
portion of LibriSpeech (Panayotov et al., 2015)
(∼460h) and a variable subset of the MuST-Cinema
training set (∼450h), from which 40 MFCCs per
time frame were extracted. A MaxEnt language
model (Alumäe and Kurimo, 2010) is estimated
from the corresponding transcripts (∼7M words).
The MT component is based on the Transformer ar-
chitecture (big) (Vaswani et al., 2017) with similar
settings to the original paper. The system is first

3Must-Cinema has been derived from the MuST-C corpus
(Di Gangi et al., 2019a), which currently represents the largest
multilingual corpus for ST.

trained on the OPUS data, with 120M sentences
for EN→FR and 50M for EN→DE and then fine-
tuned on MuST-Cinema. Considering that the ASR
output is lower-cased and without punctuation, we
lowercase and remove the punctuation from the
source side of the parallel data used in pre-training
the MT system. To mitigate the error propagation
between the ASR and the MT, for fine-tuning, we
use a version of MuST-Cinema where the source
audio has been transcribed by the tuned ASR.

For the End-to-End system, we experiment with
two data conditions, one where we only use the
MuST-Cinema training data (E2E-small) and a sec-
ond one where we pre-train on a larger amount of
data and fine-tune on MuST-Cinema (E2E). This
will allow us to detect whether there is any trade-
off between translation quality and conformity to
constraints when increasing the amount of train-
ing data that are not representative of the target
application (subtitling). The architecture used is
S-Transformer, (Di Gangi et al., 2019c), an ST-
oriented adaptation of Transformer, which has been
shown to achieve high performance on different
speech translation benchmarks. We remove the
2D self-attention layers and increase the size of
the encoder to 11 layers, while for the decoder
we use 4 layers. This choice was motivated by
preliminary experiments, where we noted that re-
placing the 2D self-attention layers with normal
self-attention layers and adding more layers in the
encoder increased the final score, while removing
a few decoder layers did not negatively affect the
performance. As distance penalty, we choose the
logarithmic distance penalty. We use the encoder
of the ASR model to initialise the weights of the
ST encoder and achieve faster convergence (Bansal
et al., 2019).

Since the E2E-small system, trained only on
MuST-Cinema, is disadvantaged in terms of the
amount of training data compared to the cascade,
we utilise synthetic data to boost the performance
of the ST system (E2E). To this aim, we automat-
ically translate into German and into French the
English transcriptions of the data available for the
IWSLT2020 offline speech translation task4 (when-
ever the translation is not available in the respective
target language). To this aim, we use an MT Trans-
former model achieving 43.2 BLEU points on the
WMT’14 test set (Ott et al., 2018) for EN→FR.

4http://iwslt.org/doku.php?id=offline_
speech_translation

http://iwslt.org/doku.php?id=offline_speech_translation
http://iwslt.org/doku.php?id=offline_speech_translation
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Our EN→DE Transformer model using similar set-
tings achieves 25.3 BLEU points on the WMT’14
test set. The resulting training data (both real and
synthetic) amount to 1.5M sentences on the target
side. We use a different tag to separate the real
from the synthetic data. We further use SpecAug-
ment (Park et al., 2019), a technique for online data
augmentation, with augment rate of 0.5. Finally,
we fine-tune on MuST-Cinema.

For comparison, we also report MT results when
starting from a “subtitle template” (Template). In
this setting, we use the textual source side of MuST-
Cinema, which contains the human transcriptions
of the source language audio and its segmentation
into subtitles. In this way, the input to the MT
system is already split in subtitles using the spe-
cial symbols, respecting the subtitling constraints
and with proper segmentation. This will allow us
to have an upper-bound of the performance that
NMT can achieve when provided with input al-
ready in the form of subtitles. We pre-train large
models with the OPUS data used in the cascade
but without lowercasing or removing punctuation
and then fine-tune them on the full training set of
MuST-Cinema. It should be noted that only the
MuST-Cinema data contain break symbols. We
use the same Transformer architecture as in the
cascade system. For all the experiments we use
the fairseq toolkit (Gehring et al., 2017). Models
are trained until convergence. Byte-Pair Encoding
(BPE) (Sennrich et al., 2016) is set to 8K operations
for the E2E-small and E2E systems while to 50K
joint operations for the Cascade and the Template
systems.

3.3 Evaluation

To evaluate translation quality we use BLEU (Pa-
pineni et al., 2002) against the MuST-Cinema test
set, both with the break symbols and after removing
them (BLEU-nob). For BLEU, an incorrect break
symbol would account for an extra n-gram error
in the score computation, while BLEU-nob allows
us to evaluate only the translation quality without
taking into account the subtitle segmentation.

For evaluating the conformity to the constraint
of length, we calculate the percentage of subtitles
with a maximum length of 42 characters per line
(CPL), while for reading speed the percentage of
sentences with maximum 21 characters per second
(CPS). Since the MuST-Cinema data come from
TED talks, these values were chosen according to

the TED subtitling guidelines5.
Finally, for judging the goodness of the segmen-

tation, i.e. the position of the breaks in the transla-
tion, we mask all words except for the break sym-
bols and compute Translation Edit Rate (Snover
et al., 2006) only for the breaks against the refer-
ence translation (TER-br). This will allow us to
determine the effort required by a human subtitler
to manually correct the segmentation.

4 Results

4.1 Translation quality

The results are shown Table 1. As far as trans-
lation quality is concerned, the best performance
is reached, as expected, in the Template setting,
where the MT system is provided with “perfect”
source language transcriptions. On the MuST-
Cinema test set, this leads to BLEU scores of 30.62
and 22.08 respectively for French and German. The
Cascade setting follows with a BLEU score reduc-
tion of 8 points for French and 4 points for German,
which can be attributed to error propagation from
the ASR component to the MT.

The E2E-small model (trained solely on MuST-
Cinema) achieves 18.76 and 11.92 BLEU points
for French and German respectively, which is a
relatively low performance compared to the rest
of the systems. This “low-resource” setting is a
didactic experiment aimed at exploring how far
the data-hungry neural approach can go with the
limited amount of data available in the domain of
ST for subtitling (280K and 234K sentences). It
should be also noted that MuST-Cinema is the only
Speech Translation corpus of the subtitle genre,
both respecting the subtitling constraints and con-
taining break symbols. Consequently, the inter-
ference of other data may hurt the conformity to
the subtitling constraints, despite improving the
translation performance. On the other hand, pre-
training has evolved in a standard procedure for
coping with the data-demanding nature of NMT.
Therefore, pre-training also in the case of end-to-
end speech translation offers a comparable setting
with the template and the cascade experiments.
Indeed, after fine-tuning the pre-trained model
on MuST-Cinema, E2E reaches 22.22 and 17.28
BLEU points for French and German. The differ-
ence in translation quality is not statistically signif-
icant between the Cascade and the E2E, with the

5https://translations.ted.com/TED_
Translator_Resources:_Main_guide

https://translations.ted.com/TED_Translator_Resources:_Main_guide
https://translations.ted.com/TED_Translator_Resources:_Main_guide
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BLEU↑ BLEU-nob↑ CPL↑ CPS↑ TER-br↓

FR Template 30.62 28.86 91% 68% 18
Cascade 22.41† 22.06 93% 72% 22
E2E-small 18.76 18.03 95% 70% 23
E2E 22.22† 21.9 95% 70% 20

DE Template 22.08 21.10 90% 56% 17
Cascade 17.81† 17.82 90% 56% 21
E2E-small 11.92 11.38 93% 55% 24
E2E 17.28† 16.90 92% 56% 20

Table 1: Results for translation quality (BLEU, BLEU-nob), for conformity to the subtitling constraints (CPL, CPS)
and for subtitle segmentation (TER-br) for the four systems. Results marked with † are not statistically significant.

Cascade scoring higher with 0.2/0.6 BLEU points
for French/German respectively. This shows that
when increasing the size of the training data for
the E2E the gap between the cascade and the end-
to-end approach is closed and that end-to-end ap-
proaches may have finally found a steady ground
for flourishing in different applications.

4.2 Conformity to the subtitling constraints
and subtitle segmentation

When it comes to the conformity to the subtitling
constraints, the results show a different picture (see
CPS and CPL of Table 1). E2E exceeds all models
at achieving proper length of subtitles, with 95%
and 93% of the subtitles having length of maxi-
mum 42 characters. E2E achieves higher confor-
mity with length even compared to the Template,
for which the segmentation is already provided to
the system in the form of break symbols, while the
cascade is behind by 2%. The same tendency is ob-
served in the TER-br results computed to measure
the proper placement of the break symbols. While
the Template benefits from the source language
segmentation and therefore requires less edits to
properly segment the subtitles, the Cascade is dis-
advantaged in guessing the correct position of the
break symbols, as shown by a 22 and 21 TER score.
For E2E-small TER-br is higher, possibly due to
the low translation quality. However, E2E outper-
forms the Cascade by 1 TER point in this respect,
showing that less effort would be required to seg-
ment the sentences into subtitles. This suggests that
the E2E system receives information compared to
the Cascade, which allows for better guessing the
positions of the break symbols in the translation.
This is another indication that subtitle segmentation
decisions are not solely determined by reaching a
maximum length of 42 characters, but a combina-
tion of multiple (possibly intersemiotic) factors can
offer a better answer to automatic subtitling.

5 Analysis

The higher scores for CPL and TER-br in Section 4
suggest that the E2E system is better at modelling
the subtitling constraints of length and proper seg-
mentation. In this section we shed more light into
this aspect by analysing factors which might be de-
termining the system’s behaviour in relation to the
insertion of the break symbols <eol> and <eob>.

One question quickly arising is how the system
can determine whether to insert a subtitle break
symbol <eob> (which means that the next subtitle
will follow on a new screen) or a line break symbol
<eol> (which means that the next line of the subti-
tle will appear on the same screen). Since the max-
imum number of lines allowed per subtitle block is
2, a simple answer would be to alternate between
<eob> and <eol> such that all subtitles would
consist of two lines (two-liners). However, anyone
having watched a film with subtitles is aware that
subtitles can be two-liners or one-liners. Coming
back to the example in Section 3.1, depending on
the choice of break symbols (except for the last
symbol which should always be an <eob>), there
are two possible renderings of the subtitle:

10
00:00:31,066 --> 00:00:34,390
This kind of harassment keeps women
from accessing the internet --
11
00:00:34,414 --> 00:00:36,191
essentially, knowledge.

and

10
00:00:31,066 --> 00:00:34,390
This kind of harassment keeps women
11
00:00:34,414 --> 00:00:36,191
from accessing the internet --
essentially, knowledge.

Only the first rendering is acceptable because
it satisfies the reading speed constraint but also
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corresponds to the speech rhythm, since the speaker
makes a pause after uttering the word “internet”. In
this case, how can the MT system determine which
type of break symbol to insert?

We have mentioned in Section 2.1 that the in and
out times of a subtitle should follow the rhythm
of speech. Therefore, we expect that the end of
a subtitle block, which in our setting is signalled
by the break symbol <eob>, should correspond
to the end of a speech act, a pause or a terminal
juncture. On the other hand, line breaks inside the
same subtitle block, which in our work correspond
to the break symbol <eol>, have a different role.
While line breaks can still overlap with pauses or
signal the change of speaker, their function is to
split a long subtitle into two smaller parts in order
to fit the screen. The decision of where to insert
a line break inside a subtitle block is determined
by two factors: achieving a more or less equal
length of the upper and the lower subtitle line and
inserting the break in a position such that syntactic
units are kept together. Consequently, the insertion
of <eol> is determined more by the length and
the syntactic properties of the subtitle and less by
the natural rhythm of the speech.

If the hypothesis above holds, the choice of
whether to insert an <eob> or an <eol> sym-
bol is defined by prosodic properties and not solely
by reaching the maximum length of 42 characters.
As a consequence, it is not a simple alternating
procedure.

To test this hypothesis, we compute the duration
of the pause coming after each word in the source
side of the MuST-Cinema test set. To achieve
this, we perform forced alignment of the transcript
against the audio and subtract the end time of each
word from the start time of the next word:

pausew1w2 = start timew2 − end timew1 (1)

Then we separate the pauses in 3 groups: i)
pauses corresponding to positions where <eob>
is present, ii) pauses corresponding to positions
where <eol> is present and iii) pauses after which
there is no break symbol (None). In Table 2 we
report average and standard deviation of the pause
duration for each category.

Pauses corresponding to the positions where
<eob> symbols are present are more than x10
longer than the pauses in positions without any
break symbols (None). Even if we take the most
extreme cases (based on standard deviation), any

Pause type Avg Stdev

None 0.039 0.022
<eob> 0.551 0.181
<eol> 0.074 0.027

Table 2: Average pause duration and standard deviation
(in seconds) for the category without breaks (None),
and for the categories with the two types of break sym-
bols <eob> and <eol>.

pause above 0,37 seconds requires the insertion of
<eob>. Pauses corresponding to <eol> symbols
are on average x2 longer, but there is an overlap
between the possible durations of the None and
the <eol> category. This confirms our hypoth-
esis about the different roles of the two subtitle
breaks. Therefore, prosodic information is an im-
portant factor which can help the ST system de-
termine the subtitling segmentation according to
the speech rhythm. This finding provides strong
evidence towards a clear limitation of the cascade
setting, where the raw textual transcription from the
ASR does not provide any prosodic information to
the MT system. The MT system in the cascade set-
ting is disadvantaged by the inability to: i) recover
from possible ASR errors, and ii) make decisions
determined by factors other than text.

With this knowledge, we analyse the breaks in
the results of the two systems. In order to con-
trol for differences in translation, we select all sen-
tences with at least 2 breaks and with the same
number of break symbols (regardless of whether
<eob> or <eol>) between the reference, the out-
put of the Cascade and of the E2E. The resulting
sentences are 137 for French and 158 for German.
We calculate the accuracy of the type of break sym-
bols for the two systems. For French the accuracy
is 89% for the Cascade and 93% for the E2E. For
German the accuracy is 85% for the Cascade and
88% for the E2E. This difference in accuracy sug-
gests that the E2E is aided by the acoustic infor-
mation and specifically by the pause duration in
determining the correct break symbol.

Table 3 presents some examples, evaluated also
against the video. In the first example, the decision
of which type of break to insert between the two
sentences can only be determined by the duration
of the pause that comes between them. Indeed, the
speaker in the video asks the question and then
leaves some time to the audience before giving the
answer. The pause between the two sentences is
about 2 seconds. In this case, the first sentence
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EN “Who do you report to?” <eob> “It depends”.
CS Wen melden Sie an? <eol> Es hängt davon ab.
E2E Wen berichten Sie? <eob> Es kommt darauf an.
REF “An wen schickst du deine Berichte?” <eob> “Das kommt darauf an”.

One executive at another company <eob> likes to explain how he used to be <eol> a master of milestone-tracking.
Un cadre d’une autre entreprise aime expliquer <eob> comment il était jadis un maı̂tre <eol> du trek capital.

Un dirigeant d’une autre entreprise <eob> aime expliquer comment il était <eol> un maı̂tre de traçage en pierre.
Un cadre d’une autre entreprise <eob> aime raconter comme il était passé maı̂tre <eol> dans la surveillance des étapes.

But you know how they say <eol> that information is a source of power?
Vous savez comment dire que l’information <eol> est une source de pouvoir.

Saviez-vous comment dire <eol> que l’information est une source de pouvoir ?
Mais vous savez qu’on dit que <eol> l’information est source de pouvoir ?

Table 3: Examples of translations by the cascade (CS) and the end-to-end model (E2E) compared to the source
sentence (EN) and the reference (REF). The sentence-final <eob> has been removed.

should be in one subtitle block, then disappear, and
the second sentence should come in the next sub-
title block in order not to reveal the answer before
it was spoken by the speaker. This information is
only available to the E2E system.

In the second example, although both systems
have chosen the right type of break, there are differ-
ences in the actual positions of the breaks. The E2E
inserts the first break symbol in the same position
as in the source and reference (entreprise), while
the Cascade inserts it at a later position (expliquer),
resulting in a subtitle of 46 characters, which is
above the 42-character length limit. The Cascade
correctly inserts the second break (maı̂tre), as in the
reference. Here, the E2E copies the break position
from the source sentence, which is in a different po-
sition compared to the reference (after the word be
instead of the word master as in the reference). The
E2E is faithful to the segmentation of the source
language when it corresponds to the pauses of the
speaker. The positions chosen by the Cascade to
insert the break symbols are before a conjunction
(comment) and a preposition (du). Contrary to the
E2E, the Cascade’s decisions are based more on
syntactic patterns, learned from the existing human
segmentation decisions in the training data.

The third example shows that prosody is impor-
tant also for other factors related to the translation.
The Cascade, not receiving any punctuation, was
not able to reproduce the question in the translation,
while the intonation might have helped the E2E to
render the sentence as a question despite using the
wrong tense (saviez instead of savez).

All in all, these examples confirm our analysis
and once again indicate the importance of consid-
ering the intersemiotic nature of subtitling when
developing MT systems for this task.

6 Conclusion

We have presented the first Speech Translation sys-
tems specifically tailored for subtitling. The first
system is an ASR-MT cascade, while the second
a direct, end-to-end ST system. These systems
allow, for the first time, to create satisfactory sub-
titles both in terms of translation quality and con-
formity to the subtitling constraints in the absence
of a human transcription of the source language
speech (template). We have shown that while the
two systems have similar translation quality perfor-
mance, the E2E seems to be modelling the subtitle
constraints better. We show that this could be at-
tributed to acoustic features, such as natural pauses,
becoming available to the E2E system through the
audio input. This leads to a segmentation closer
to the speech rhythm, which is key to a pleasant
user experience. Our work takes into account the
intersemiotic nature of subtitling by avoiding con-
ditioning the translation on the textual source lan-
guage length, as in previous approaches to NMT
for subtitling, arriving to the conclusion that 42 is
not the answer to everything in the case of NMT for
subtitling. Rather, key elements for good automatic
subtitling are prosodic elements such as intonation,
speech tempo and natural pauses. We hope that
this work will pave the way for developing more
comprehensive approaches to NMT for subtitling.

Acknowledgments

This work is part of the “End-to-end Spoken
Language Translation in Rich Data Conditions”
project,6 which is financially supported by an Ama-
zon AWS ML Grant.

6https://ict.fbk.eu/
units-hlt-mt-e2eslt/

https://ict.fbk.eu/units-hlt-mt-e2eslt/
https://ict.fbk.eu/units-hlt-mt-e2eslt/


217

References
Pablo Daniel Aguero, Jordi Adell, and Antonio Bona-

fonte. 2006. Prosody generation in the speech-to-
speech translation framework. In Acoustics, Speech
and Signal Processing, ICASSP 2006, volume 1.
IEEE International Conference.
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