
Proceedings of the 17th International Conference on Spoken Language Translation (IWSLT), pages 166–171
July 9-10, 2020. c©2020 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

166

Octanove Labs’ Japanese-Chinese Open Domain Translation System

Masato Hagiwara
Octanove Labs LLC

Seattle, WA
masato@octanove.com

Abstract

This paper describes Octanove Labs’ submis-
sion to the IWSLT 2020 open domain transla-
tion challenge. In order to build a high-quality
Japanese-Chinese neural machine translation
(NMT) system, we use a combination of 1)
parallel corpus filtering and 2) back transla-
tion. We have shown that, by using heuristic
rules and learned classifiers, the size of the
parallel data can be reduced by 70% to 90%
without much impact on the final MT perfor-
mance. We have also shown that including
the artificially generated parallel data through
back-translation further boosts the metric by
17% to 27%, while self-training contributes lit-
tle. Aside from a small number of parallel sen-
tences annotated for filtering, no external re-
sources have been used to build our system.

1 Introduction

Building a robust, open domain machine transla-
tion (MT) system for non-English, Asian languages
remains a challenge since many MT research ef-
forts have focused mainly on European languages
(such as English and German) and/or on particular
domains (such as news). This is especially the case
when there is lack of high-quality, human-curated
parallel corpora and one needs to bootstrap an MT
system from noisy parallel data crawled from the
Web.

This is the exact setting of the IWSLT 2020 open
domain translation challenge (Ansari et al., 2020),
where the organizers provide large, noisy parallel
datasets crawled from the Web and the participants
build open-domain machine translation systems be-
tween Japanese (JA) and Chinese (ZH). The partic-
ipants are also encouraged to only use the provided
datasets to train their models. Therefore, the key
to building high-quality MT systems seems to be
in how to filter and make the most of the provided,
noisy datasets.
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Figure 1: Overview of the data/training pipeline

Based on these insights, we used a combina-
tion of 1) parallel corpus filtering (Koehn et al.,
2018, 2019) and 2) back-translation (Sennrich et al.,
2016; Edunov et al., 2018) techniques as our main
strategy. For 1), we showed that we can reduce
the size of the parallel corpora by 70% to even
90% without much impact on the final MT perfor-
mance. As demonstrated in (Chen et al., 2019),
we also verified that artificially generated parallel
data through back-translation can further help im-
prove the performance by 17% to 27% depending
on the direction. We used the vanilla Transformer
(Vaswani et al., 2017) as our NMT model.

In the following sections, we describe the data
and training pipeline for building our NMT sys-
tem. We start with the two datasets provided by the
shared task organizers—the existing parallel (EP)
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dataset that includes public, parallel sentences, as
well as the Web crawled (WC) dataset created by
crawling, aligning, and filtering JA-ZH parallel sen-
tences from the Web. Aside from a small number
of parallel sentences annotated for filtering, no ex-
ternal resources besides these two have been used
to build our NMT system. The entire data and
training pipeline is illustrated in Figure 1.

2 Parallel Corpus Filtering

Our data processing pipeline consists of two
main strategies–parallel corpus filtering and back-
translation, which are shown as two main blocks in
Figure 1. This section describes the first.

2.1 Sentence Pair Quality Analysis
The first observation we make is that many of the
sentence pairs, even from the existing parallel (EP)
dataset, are not high quality. In order to investi-
gate the quality of the datasets, we first extracted
roughly 1,000 sentence pairs from each dataset ((a)
in Figure 1) and had two fluent speakers of both
languages annotate each pair with a label indicat-
ing whether the pair is an accurate translation of
each other, and if not, the reason why. We used the
following tags to indicate the reasons:

• INVALID: text is garbled or contains few nat-
ural language words

• MT: text is suspected to be generated by MT.
We made sure at least one native speaker of
each language double checks this label.

• MISSING: information is missing from either
side

• MISALIGNED: information is missing from
both sides

• NOT TRANSLATED: both sides are identical
except minor variations (e.g., simplified vs
traditional Chinese)

• THIRD LANGUAGE: text is written in a lan-
guage that is neither Japanese nor Chinese

Table 1 shows the breakdown of the labels and
reasons annotated to sentence pairs, both for the
existing parallel (EP) and the Web crawled (WC)
datasets. Only 38% and 29% of the sentence
pairs were deemed suitable for EP and WC, re-
spectively. The most common error was MIS-
ALIGNED, meaning the sentences contain similar

Label Reason EP WC

NG

BOTH INVALID 0 2
BOTH MT 0 92
BOTH ZH 0 60
JA INVALID 1 1
JA MISSING 149 33
JA MT 3 49
ZH INVALID 8 0
ZH MISSING 80 21
ZH MT 9 24
MISALIGNED 366 371
NOT TRANSLATED 2 50
THIRD LANGUAGE 4 11

OK 380 287

Total 1002 1001

Table 1: Result of sentence pair quality analysis

information but have some degree of mismatch that
disqualifies the pair as a quality translation of each
other. This can happen when the both segments are
crawled from the same source (e.g., a webpage) but
mis-aligned due to the way the text is segmented.

2.2 Training Sentence Pair Classifiers

These results led us to decide to use heuristic rules
and build learned classifiers to filter out low quality
sentence pairs from both datasets, illustrated as
(b) in Figure 1. There is a large body of research
on parallel corpus filtering (Koehn et al., 2018,
2019). We used a combination of heuristics rules
as well as classifiers learned from the annotated
data mentioned above.

First, we filter out sentence pairs that violate any
one of the following criteria:

• both sides are 512 or fewer Unicode charac-
ters.

• LJA/LZH < 9 and LZH/LJA < 9 where
LJA and LZH are the lengths of the Japanese
and the Chinese side, respectively.

• the detected languages match the expected
ones (Japanese and Simplified Chinese). We
used a neural language detector NanigoNet1

to automatically detect the language of text.

1https://github.com/mhagiwara/
nanigonet

https://github.com/mhagiwara/nanigonet
https://github.com/mhagiwara/nanigonet


168

EP WC

Before 1,963,238 18,966,595
After 627,811 1,973,068

Table 2: Size of the datasets before and after filtering

Second, we trained a binary logistic regression
classifier from the annotated sentence pairs men-
tioned above, and applied it to the rest of the dataset
to filter out low-quality sentence pair candidates.
The classifier uses only three features. We built one
classifier per each dataset (EP and WC) only using
the annotated portion of the dataset and applied to
the rest.

• log length of the Japanese text (in Unicode
characters)

• log length of the Chinese text (in Unicode
characters)

• cosine similarity between the sentence embed-
dings computed using the Universal Sentence
Encoder (USE) (Cer et al., 2018)

As a result, we were able to reduce datasets to
31.9% (EP) and 10.4% (WC) of their original size
(Table 2). We call the resulting filtered datasets the
existing parallel filtered (EPf) and the Web crawled
filtered (WCf), respectively, as shown as (c) in
Figure 1. We achieved this with little impact on the
translation quality. See the experiment section for
more details.

Finally, we note that the official development
dataset (DEV), which is created from the JEC Ba-
sic Sentence Data2, might not be the best choice
for evaluating an open domain machine translation
system. Due to the way the the dataset is created
(by first mining “typical” Japanese sentence struc-
tures from a large text corpus, then by translating
these sentences to Chinese), it may not be well
suited to evaluate ZH-to-JA MT systems. We aug-
mented this dataset by adding sentence pairs that
were tagged “OK” in the annotation process. This
increased the size of the development dataset from
5,304 to 5,970 pairs. All the subsequent experi-
ments were validated using this dataset, which we
call DEV+ hereafter ((d) in Figure 1).

2http://nlp.ist.i.kyoto-u.ac.jp/EN/
index.php?JEC%20Basic%20Sentence%20Data

3 Back-Translation

One of the effective techniques, especially for low-
resource settings, is the use of back-translation
(Sennrich et al., 2016; Edunov et al., 2018). The
idea is to first train a target-to-source MT system
to translate a large, monolingual dataset in the tar-
get language into the source language, and add the
resulting, artificial parallel dataset to existing ones
and retrain a source-to-target MT system.

We decided to reuse the “leftover” from the fil-
tering process, that is, the set of sentence pairs that
deemed low-quality in the parallel corpus filtering
phase described in the previous section. Specifi-
cally, after running sentence pairs through the set
of heuristic rules described above, we break them
into the source side (Japanese) and the target side
(Chinese) and treat each as an independent mono-
lingual corpus. We call this corpus the Web crawled
remainder (WCr) dataset ((e) in Figure 1).

We then trained ZH-to-JA and JA-to-ZH NMT
systems from a combination of EPf and WCf
datasets and used the systems to generate artifi-
cial source sides for both directions ((f) in Figure
1). When generating artificial source sides, we used
top-k sampling (versus beam search) based on the
findings of Edunov et al. (2018). The final models,
shown as (g) in Figure 1, were trained from the
combination of EPf, WCf, as well as WCr and its
machine translated version.

4 Experiments

4.1 Experimental Settings

We used the vanilla Transformer (Vaswani et al.,
2017) as our neural MT model. All the experiments
were conducted using the fairseq library (Ott et al.,
2019) with half precision floating point (fp16). The
training objective is the label smoothed cross en-
tropy, which was optimized by the Adam optimizer
(Kingma and Ba, 2014) with β1 = 0.9, β2 = 0.997,
and ε = 1.0× 10−9. We ran each experiment for
40 epochs and chose the best checkpoint based on
the development set loss. The beam width was 20.

We tokenized both Japanese and Chinese with
the SentencePiece library (Kudo and Richardson,
2018) with a shared vocabulary. The translation
quality was evaluated with the character 4-gram
BLEU (Papineni et al., 2002).

At the test time, we resolved unknown words
(which often arise when there are rare unknown
characters on the source side) using word alignment

http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JEC%20Basic%20Sentence%20Data
http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JEC%20Basic%20Sentence%20Data
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obtained by fast align (Dyer et al., 2013)3.

4.2 Hyperparameters

Before we experiment with parallel corpus filtering
and back-translation, we ran random parameter
search with the baseline dataset (EP) to find the
optimal set of hyperparameters. The type and the
range of hyperparameters we considered are as
follows:

• Size of SentencePiece vocabulary: 10k, 15k,
20k, 25k, 30k

• Frequency threshold for including tokens
(both sides): 3, 5, 10

• Number of encoder/decoder layers: 4, 5, 6

• Embedding dimension: 256, 512, 768, 1024

• Feedforward dimension: 256, 512, 1024,
2048, 4096, 8192

• Number of attention heads: 1, 2, 4, 8, 16

• Gradient clipping: 0.0, 10.0, 25.0, 50.0

• Learning rate: 1e-6, 2.5e-6, 5e-6, 1e-5, 2.5e-5,
5e-5, 1e-4, 2.5e-4, 5e-4

• Number of warmup steps: 2000, 4000, 8000,
16000, 32000

• Dropout: 0.1, 0.2, 0.3, 0.4, 0.5

• Weight decay: 0.0, 1.0e-4, 2.5e-4, 5.0e-4

• Label smoothing: 0.1, 0.2, 0.3

• Batch size in tokens: 2048, 4096, 6144

We ran about 20 rounds of random parameter
search and settled with the hyperparameter setting
shown by the bold face in the list above. The final
models were an ensemble of 6, 8, and 10-layer
Transformers with all other hyperparameters being
identical.

4.3 Results

Here is the list of all the models trained from dif-
ferent combinations of datasets:

3https://github.com/clab/fast_align

JA→ZH ZH→JA

Official baseline 20.03 27.03
BASELINE 24.02 27.68
FILTERED 23.15 27.11
COMBINED 26.19 29.68
BT w/ 500k pairs 28.39 30.68
BT w/ 1M pairs 28.47 31.29
BT w/ 2.6M pairs 29.24 32.66
BT w/ 13M pairs 30.67 33.46
FINAL 31.21 33.81

Table 3: BLEU scores for different models

• Official baseline: the baseline BLEU scores
provided by the organizer. Note that the these
scores are not comparable to other models
below since the development set is different.
We also note that the official baseline model
is very similar to our model in terms of the
neural architectures as well as the number of
parameters.

• BASELINE: baseline model trained with EP

• FILTERED: same as BASELINE but trained
with EPf

• COMBINED: model trained with EPf and
WCf

• BT: model trained with EPf, WCf, and back-
translated WCr with varying size

• FINAL: BT trained on the entire WCr with
ensemble

Table 3 shows the BLEU scores of these models
computed against the DEV+ dataset. By compar-
ing BASELINE and FILTERED, you see that fil-
tering had little impact on the final BLEU scores.
By comparing COMBINED and BT with different
sizes, you see that adding back-translation helped
the performance—the larger the amount of back-
translation, the larger the increase was. These re-
sults confirm that our strategy—parallel corpus fil-
tering and back-translation—was effective.

5 Discussion

5.1 Negative Results
Finally, here we include the list of things we tried
but didn’t contribute to the improvement of the MT
quality:

https://github.com/clab/fast_align
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• Filtering by provenance: upon cursory review,
we found that the quality of parallel sentences
varies a lot by their provenance. We included
the source of each pair as an extra set of in-
dicator features, although doing so ended up
removing too many pairs and hurt the final
performance.

• Self-training (Ueffing, 2006; Zhang and Zong,
2016; He et al., 2019): we also tried using
forward-direction MT models to generate the
target side from WCr. Including artificially
generated parallel data this way didn’t im-
prove the final BLEU score.

• Beam search: when generating back-
translation, using beam search instead of top-k
sampling didn’t improve the metrics as much.

• Normalizing to Simplified Chinese: we tried
normalizing the Chinese side to the simli-
fied script using the OpenCC toolkit4 to en-
sure the consistency. We observed that doing
so inadvertently normalized many traditional
characters that should be preserved between
Japanese and Chinese and didn’t improve the
final performance.

We note that increasing the size of the Trans-
former beyond 6 layers did not necessarily lead
to improved quality, while ensembling multiple
large models did. We also considered leveraging
the unaligned version of the Web crawled dataset
provided by the organizers, although the dataset
contains a large amount of low-quality text that
appears to be generated by templates (such as up-
dates on currency exchange rates) and we believe
it would add little value as an extra data source.

5.2 Use of External Data
Finally, we ran a follow-up experiment in order
to explore the extent to which our model can
be improved by adding external data. Specifi-
cally, we obtained parallel sentences from HiNa-
tive5, a community-driven language learning QA
service, by collecting Japanese-Chinese question-
answer pairs in the form of “How do you say X
in Japanese/Chinese?” Both the questions and the
answers are written by the user community and
the resulting dataset is fairly noisy. In addition to
the heuristic rules, we trained a logistic regression

4https://opencc.byvoid.com/
5https://hinative.com/

JA→ZH ZH→JA

BASELINE 24.02 27.68
BASELINE w/ HiNative data 25.32 29.20

Table 4: BLEU scores for models with external data

classifier in a similar way to the ones described in
Section 2, except that we trained only one classi-
fier using a combined held-out data from both EP
and WC. After filtering, the HiNative dataset has
been reduced to around 80k sentence pairs, which
we added to EP to explore its impact on the NMT
performance.

As Table 4 shows, even though the amount of
the added data is a fraction of the original size (80k
vs 1.9M), BLEU scores improved by more than
5%. This result suggests that our filtering method
is very effective in only retaining high-quality pairs
and the newly added data from HiNative provides
new perspectives and genres that were not covered
by the existing parallel dataset.

As future work, we wish to explore other ex-
ternal datasets for Japanese-Chinese translation,
namely, JParaCrawl (Morishita et al., 2019) and
WikiMatrix (Schwenk et al., 2019).

6 Conclusion

This paper describes Octanove Labs’ submission
to the IWSLT 2020 open domain translation chal-
lenge. We combined parallel corpus filtering and
back-translation to build a Japanese-Chinese open
domain NMT system. Through a series of experi-
ments, we verified that our filtering method is ef-
fective in preserving the translation accuracy while
greatly reducing the size of parallel data required
to train the NMT model. We also found that use of
artificially generated parallel data from the remain-
der of the filtered corpus through back-translation
improved the final performance of the system.
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