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Abstract

This paper describes the University of Ed-
inburgh’s neural machine translation systems
submitted to the IWSLT 2020 open domain
Japanese↔Chinese translation task. On top of
commonplace techniques like tokenisation and
corpus cleaning, we explore character map-
ping and unsupervised decoding-time adapta-
tion. Our techniques focus on leveraging the
provided data, and we show the positive im-
pact of each technique through the gradual im-
provement of BLEU.

1 Introduction

The University of Edinburgh presents its neural ma-
chine translation (NMT) systems for the IWSLT
2020 open domain translation task (Ansari et al.,
2020). The task requires participants to submit
systems to translate between Japanese (Ja) and Chi-
nese (Zh), where the sentences come from mixed
domains. For training purpose, 1.96 million ex-
isting sentence pairs and 59.49 million crawled
sentence pairs1 are provided, making the task a
high-resource one. In our experiments, we focused
on three aspects:

1. Corpus cleaning which consists of hand-
crafted rules and cross-entropy based meth-
ods.

2. Japanese and Chinese character mapping to
maximise vocabulary overlap and make em-
bedding tying more intuitive.

3. Unsupervised ad-hoc adaptation during de-
coding time to translate a multi-domain test
set, experimented at the sentence, cluster (sub-
document) and document levels.

1We mistakenly used an outdated dataset which is larger
but noisier. The dataset was extracted from crawled texts
with encoding issues and inconsistent handling of Japanese
characters “プ” and “で”.

Our techniques are mostly data-centric and each
technique improves translation in terms of BLEU
on our development set. In the final automatic
evaluation based on 4-gram character BLEU, our
systems rank 6th out of 14 for Ja→Zh and 7th out
of 11 for Zh→Ja.

2 Baseline with Rule-Based Cleaning

2.1 Preprocessing

We first tokenise our data at word-level, which is
commonly done for the Japanese and Chinese (Bar-
rault et al., 2019; Nakazawa et al., 2019). While
it is unclear whether word-level or character-level
models are superior (Bawden et al., 2019), word-
level segmentation could resolve ambiguity and
dramatically reduce sequence length. The tools we
use are KyTea (Neubig et al., 2011) for Japanese
and Jieba fast2 for Chinese.

2.2 Rule-based cleaning

We then apply a series of rule-based cleaning oper-
ations on both existing and crawled data to create
baseline models. These steps are mostly inspired
by submissions to the corpus filtering task at WMT
2018 (Koehn et al., 2018). The task shows that
effective corpus filtering brings substantial gain in
translation performance.

Language identification: One way of parallel
corpus filtering is to restrict source sentences to
be in the source language, and target sentences to
be in the target language. However, distinguishing
between Japanese and Chinese, particularly short
sentences, is tricky because both share a set of com-
mon characters. Hence, we decide to relax this rule
by keeping all sentences (pairs) which are identified
as either Chinese or Japanese using langid.py
(Lui and Baldwin, 2012). This inevitably leaves

2https://github.com/deepcs233/jieba fast, a faster imple-
mentation of Jieba
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some Chinese on the Japanese side and vice versa.
It might have a beneficial copying effect (Currey
et al., 2017), especially given the vocabulary over-
lap between the two languages.

Length ratio: We use the provided high-quality
existing data to estimate the average Japanese and
Chinese sentence lengths at character-level. We
find the length ratio of Japanese to Chinese is about
1.4 to 1. We remove sentence pairs which have a
length ratio outside the 3 standard deviations from
this mean. This a lenient choice in order to keep
short translations. This is applied to both existing
and crawled data.

Sentence length: We remove sentence pairs
with more than 70 tokens on the Chinese side or
more than 100 tokens on the Japanese side, for both
existing and crawled data.

Chinese simplification: The Chinese datasets
contain both traditional and simplified characters,
so we use hanziconv3 to simplify them. This
rule-based converter has a minor flaw that it some-
times confuses on characters that are in both tradi-
tional and simplified Chinese. An example is “著”,
the traditional form of “着”, but also a simplified
character on its own with a different meaning.

2.3 Model training

For the baseline model, we try out three combina-
tions of data, namely existing only, crawled only
and both. For Ja→Zh and Zh→Ja, this results
in six models. As a comparison, we also train
vanilla models without previously described clean-
ing steps.

All models are Transformer-Base with de-
fault configurations (Vaswani et al., 2017). We
use Marian (Junczys-Dowmunt et al., 2018) to
train our systems, with SentencePiece (Kudo and
Richardson, 2018) applied on tokenised data. As
stated previously, Chinese and Japanese share some
characters, so it is intuitive to use a shared vocabu-
lary between source and target, and to enable three-
way weight-tying between source, target and output
embeddings (Press and Wolf, 2017).

We report character-level BLEU on development
set, using the evaluation script provided.4 The base-
line results are shown in Table 2 as “(1) vanilla”
and “(2) rule-based cleaning”. We see a significant
improvement in BLEU after applying rule-based

3https://github.com/berniey/hanziconv
4https://github.com/didi/iwslt2020 open domain

translation/tree/master/eval

cleaning. BLEU scores reported for the develop-
ment set are based on tokenised output, but we
perform de-tokenisation and normalisation of full-
width numbers and punctuation symbols for our
final submission to make the texts natural Chinese
or Japanese.

3 Chinese and Japanese Mapping

In ancient times, Japanese borrowed (at that time,
traditional) Chinese characters (Hanzi) to use as
a written form (Kanji). After a long time of co-
and separate evolution (e.g. Chinese simplifica-
tion), the relationship between Hanzi and Kanji
is complicated. Some Hanzi and Kanji stay un-
changed, some develop different meanings, and
some develop different written forms. A detailed
description is given by Chu et al. (2012). More
importantly, they released a Kanji to traditional and
simplified Hanzi mapping table. With each Kanji
being a key, there can be zero, one or many corre-
sponding traditional and simplified Hanzi. In total,
there are mapping entries for around 5700 Kanji to
simplified Hanzi. Chu et al. (2013) use this charac-
ter mapping to enhance word segmentation in sta-
tistical machine translation (SMT). Recently, Song
et al. (2020) map characters in a Chinese corpus
to Japanese, making it a pseudo-Japanese corpus
for the purpose of pre-training Japanese↔English
NMT.

In our work, we take a step forward to
map Chinese and Japanese to each other for
Chinese↔Japanese NMT directly. Without map-
ping as a data processing step, an NMT system
needs to learn the mapping between Kanji and
Hanzi implicitly. Therefore we hypothesise that
mapping them before training a model will:

1. maximise character overlap percentage, re-
duce vocabulary size and make embedding-
tying more effective, and

2. reduce the computation needed to learn to
model the mapping.

Since we already simplified all Chinese characters,
hereafter we refer to simplified Chinese as Hanzi.
Mapping from Kanji to Hanzi is straightforward
from the character mapping table. Next, according
to the mapping table, we re-construct a mapping
table indexed by Hanzi, but a minor difference is
that each Hanzi will have at least one correspond-
ing Kanji. It is not possible to get perfect one-to-
one mappings due to the existing many-to-many

https://github.com/berniey/hanziconv
https://github.com/didi/iwslt2020_open_domain_translation/tree/master/eval
https://github.com/didi/iwslt2020_open_domain_translation/tree/master/eval
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Chinese→Japanese Japanese→Chinese
Zh Ja Total Overlap Zh Ja Total Overlap

no mapping 21168 24387 15283 18502 24387 15283
conservative 20958 18502 24117 15343 21168 16659 22891 14936
aggressive 20560 24086 14976 16341 22759 14750

Table 1: Character statistics of Chinese (Zh) and Japanese (Ja)

relationship between Hanzi and Kanji. In order
to simplify post-processing. we only map source
characters to target, so the target outputs are always
in the genuine target language. Hence we map Chi-
nese to Japanese or Japanese to Chinese depending
on the translation direction. We design two simple
mapping scheme variants:

1. Conservative mapping: apply one-to-one
mapping and ignore all one-to-many cases.
All target characters must be constrained to
target corpus, in order not to introduce new
characters.

2. Aggressive mapping: apply one-to-one map-
ping, and for the one-to-many mapping cases,
pick the character that has the highest fre-
quency in the target corpus. The target con-
straint applies too.

Table 1 shows the counts of characters before
and after mapping in each language as well
as the total counts, for Chinese→Japanese and
Japanese→Chinese respectively, on all available
data. We only map characters on the respective
source side and leave the target side of the training
data as it is.

We then train models on the mapped data for
both directions, with results displayed in Table 2 as
“(3) mapping”. We observe that aggressive mapping
is marginally better than conservative on Ja→Zh
and much better on Zh→Ja. Thus, we pick aggres-
sive mapping for our following experiments.

4 Filtering Based on Cross-Entropy

Our initial rule-based cleaning shows its effective-
ness through improvement in BLEU scores. We
further adopt two filtering steps based on cross-
entropy proposed by Junczys-Dowmunt (2018):

4.1 Dual conditional cross-entropy
Dual conditional cross-entropy score is obtained
from the absolute difference between cross-
entropies of two translation models in inverse di-
rections, weighted by the sum of cross-entropies

of the two models. The score of a sentence pair
(x, y) is calculated according to Equation 1, where
Ha→b(b|a) is the cross-entropy from a translation
model that translates a to b. A lower score implies
a better sentence pair.

adequacy =
∣∣∣Hx→y(y|x)−Hy→x(x|y)

∣∣∣
+
1

2
(Hx→y(y|x) +Hy→x(x|y))

(1)

This step finds sentence pairs that are adequate,
and more importantly, equally adequate in both
directions. It effectively filters out non-parallel sen-
tences, or even machine translations which have
been optimised for just a single direction. We want
to score sentence pairs with the best translation
model we have, so we use the aggressive map-
ping models built in the previous section to score
mapped corpus for both directions.

4.2 Language model cross-entropy difference

The previous step ensures the adequacy of sentence
pairs, but it does not pick out unnatural sentences.
For example, a concatenation of texts from a web-
site’s navigation bar, together with its translation,
get a good score by fulfilling adequacy. To alleviate
this issue, we apply cross-entropy difference scor-
ing. The score for a single sentence a is calculated
according to Equation 2, where Hdesired(a) is the
cross-entropy from a language model trained on
desired data (clean, in-domain) and Hundesired(a)
is the cross-entropy from a language model trained
on undesired data (noisy, out-of-domain). It has an
interpretation that, a high-quality sentence should
be similar to the desired data but different from the
undesired data. We used KenLM (Heafield et al.,
2013) to build 4-gram language models on the ex-
isting and the crawled data respectively.

Hdesired(x)−Hundesired(x) (2)

Since our data serve both translation directions,
we score both sides of a sentence pair and take the
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Category Data Transformer BLEU
size Ja→Zh Zh→Ja

(1) vanilla existing base 21.88 27.11

(2) rule-based
existing

base
26.57 26.59

cleaning
crawled 25.15 27.25

all 28.26 27.70
√

(3) mapping
conservative

base
29.09 24.37

aggressive 29.41 27.78
√

(4) cross-entropy
best 50M

base
29.66 28.84

filtering
best 35M 30.45 28.92
best 20M 30.58 29.67

√

(5) deeper models

best 20M

big

30.91 30.13
best 10M 30.65 30.42

√
(a)

best 10M 30.68 30.40 (b)
best 5M 30.35 29.94 (c)
best 5M 29.71 30.08 (d)

ensemble of (c) and (d) 30.63 30.55
(6) ensembles ensemble of (a) and (b) 31.55 30.86

ensemble of (a), (b), (c) and (d) 31.61 30.90

Table 2: Our models’ 4-gram character-level BLEU on development set.
A
√

symbol denotes the best configuration in each category.

sum to get an overall fluency score:

fluency =Hexisting ja(ja)−Hcrawled ja(ja)

+Hexisting zh(zh)−Hcrawled zh(zh)
(3)

4.3 Ranking and cut-off
To combine both filtering methods, Junczys-
Dowmunt (2018) negates the scores and exponen-
tiate them. Furthermore, extreme cross-entropy
difference scores are capped or cut to 0. Finally, a
product of the two determines the quality of sen-
tence pairs. After applying this procedure, we ob-
serve that the top-ranking sentences are dominated
by the ones with perfect adequacy but not fluency
(e.g. a translation of navigation bar). Thus we
keep multiplication but omit capping and cutting
to weight fluency more. Equation 4 shows how the
final score of a sentence pair is calculated.

score = exp(−adequacy)× exp(−fluency) (4)

After we rank all sentences pairs by their scores,
we empirically determine the data cut-off point.
We test with top 50, 35 and 20 million sentence
pairs with Transformer-Base architecture for both
translation directions. We report BLEU scores in
category “(4) cross-entropy filtering” in Table 2,

where we observe that translation performance im-
proves as the size of training data drops. Thus we
further experiment with 20, 10 and 5 million data
on Transformer-Big. Results are displayed in the
same table under category “(5) deeper models”. In
addition, we run ensemble decoding, combining
the models trained on 10 million and 5 million
sentences, and report results in the same table in
category “(6) ensembles”.

5 Ad-hoc Domain Adaptation

NMT is sensitive to domain mismatch (Koehn
and Knowles, 2017), and there are numerous tech-
niques for domain adaptation for NMT (Chu and
Wang, 2018). Some model and training techniques
require prior knowledge of the domain and can-
not be easily applied. Nonetheless, one method
that can be adopted during test sentence translation
is retrieving samples that are similar to the input
from the available training data, and fine-tuning
a trained generic model on these samples. Such
ad-hoc domain adaptation can be done at sentence
level (Farajian et al., 2017; Li et al., 2018) or docu-
ment level (Poncelas et al., 2018).

5.1 Similar sentence retrieval

A crucial factor for domain adaptation to work is
to accurately retrieval representative sentences of
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test sentences. Farajian et al. (2017) store train-
ing data in the Lucene search engine and take
the top-scoring outcomes ranked by sentence-level
BLEU. Li et al. (2018) use word-based reverse
indexing and explore three similarity measures:
Levenshtein Distance, cosine similarity between
average word embeddings, and cosine similarity be-
tween sentence embeddings from NMT. Addition-
ally, they suggest an alternative approach, phrase
coverage, inspired by phrase-based SMT, when no
high-scoring match is found.

Sentence-level adaptation is computationally ex-
pensive because, for each sentence, a separate
model needs to be fine-tuned. In contrast, Poncelas
et al. (2018) synthesise data similar to the whole
test set. They leverage a feature decay algorithm
to select monolingual data in the target language
that are similar to test sentences translated by a
generic source-to-target model. Then, the selected
sentences are back-translated to source language
(Sennrich et al., 2016), forming synthetic parallel
sentences for fine-tuning.

In our work, we adopt a pure phrase-coverage
approach, which is compatible for both sentence
and document level retrieval. As originally sug-
gested for phrase-pair extraction in phrase-based
SMT by Callison-Burch et al. (2005) and Zhang
and Vogel (2005), we index the source side of the
training data via a suffix array (Manber and My-
ers, 1990) for very fast identification of sentence
pairs that contain a given phrase. Then we simply
use the test data as a query to retrieval sentences
based on n-gram overlapping. Figure 1 shows how
efficiently our sentence retrieval method scales up.
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Figure 1: Average time to query one sentence against
number of sentences in the query.

We set a threshold T , such that n-grams which

occur more than T times in training data are dis-
regarded, under the assumption that the generic
model will already have learned to translate such
phrases adequately. This is similar to Li et al.
(2018)’s approach, but we try different T values.
For other n-grams, we always include all matching
sentences in the fine-tuning data.

5.2 Fine-tuning experiments

Due to time constraint, we only experiment our
on-the-fly fine-tuning on Ja→Zh. We pick the
generic baseline model to be the best-performing
one trained on 10 million data. We test three differ-
ent ways of doing the adaptation. First is the single-
sentence adaptation, where the generic model is
fine-tuned on selected training sentences for each
sentence in development (dev) set. However, care-
ful choice of hyperparameters is necessary to pre-
vent overfitting because only a small number of
sentences are retrieved. Next thing we try is to use
1 dev sentence and other 9 closet dev sentences
together as a query. To form such a cluster of 10
dev sentences, we convert all dev sentences into
n-gram TF-IDF vectors and score cosine similarity
in a pairwise manner. This allows us to find the
most similar sentences to any given one. For the
above two choices, we set the threshold T to be 20,
and fine-tune for 1 and 10 epochs separately. The
results are reported in Table 3.

We observe that BLEU drops even we only fine-
tune for a single epoch. Our intermediate con-
clusion is that there is overfitting or misfitting to
out-of-domain sentences that have been incorrectly
retrieved. Furthermore, sentence-level adaptation
is fairly expensive, which prevents us from per-
forming a grid search to find the most suitable con-
figurations. Hence, we move on to document-level
adaptation by using the whole dev set as a query to
find similar sentences. As a comparison, we also
use the whole test set, and a combination of dev and
test as queries. This results in hundreds of thou-
sands of sentences being retrieved, compared to
hundreds to thousands for sentence-level retrieval.
To prevent overfitting, we also raise threshold T to
120 and validate on dev set frequently instead of
specifying an epoch budget.

As Table 3 shows, using a query of both dev and
test data leads to the biggest improvement of 0.55.
Surprisingly, using the whole test set as a query to
retrieve sentence for dev set fine-tuning only leads
to a small drop of 0.19 BLEU. This shows that our
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Query T Epoch BLEU
generic baseline 30.65

1 sentence
20 1 26.60
20 10 26.25

a cluster of
10 sentences

20 1 25.81
20 10 27.24

dev set 120
N/A

31.09
test set 120 30.46

dev and test sets 120 31.20

ensemble
4 FT 32.12

4 FT & 4 non-FT 32.06

Table 3: Character-level BLEU of ad-hoc fine-tuning
experiments on Ja→Zh, at sentence, cluster and docu-
ment levels. FT denotes fine-tuned models.

document adaptation is conservative, thanks to a
large number of retrieved sentences. The considera-
tions underlying adaptation over the entire dev and
test sets (irrespective of the domain of individual
sentences) are as follows: very frequent phrases in-
cluding words, are the features of a language rather
than a domain. For phrases that are frequent in
some domains but not others, the generic model
will probably have learned to translate them ap-
propriately. What we are concerned about are the
phrases seen rarely during generic model training,
because of the bias in training data, or coming from
niche domains. Sentences that share such phrases,
we conjecture, are likely from the same or related
domains anyway, so fine-tuning on them all is effec-
tive. For sentences with no overlap in such words
and phrases, we are probably fine-tuning different
areas in the overall parameter space, which can be
harmless to each other.

6 Results and Conclusion

In our work, we explore a series of techniques
which lead to improvements on Ja↔Zh NMT.
Rule-based filtering brings a marginal increment in
BLEU for Zh→Ja but a significant one for Ja→Zh.
Character mapping, which increases source and tar-
get vocabulary overlap, has a tiny effect on Zh→Ja,
but makes 1 BLEU improvement for Ja→Zh. Next,
cross-entropy filtering adds 2.5 BLEU for Zh→Ja
and 2 BLEU for Ja→Zh. Ad-hoc fine-tuning, aim-
ing at enhancing open domain translation, delivers
another 0.55 BLEU. Finally, an ensemble of 4 fine-
tuned models boosts up 1 BLEU. Overall, our work
has improved 10 and more than 3 BLEU for Ja→Zh
and Zh→Ja respectively.

Character mapping between Japanese and Chi-
nese may inspire two directions of research: apply-
ing character mapping on other tasks, and trying
character mapping for other language pairs.

Due to time constraint, we could not perform
exhaustive experiments to find the best configura-
tion for sentence-level and cluster-level adaptation,
which can be further investigated. We also propose
to study further on cluster (sub-document) adap-
tation, where a system can group test sentences,
and fine-tune before translating them. This can
make adaptation more fine-grained compared to
document adaptation, without the huge risk of over-
fitting at sentence-level.
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Kurohashi. 2019. Overview of the 6th workshop on
Asian translation. In Proceedings of the 6th Work-
shop on Asian Translation, pages 1–35, Hong Kong,
China. Association for Computational Linguistics.

Graham Neubig, Yosuke Nakata, and Shinsuke Mori.
2011. Pointwise prediction for robust, adaptable
Japanese morphological analysis. In Proceedings of
the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 529–533, Portland, Oregon, USA. Asso-
ciation for Computational Linguistics.

Alberto Poncelas, Andy Way, and Kepa Sarasola. 2018.
The ADAPT system description for the IWSLT 2018
Basque to English translation task. In International
Workshop on Spoken Language Translation, pages
72–82, Bruges, Belgium.

Ofir Press and Lior Wolf. 2017. Using the output em-
bedding to improve language models. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 157–163, Valencia,
Spain. Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Haiyue Song, Raj Dabre, Zhuoyuan Mao, Fei Cheng,
Sadao Kurohashi, and Eiichiro Sumita. 2020. Pre-
training via leveraging assisting languages and data
selection for neural machine translation. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics: Student Re-
search Workshop. To appear.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Ying Zhang and Stephan Vogel. 2005. An effi-
cient phrase-to-phrase alignment model for arbitrar-
ily long phrase and large corpora. In In Proceed-

ings of the 10th Conference of the European Asso-
ciation for Machine Translation (EAMT-05), pages
294–301.

https://doi.org/https://doi.org/10.1137/0222058
https://doi.org/https://doi.org/10.1137/0222058
https://doi.org/10.18653/v1/D19-5201
https://doi.org/10.18653/v1/D19-5201
https://www.aclweb.org/anthology/P11-2093
https://www.aclweb.org/anthology/P11-2093
https://arxiv.org/pdf/1811.05909v1.pdf
https://arxiv.org/pdf/1811.05909v1.pdf
https://www.aclweb.org/anthology/E17-2025
https://www.aclweb.org/anthology/E17-2025
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
https://arxiv.org/abs/2001.08353
https://arxiv.org/abs/2001.08353
https://arxiv.org/abs/2001.08353
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://mt-archive.info/EAMT-2005-Zhang.pdf
http://mt-archive.info/EAMT-2005-Zhang.pdf
http://mt-archive.info/EAMT-2005-Zhang.pdf

