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Abstract

We present new experiments that transfer tech-
niques from Probabilistic Context-free Gram-
mars with Latent Annotations (PCFG-LA) to
two grammar formalisms for discontinuous
parsing: linear context-free rewriting systems
and hybrid grammars. In particular, Dirich-
let priors during EM training, ensemble mod-
els, and a new nonterminal scheme for hy-
brid grammars are evaluated. We find that our
grammars are more accurate than previous ap-
proaches based on discontinuous grammar for-
malisms and early instances of the discrimina-
tive models but inferior to recent discrimina-
tive parsers.!

1 Introduction

Many tasks in natural language processing, such
as machine translation, information extraction, and
sentiment analysis, benefit from syntactic analysis
(Culotta and Sorensen, 2004; Ding and Palmer,
2005; Duric and Song, 2011). Often syntax is
represented by means of constituents. Languages
with a flexible word order such as German re-
quire constituents that are discontinuous, i.e., con-
stituents that cover words which do not consti-
tute a continuous interval in the sentence. To this
end, generalizations of context-free grammars such
as tree adjoining grammars (Joshi et al., 1975)
and linear context-free rewriting systems (LCFRS,
Vijay-Shanker et al., 1987) have been proposed.
Although the parsing complexity with these for-
malisms is polynomial in the length of the input
sentence (for a fixed grammar), they are often con-
sidered too slow to be practically useful. Also the
accuracy of LCFRS-based parsers does not match
up to their continuous counterparts.

Instead, a wide range of models that either ap-
ply transition systems with a reordering mecha-

!The implementation is available at https://github.
com/kilian-gebhardt/panda-parser/.
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nism or are based on a dependency-to-constituency
transformation have been proposed in recent years
(Hall and Nivre, 2008; Versley, 2014a; Maier, 2015;
Fernidndez-Gonzélez and Martins, 2015; Coavoux
and Crabbé, 2017; Corro et al., 2017; Stanojevic¢
and Garrido Alhama, 2017; Coavoux and Cohen,
2019; Fernandez-Gonzdlez and Gémez-Rodriguez,
2020). There are two notable exceptions: van Cra-
nenburgh et al. (2016) considers a discontinuous
extension of the data-oriented parsing approach.
Gebhardt (2018) studies the extension of two gram-
mar formalisms with latent annotations: LCFRS
and hybrid grammars (Nederhof and Vogler, 2014),
which is a synchronous grammar formalism that
couples a string generating grammar (specifically:
LCFRS) and a tree generating grammar (specifi-
cally: simple definite clause programs; Deransart
and Matuszynski, 1989). In particular, Gebhardt
(2018) analyses the effect of a generalization of
Petrov et al.’s split/merge procedure (2006), which
adaptively refines the grammar’s nonterminals by
automatic splitting and merging. Although this re-
finement strategy showed vast improvements over
the respective unrefined grammar, some choices in
the experimental setup of Gebhardt (2018) can be
enhanced:

(i) The expectation maximization algorithm (EM,
Baker, 1979), which is a subroutine of the
split/merge procedure, utilizes a likelihood-
based objective that is prone to overfitting.

(i) Ensemble-models obtained by running the

split/merge procedure with different random

seeds were successfully applied for continu-
ous parsing (Petrov, 2010) but not considered

in Gebhardt (2018).

(iii)) Gebhardt (2018) supposes that the initial gran-

ularity of the grammar’s nonterminals mat-

ters as the state-refinement procedure does
not fully recover them.
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In this work, we address the above points by
(i) comparing the likelihood-based objective to a
Maximum-a-Posteriori (MAP) objective, (ii) evalu-
ating ensemble models, and (iii) proposing a new
nonterminal naming scheme for hybrid grammars.
We hypothesize that these steps are complementary
in improving the accuracy of the parsing model.
Although we do not expect to reach or even sur-
pass the performance of recent discriminative ap-
proaches (in particular those utilizing neural nets),
we suppose that these experiments foster the under-
standing of the limits of the different architectures.

2 Model

We consider models based on LCFRS and hybrid
grammars. Vijay-Shanker et al. (1987) and Geb-
hardt et al. (2017) give formal definitions of these
formalisms, respectively. Baseline grammars are
induced from the training data using the induc-
tion techniques of Kallmeyer and Maier (2013) and
Gebhardt et al. (2017), respectively. LCFRS are
either binarized right-to-left (r2¢) or head-outward
(ho) with vertical and horizontal Markovization
set to 1. For hybrid grammars the induction is
parametrized such that the LCFRS-component has
fanout 2.

The baseline grammars are refined using a vari-
ant of Petrov et al.’s split/merge algorithm (2006),
which is described in Gebhardt (2018). This al-
gorithm consists of multiple split/merge cycles in
each of which the EM algorithm is used to fit the
rule weights to the training data. To obtain MAP
training, we modify the EM algorithm by including
a Dirichlet prior (see Johnson et al., 2007, Sec. 2.3).
This is implemented by incrementing each rule
count by a non-negative default value in the “ex-
pectation” phase.

Gebhardt (2018) reports that LCFRS outperform
hybrid grammars but conjectures that this might be
an artifact of the choice of nonterminals in the base-
line grammar. The nonterminal naming schemes
child and strict labeling for hybrid grammars (orig-
inally introduced by Nederhof and Vogler, 2014)
name a nonterminal based on the subset of tree
nodes U? that is generated by the nonterminal. As
illustrated in fig. 1, in strict labeling the roots of
maximum subtrees formed by U are used in the la-
bel, where consecutive sibling nodes are joined. In
child labeling, sequences of sibling nodes of length

2How these nonterminals/subsets are determined is de-
scribed in Gebhardt et al. (2017).
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Figure 1: A tree, a subset of its nodes (underlined), and
the nonterminals created for this subset according to
different nonterminal labeling schemes.

> 1 are replaced by the “children(p)” where p is
the parent node. Gebhardt (2018) supposes that
these strategies either lead to a number of nonter-
minals that is too small or too large for favorable
automatic refinement. We explore a trade-off by
Markovizing (cf. Klein and Manning, 2003) the
strict labeling strategy. Where strict labeling uses
sequences s = nj - - - ng of sibling nodes in non-
terminal labels such that £ > 1, we now use the
parent node p of nj - - - ng, the first node ny, and
a cut-off marker <. Each nonterminal label then
consists of sequences s’ = p ny <.

After split/merge refinement, the grammars are
used to parse unseen sentences. Since exact parsing
is NP-hard already for PCFG-LA (see Matsuzaki
et al., 2005), we follow the literature and apply an
approximate tractable objective called max-rule-
product (short: mrp, which projects weights from
the refined grammar to a sentence-specific coarse
one and computes the the most probable derivation
of the latter, see Petrov and Klein, 2007).

Petrov (2010) presents experiments with ensem-
ble models, where different PCFG-LA are obtained
from the same training data by changing the ran-
dom seed. During parsing the mrp objective is
applied where each rule weight of the coarse gram-
mar is set to the product of the weights that result
from projecting with the individual grammars. This
ensemble grammar showed significantly improved
accuracy over the best single grammar. We instanti-
ate this approach for LCFRS and hybrid grammars
using 4 random seeds.

3 Experiments

Data. We present experiments on the German
TIGER (Brants et al., 2004) and NEGRA (Skut et al.,
1997) corpora. For TIGER, we use the SPMRL
split (Seddah et al., 2014, short: SPMRL) and the
split by Hall and Nivre (2008, short: HNOS) but
optimize hyperparameters solely on HNOS. For
NEGRA we use the split by Dubey and Keller
(2003). For evaluation we compute the labelled



TIGER HNOS NEGRA
NTs coverage parse F1 NTs coverage parse F1
grammar dev. set fails (< 40) dev. set fails (< 40)
LCFRSy, 767  86.9% 4 6829 716  88.2% 4 68.88
LCFRS;»¢ 817  84.7% 4 70.36 787  82.7% 8 70.07
hybrid child 288  92.5% 11 63.19 279  93.5% 2 62.06
hybrid strict-Markov 1,783  81.9% 108 72.18 1,623  81.1% 42 71.34
hybrid strict 32,281  50.0 % 166 6990 20,766  53.9% 34 68.82

Table 1: Statistics for the baseline grammars induced from NEGRA and TIGER (after likelihood-based training).
For the dev. set we report: coverage, i.e., the percentage of gold parse trees that can be derived with the grammar;
parse fails, i.e., the number of sentences for which the grammar cannot derive any parse tree; labeled F1 for the

parse tree with the most probable derivation.

HNO8 NEGRA

grammar F1 (ens.) Disc. F1 (ens.) F1 (ens.) Disc. F1 (ens.)
Likelihood-based training

LCFRSy, 78.85 £0.34 7991 3257 +£1.91 33.81 80.14 +£0.54 81.35 39.57 +2.00 41.09
LCFRS,»¢ 79.25 £0.15 79.93 33.82 £0.21 34.19 78.74 £0.43 80.25 38.01 +1.64 39.49
hybrid child 77.82 £0.24 78.52 30.64 £0.28 31.15 80.38 £0.33 82.06 40.73 +0.86 44.52
hybrid strict-Markov ~ 79.66 +0.23  80.55 45.56 £0.55 47.65 77.51 £0.32 78.17 39.27 £1.96 42.18
MAP training (default count: 1.0)

LCFRS, 79.03 £0.42 79.83 30.98 £0.53 33.00 80.88 +£0.23 82.27 40.40 +2.27 41.96
LCFRSy, 80.01 +£0.16 81.02 34.15+0.22 35.70 79.38 £0.79 80.79 40.92 £2.48 43.04
hybrid child 78.56 £0.23 79.36 32.15 £0.61 33.36 81.75 +£0.26 83.33 40.31 +0.68 43.06
hybrid strict-Markov  80.54 £0.16 81.75 47.32 £0.96 49.82 77.62 £0.12 78.60 40.23 +£0.89 42.52

Table 2: (Average) F1-scores on the dev. set (length < 40) after training for 4 s/m cycles at 50% merge rate (HNOS)
and 6 s/m cycles at 80% merge rate (NEGRA). Columns labeled (ens.) show scores for the ensemble models.

F1 and labelled discontinuous F1 using discodop®
(van Cranenburgh et al., 2016) with the included
proper.prm parameter file. In the tables we list
average F1 scores and standard deviation over 4
grammars with different random seeds, except for
ensemble experiments where we execute just one
run combining those 4 grammars.

Properties of baseline grammars. We induce
baseline grammars from the training data and
display their properties in table 1. We see that
Markovizing the strict labels effectively reduces
the number of nonterminals (NTs) and leads to the
most accurate baseline grammars. Still, this ap-
proach comes at the cost of reduced coverage in
comparison to the child labeling hybrid grammar
and the LCFRS. On NEGRA we see an increase
in parse failures also in comparison to strict label-
ing. This is due to the addition of vertical context

3https://github.com/andreasvc/disco-dop
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(i.e., the parent node) that is not present in strict
labeling.

Training objective. We use the split/merge algo-
rithm to refine the baseline grammars using both a
likelihood-based and a MAP-based objective with
default count 1.0 during EM training*. Differences
between both training modes are displayed in ta-
ble 2 for HNO8 and NEGRA. MAP training in many
settings improves the accuracy. In particular, using
non-ensemble grammars the average F1 score on
all constituents always improves. The average F1

*Next to the default count the training has other hyperpa-
rameters, e.g., the rate of splits that is merged or the number
of s/m cycles. In early experiments we found default count
values around 1.0 to work best. Also, an increase of the merge
rate from 50% to e.g. 80% or 90% often does not harm the
accuracy and allows for smaller grammars or the execution of
additional split/merge cycles. We used such an optimized set-
ting for NEGRA (and for TIGER on the test set). An exhaustive
grid search that optimizes these parameters for all consid-
ered grammars and corpora is computationally expensive and
beyond the scope of this article.


https://github.com/andreasvc/disco-dop

NEGRA SPMRL HNOS8
F1(<40) F1 Disc.F1 F1 Disc.Fl Fl1 (< 40)
this work
hybrid grammar (average of 4 grammars) 81.1 80.3 40.7 76.7 38.9 80.7
hybrid grammar (ensemble) 82.5 81.7 43.5 71.7 40.7 81.6
chart-based approaches
Kallmeyer and Maier (2013) © 75.81 - - - - -
van Cranenburgh et al. (2016) O 76.8 - - - - 78.2@
Versley (2016) 0® - - - 79.5 - 82.9
Gebhardt (2018) O - - - 75.1 - 79.3
Corro (2020) ® / (without pre-trained word embeddings) - 86.2 54.1 85.5 53.8 -
Corro (2020) ® / (with BERT, Devlin et al., 2019) - 91.6 66.1 90.0 62.1 -
dependency-to-constituency conversions
Hall and Nivre (2008) - - - - - 79.9
Fernandez-Gonzalez and Martins (2015) 81.1 80.5 - - - 85.5
Corro et al. 2017) / - - - 81.6 - -
Fernandez-Gonzélez and Gémez-Rodriguez (2020) / - 86.1 59.9 86.3 60.7 -
transition systems

Versley (2014a,b) - - - - - 74.2
Maier (2015) 77.01 - 1980 747 188 79.5
Maier and Lichte (2016) - - - 76.5 16.3 80.0
Coavoux and Crabbé (2017) 82.8 82.2 50.0 81.6 49.2 85.1
Stanojevi¢ and Garrido Alhama (2017) / 83.4 82.9 - 81.6 - 85.3
Coavoux and Cohen (2019) ® / - 83.2 56.3 82.5 559 -
Coavoux et al. (2019) ® / - 83.2 54.6 82.7 559 -

Table 3: Test results with gold POS tags (systems/scores with @ use predicted tags; 1: sentence length < 30 and
no discounting of root notes in F1-score; O: grammar-based model; /: neural scoring component).

score on only discontinuous constituents does not
adhere to this trend in two cases. Note however that
the prediction of discontinuous constituents seems
to be comparably unstable (cf. the high variance).
This indicates that a larger sample size is needed to
reliably judge the influence of MAP training on the
discontinuous F1. Also in case of ensemble models
there are two grammars where the ensemble model
trained with the MAP objective is less accurate.

Ensemble models. Comparing the (Disc.) Fl1-
scores of the ensemble model with the averages
of the individual grammars, we always see an im-
provement, which in many cases is also well above
the standard deviation.

Selection of grammars. For HNOS we obtain
the best results with hybrid grammars with the
Markovized strict labeling, which also outperform
LCFRS in contrast to the experiments by Gebhardt
(2018). In experiments with NEGRA we see that the
child nonterminal scheme is more accurate than the
Markovized strict one. This might be explained by
the smaller corpus size which may lead to sparsity
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problems if nonterminal granularity is higher. The
hybrid grammar with child labeling scores better
than the LCFRS.

External comparison. Test set results are given
in table 3. For NEGRA we apply the child la-
beling scheme and train for 7 s/m cycles using
a merge rate of 80% and the MAP objective. For
TIGER we apply the Markovized strict labeling
scheme and train for 5 s/m cycles using a merge
rate of 90% and the MAP objective. The compar-
ison with results from the literature indicates that
the ensemble of hybrid grammars performs better
than other grammar-based approaches except for
the pseudo-projective approach by Versley (2016).
They are also more accurate than early dependency-
to-constituency and transition-based approaches’.
However, recent models, in particular those uti-
lizing neural nets, are far more accurate than the
hybrid grammars.

SInterestingly, the model by Ferndndez-Gonzalez and Mar-
tins (2015) is superior on TIGER but inferior on NEGRA
(which has a smaller training set).



4 Discussion and conclusions

The experiments provide further evidence that the
split/merge method is applicable and effective be-
yond PCFG. The use of priors and ensembles of
grammars is mostly beneficial and complementary.
From the performance differences between child
labeling and Markovized strict labeling, we can
surmise that the initial nonterminal granularity mat-
ters as the split/merge method cannot fully recover
important splits or at least during parsing the mrp
objective relies on guidance by the baseline nonter-
minal structure. More generally, the performance
differences between the considered grammars indi-
cate that a careful choice of the grammar formalism
and the extraction algorithm is not redundant de-
spite split/merge refinement.

Interestingly, the pseudo-projective approach by
Versley (2016) outperforms our strictly discon-
tinuous one. He uses a linguistically motivated
(de)projectivization strategy® that seems to address
the sparsity of discontinuous constituents in the
data very well. Hence, we may conjecture that
true discontinuous grammar formalisms that make
available a large number of discontinuous produc-
tions (based on scarce evidence) may rarely benefit
from the additional expressiveness. To substantiate
this claim certainly a controlled experiment is nec-
essary as differences may as well be artefacts of
the handling of lexical and fall-back rules by Ver-
sley (2016). However, a similar observation was
made concerning (discontinuous) tree substitution
grammars (van Cranenburgh et al., 2016). Also
a recent study by Corro (2020) finds that a very
restricted mode of discontinuity, which can be sim-
ulated by a series of continuous combinations, is
more accurate than more expressive modes.

The research on discontinuous parsing with la-
tent variable grammars may also be extended by
considering spectral algorithms (cf. Cohen, 2017,
for an overview). In particular, Louis and Cohen
(2015) use latently annotated LCFRS obtained by
spectral algorithms to parse the topical structure
of forum threads. Yet, the application of spectral
algorithms for discontinuous syntactic parsing has
not been investigated.
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