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Abstract

We present a neural end-to-end architecture
for negation resolution based on a formula-
tion of the task as a graph parsing problem.
Our approach allows for the straightforward
inclusion of many types of graph-structured
features without the need for representation-
specific heuristics. In our experiments, we
specifically gauge the usefulness of syntactic
information for negation resolution. Despite
the conceptual simplicity of our architecture,
we achieve state-of-the-art results on the Co-
nan Doyle benchmark dataset, including a new
top result for our best model.

1 Introduction

Negation resolution (NR), the task of detecting
negation and determining its scope, is relevant for
a large number of applications in natural language
processing, and has been the subject of several
contrastive research efforts (Morante and Blanco,
2012; Oepen et al., 2017; Fares et al., 2018). In
this paper we cast NR as a graph parsing prob-
lem. More specifically, we represent negation cues
and corresponding scopes as a bi-lexical graph and
learn to predict this graph from the tokens. Under
this representation, we may apply any dependency
graph parser to the task of negation resolution. The
specific parsing architecture that we use in this pa-
per extends that of Dozat and Manning (2018).

Contributions This work (a) rationally recon-
structs the previous state of the art in negation
resolution; (b) develops a novel approach to the
problem based on general graph parsing tech-
niques; (c) proposes and evaluates different ways
of integrating ‘external’ grammatical information;
(d) gauges the utility of morpho-syntactic pre-
processing at different levels of accuracy; (e) shifts
experimental focus (back) to a complete, end-to-
end perspective on the task; and (f) reflects on un-

certainty in judging experimental findings, includ-
ing thorough significance testing.

Paper Structure In the following Section 2, we
review selected related work on negation resolution.
Section 3 describes the specific NR task that we
address in this paper. In Section 4 we present our
new encoding of negations and our parsing model,
followed by the description of our experiments and
results in Section 5. We discuss these results in
Section 6 and summarize our findings in Section 7.

2 Related Work

While there exist a variety of datasets that anno-
tate negation (Jiménez-Zafra et al., 2020), the Bio-
Scope (Szarvas et al., 2008) and Conan Doyle
datasets (ConanDoyle-neg; Morante and Daele-
mans, 2012) are most commonly used for evalua-
tion. The latter was created for the shared task at
*SEM 2012 (Morante and Blanco, 2012), where
competing systems needed to predict both nega-
tion cues (linguistic expressions of negation) and
their corresponding scopes, i.e. the part of the utter-
ance being negated. Cues can be simple negation
markers (such as not or without), but may also con-
sist of multiple words (i.e. neither . . . nor), or be
mere affixes (i.e. infrequent or clueless). In contrast
to other datasets, ConanDoyle-neg also annotates
negated events that are part of the scopes.

The analysis of negation is divided into two re-
lated sub-tasks, cue detection and scope resolu-
tion. While cue detection is mostly dependent on
lexical or morphological features, relating cues to
scopes is a structured prediction problem and will
likely benefit from an analysis of morpho-syntac-
tic or surface-semantic properties. The UiO2 sys-
tem SHERLOCK (Lapponi et al., 2012), the win-
ner of the open track of the *SEM 2012 shared
task, uses morpho-syntactic parts of speech and
syntactic dependencies to classify tokens as either
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Figure 1: An example of how overlapping ConanDoyle-neg annotations are converted to flat sequences of labels
in SHERLOCK. In this example, an in-scope token is labelled with N, a cue with CUE, a negated event with E, a
negation stop with S, and an out-of-scope token with O. Illustration taken from Lapponi et al. (2017).

in-scope or out-of-scope using a conditional ran-
dom field (CRF). Another CRF further classifies
scope tokens as events, and a heuristic is applied to
distribute scope tokens to their respective cues. The
SHERLOCK system was subsequently used by Elm-
ing et al. (2013) to evaluate various dependency
conversions, and similarly served as one of three
reference ‘downstream’ applications in the 2017
Extrinsic Parser Evaluation initiative (EPE; Oepen
et al., 2017). The best results from this evaluation
define the state of the art in NR.

Deviating from the original *SEM 2012 setup,
Packard et al. (2014) simplified the task to only
evaluate the performance on finding scope tokens,
assuming gold-standard information about nega-
tion cues. Fancellu et al. (2016, 2018) contin-
ued this trend, additionally treating each negation
instance separately, and successfully used BiL-
STM (bidirectional Long Short-Term Memory re-
current neural networks; Hochreiter and Schmidhu-
ber, 1997). Recently, Sergeeva et al. (2019) used
pre-trained transformers (Vaswani et al., 2017),
namely BERT (Devlin et al., 2019), to further im-
prove performance, albeit on a derivative of the
original dataset (Liu et al., 2018). Using BERT
in a two-stage sequence-labelling approach on the
original ConanDoyle-neg corpus and other relevant
negation corpora, Khandelwal and Sawant (2020)
successfully improved previous results by a con-
siderable margin. The 2018 follow-up to the EPE
shared task (Fares et al., 2018) again used SHER-
LOCK to evaluate parsing performance, this time
restricting itself to participating systems in the co-
located 2018 CoNLL Shared Task on Universal
Dependency Parsing (Zeman et al., 2018).

3 Task and Data

We target the original *SEM 2012 shared task and
aim to predict both negation cues and their scopes.
We compare our approach with the baseline SHER-
LOCK system and the state-of-the-art systems iden-
tified through the EPE shared tasks.

3.1 Data

The negation data of *SEM 2012 consists of se-
lected Sherlock Holmes stories from the works of
Arthur Conan Doyle, and contains 3,644 sentences
in the training set, 787 sentences in the develop-
ment set, and 1,089 sentences in the evaluation set.
The corpus annotates a total of 1,420 instances of
negation. Several sentences contain two or more
instances of negation, while 4,294 sentences do not
contain any at all.

Negation instances are annotated as tri-partite
structures: Negation cues can be full tokens, multi-
word expressions, or affixal sub-tokens. For each
cue, its scope is defined as the possibly discon-
tinuous sequence of (sub-)tokens affected by the
negation. Additionally, a subset of in-scope tokens
can be marked as negated events (or states), pro-
vided that the sentence is factual and the events
in question did not take place. For sentences con-
taining multiple negation instances, their respective
scope and event spans may nest or overlap.

The systems submitted to the EPE 2017 and
2018 tasks work on ‘raw’, unsegmented text, and
apply different segmentation strategies. To evaluate
these systems in the context of negation resolution,
the gold-standard negation annotations have to be
retrofitted to each system’s output. Each system is
then tested against their own ‘personalized’ gold
standard. For more information on this projection
procedure, we refer to Lapponi et al. (2017).

3.2 Baseline System

As in the EPE shared tasks, our baseline is the
SHERLOCK system of Lapponi et al. (2012, 2017),
which approaches NR as a token-based sequence
labelling problem and uses a Conditional Random
Field (CRF) classifier (Lavergne et al., 2010). The
token-wise negation annotations contain multiple
layers of information. Tokens may or may not be
negation cues; they can be in or out of scope for
a specific cue; in-scope tokens may or may not be
negated events. Moreover, as already stated, mul-
tiple negation instances may be (partially or fully)
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Figure 2: An example of how ConanDoyle-neg annotations are converted to a dependency-style graph structure.
We omit the special root node r0 and mark roots instead with vertical arcs. The arcs are labelled for scope (S),
event (E), and multi-word-cue (M).

overlapping. Before presenting the CRF with the
annotations, SHERLOCK ‘flattens’ all negation in-
stances in a sentence, assigning a six-valued ex-
tended begin–inside–outside labelling scheme, as
indicated in Figure 1. After classification, hierar-
chical (overlapping) negation structures are recon-
structed using a set of post-processing heuristics.

The features of the classifier include different
combinations of token-level observations, such as
surface forms, part-of-speech tags, lemmas, and
dependency labels. In addition, SHERLOCK em-
ploys features encoding both token and dependency
distance to the nearest cue, together with the full
shortest dependency paths. In the EPE context,
gold-standard negation cues were provided as in-
put to SHERLOCK.1

4 Approach

In this section we define our graph-based encod-
ing of negation structures, and present our parsing
system and training procedure.

4.1 Negation Graphs

Instead of labelling each token sequentially with
cue, scope or event markers, we reformulate NR as
a parsing task, creating dependency-style negation
graphs with lexicalized nodes and bilexical arcs
i → j between a head i and a dependent j as
target structures. This formulation allows us to
more naturally encode the relationship between
tokens and their cue(s), while being able to easily
differentiate between regular scopes and events.

An example for a negation graph is shown in
Figure 2. We adopt a convention from dependency
parsing and visualize negation graphs with their
nodes laid out as the words of the respective sen-
tence, and their arcs drawn above the nodes. When

1One main focus of the EPE task was the downstream eval-
uation of different syntactic representations; but the subtask of
cue detection is relatively insensitive to grammatical structure
(Velldal et al., 2012).

transforming negation annotations into graphs, we
mark negation cues i by special arcs r0 → i ema-
nating from an artificial root node r0. Scope and
event tokens are marked by appropriately labelled
arcs from their respective cue(s). For multi-word
cues, only the first cue token is assigned as a root,
while the remaining tokens are connected to the
first with arcs labelled M. Since we do not split
tokens into subtokens, we mark the full token con-
taining an affixal cue as root. The negated part of
the token is (by convention) annotated as an event,
and thus marked by an appropriately labelled loop.

The resulting graphs thus contain unconnected
nodes, multiple structural roots (dependents of the
artificial root node r0), loops, and nodes with mul-
tiple incoming arcs. Sentences that do not contain
any negations are represented by empty graphs.

4.2 Neural Model
With the translation of the negation annotation into
graphs, we can use parsers that learn how to jointly
predict cues and their respective scopes, avoiding a
cascade of classifiers and heuristics as in the SHER-
LOCK system. Specifically, we use a reimplemen-
tation of the neural parser by Dozat and Manning
(2018), which in turn is based on the architecture
of Kiperwasser and Goldberg (2016). The parser
learns to weigh all possible arcs, and predicts the
output graph simply as the collection of all arcs
with positive weights. At the heart of this parser is
a bidirectional recurrent neural network with Long
Short-Term Memory cells (BiLSTM; Hochreiter
and Schmidhuber, 1997). Given an input sequence
~x = x1, . . . , xn and corresponding word embed-
dings ~wi, the network outputs a sequence of con-
text-dependent embeddings ~ci:

~c1, . . . ,~cn = BiLSTM(~w1, . . . , ~wn)

We augment the input word embeddings ~wi with
additional part-of-speech tag and lemma embed-
dings, embeddings created by a character-based
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LSTM, and 100-dimensional GloVe (Pennington
et al., 2014) embeddings. Based on the context-
dependent embeddings, two feedforward neural
networks (FNN) create specialized representations
of each word as a potential head and dependent:

~hi = FNNh(~ci) ~di = FNNd(~ci)

These new representations are then scored via a
bilinear model with weight tensor ~U :

score(~hi, ~dj) = ~h>i
~U ~dj

The inner dimension of the tensor ~U corresponds to
the number of negation graph labels plus a special
NONE label indicating the absence of an arc, and
thus predicts arcs and labels jointly.

4.3 Adding External Graph Features
Similarly to SHERLOCK, our neural model is able
to process external morpho-syntactic or surface-
semantic analyses of the input sentence in the form
of dependency graphs. Inspired by Kurtz et al.
(2019), we extend the contextualized embeddings
that are computed by our parser by information
derived from the external graph. For this we use
three approaches: (i) attaching the sum of heads;
(ii) scaled attention on the heads; and (iii) Graph
Convolutional Networks (Kipf and Welling, 2017).
In the following, we view the external graph in
terms of its n × n adjacency matrix ~A and the
contextualized embeddings as an n× d matrix ~C.

Sum of Heads The first method generalizes that
of Kurtz et al. (2019), who concatenate to each
contextualized embedding the contextualized em-
bedding of its head. This only works when the
graphs are trees, that is, when every node has one
incoming arc. When there is more than one incom-
ing arc, we instead sum up all respective contextual
embeddings. We express this as a matrix product

sumoh( ~A, ~C) = ~A~C .

Scaled Attention The second approach is in-
spired by Vaswani et al. (2017), who compute
the (scaled) dot product attention ~Q ~K> between
a matrix of queries ~Q and a matrix of keys ~K,
and normalize it by a row-wise softmax function,
which yields probabilistic weights on potential val-
ues. Noting the similarity between this normalized
attention matrix and a probabilistic adjacency ma-
trix, we replace ~Q ~K> with the matrix ~A:

scatt( ~A, ~C) = softmax

(
~A√
d

)
~C

Here, d is the size of the contextualized embed-
dings. In our case, where we merely want to ex-
tract features from a given graph, the matrix ~A is
known and sparse; but the same scaled attention
model could also be used in a multi-task setup to
jointly learn to parse syntactico-semantic graphs
and negations, in which case ~A would be learned
and dense.

Graph Convolutional Networks Graph Convo-
lutional Networks (GCNs; Kipf and Welling, 2017)
generalize convolutional networks to graph-struc-
tured data. While they were developed with graphs
much larger than our negation graphs in mind,
Marcheggiani and Titov (2017) showed their use-
fulness for semantic role labelling. With ~X0 = ~C
at the first level, we compute, for each level l > 0, a
combined representation of heads (H), dependents
(D), and the nodes themselves (S), weighted by
layer-specific weight matrices ~W l:

~X l = ReLU
((

~A ~W l
H + ~A> ~W l

D + ~W l
S

)
~X l−1

)
When applying the next layer l, each node is up-
dated with respect to its representation ~X l−1 from
the previous layer, thus indirectly taking into ac-
count grandparents and grandchildren. As this
method is the only one that not only uses a node’s
head but also its dependents, we expect it to benefit
the most from external graph features.

5 Experiments

In this section we describe our experiments and
review our baselines, methodology, and reported
results.

5.1 Training
Our parser is trained with a softmax cross-entropy
loss using the Adam optimizer (Kingma and Ba,
2015) and mini-batching. The training objective
for our negation parsing system does not directly
match the official evaluation measures, but is in-
stead based on labelled per-arc F1 scores (i.e. the
harmonic mean of precision and recall), which mea-
sures the amount of (in)correctly predicted arcs and
labels. For model selection, we train for 200 epochs
and choose the model instance that performs best
on the development set.

Our network sizes, dropout rates, and training
parameters are shown in Table 1. Despite hav-
ing less than half as many trainable parameters
than the model by Dozat and Manning (2018), our
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Network Embeddings 100
sizes Char LSTM 1 @ 100

Char embedding 80
BiLSTM 3 @ 200
Arc/Label FNN 200
GCN Levels 2

Dropout Embeddings 20%
rates Char LSTM feedforward 30%

Char LSTM recurrent 30%
Char Linear 30%
BiLSTM feedforward 40%
BiLSTM recurrent 20%
Arc FNN 20%
Arc scorer 20%
Label FNN 30%
Label scorer 30%

Training Epochs 200
parameters Mini-batch size 50

Adam β1 0
Adam β2 0.95
Learning rate 1 · 10−3

Gradient clipping 5
Interpolation constant 0.025
L2 regularization 3 · 10−9

Table 1: Network sizes, dropout rates, and training pa-
rameters of our neural models.

model is still prone to overfitting, partly due to the
rather small size of the training data. Hence we use
only slightly smaller dropout rates than Dozat and
Manning (2018). Following Gal and Ghahramani
(2016), we apply variational dropout sharing the
same dropout mask between all time steps in a se-
quence, and DropConnect (Wan et al., 2013; Merity
et al., 2017) on the hidden states of the BiLSTM.

5.2 Evaluation Measures
Standard evaluation measures for the original
*SEM 2012 task include scope tokens (ST), scope
match (SM), event tokens (ET), and full negation
(FN) F1 scores. ST and ET are token-level scores
for in-scope and negated event tokens, respectively,
where a true positive is a correctly retrieved to-
ken of the relevant class (Morante and Blanco,
2012). FN is the strictest of these measures (and
the primary evaluation metric for the NR part of the
EPE shared task), counting as true positives only
perfectly retrieved full scopes, including an exact
match on negated events.

5.3 Baselines
In order to have a fair comparison with the previous
results of the 2017 and 2018 EPE shared tasks, we
evaluate on the ConanDoyle-neg data as processed
by the best-performing systems from the two edi-
tions. The best-performing system on the nega-

tion task of the 2017 edition of EPE, STANFORD-
PARIS-06 (Schuster et al., 2017), uses enhanced
Universal Dependencies (v1) and data from the
Penn Treebank (Marcus et al., 1993), the Brown
Corpus (Francis and Kučera, 1985) and the GENIA
treebank (Tateisi et al., 2005). In contrast to this,
the best performing system for the 2018 edition,
TURKUNLP (Kanerva et al., 2018), only uses the
English training data provided by the co-located
UD parsing shared task. Both systems use the
parser and hyperparameters of Dozat et al. (2017),
the winning submission of the CoNLL 2017 Shared
Task on parsing Universal Dependencies.

In the overview paper for the 2018 EPE shared
task (Fares et al., 2018), the organizers report that
the version of the SHERLOCK negation system that
was used for EPE 2017 had a deficiency that could
leak gold-standard scope and event annotations into
system predictions, leading to potentially inflated
scores.2 The EPE 2018 version of SHERLOCK

corrected this problem and added automated hy-
perparameter tuning, which Fares et al. (2018) sug-
gest largely offset the negative effect on overall
scores from the bug fix, at least when averaging
over all submissions. They did not, however, re-
run the EPE 2017 evaluation with the corrected
and enhanced version of SHERLOCK, leaving sub-
stantive uncertainty about current state-of-the-art
results. We address this problem by applying the
improved (i.e. 2018) version of the baseline sys-
tem, including the exact same tuning procedure
described by Fares et al. (2018), to the originally
best-performing STANFORD-PARIS dependency
graphs. In this replication study, we observe a large
(5 points FN F1) drop in performance compared to
the originally reported results. While STANFORD-
PARIS still outperforms TURKUNLP, the margin
between the two systems is narrowed down to less
than 2 points FN F1.

5.4 Experiments
We report two sets of experiments. For all experi-
ments, we run each of our neural network models
10 times with different random seeds and choose
the best performing model with respect to perfor-
mance on the development set in terms of FN F1.

Gold-Standard Cues Even though our approach
can predict negation cues on its own, for our first
set of experiments, we follow the setup of the EPE
tasks and predict only scopes and events, adding

2This problem also applies to Elming et al. (2013).
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Data Model Extra Development Evaluation

SM ST ET FN SM ST ET FN

STANFORD-PARIS

SHERLOCK 80.43 88.82 71.64 61.60◦ 78.83 88.31 67.09 61.42

sumoh
w/o syntax 78.70 86.35 73.74 69.43 78.54 89.62 62.10 62.15
with syntax 74.62 86.86 72.3 64.85 75.19 88.74 63.87 57.68

scatt
w/o syntax 79.57 88.86 75.92 69.93 78.24 89.35 59.74 58.45
with syntax 76.92 87.68 70.94 68.94 77.34 88.96 63.32 62.15

gcn
w/o syntax 76.92 87.53 77.36 68.94 77.04 88.99 66.86 61.05
with syntax 80.00 88.84 76.85 70.89∗ 78.54 89.71 65.00 64.27

TURKUNLP

SHERLOCK 77.38 87.19 72.36 59.91◦ 80.48 89.36 65.36 59.74

sumoh
w/o syntax 79.14 87.36 78.26 71.85 78.43 89.10 61.63 60.48
with syntax 76.47 87.28 73.73 66.92 75.69 88.90 64.83 57.45

scatt
w/o syntax 80.85 88.5 75.24 70.89 79.32 89.56 65.61 60.48
with syntax 80.43 88.76 73.93 68.44∗ 78.13 89.74 66.46 61.58

gcn
w/o syntax 78.26 87.31 74.75 67.94 77.23 88.89 62.50 60.85
with syntax 78.26 88.76 76.70 69.43 76.00 88.98 64.17 58.99

Table 2: Results of our NR parser on the STANFORD-PARIS and TURKUNLP versions of the ConanDoyle-neg
development and evaluation sets when gold-standard cues are provided. The numerically best results are shown
in bold. We compare our gcn with syntax model for STANFORD-PARIS and our scatt with syntax model for
TURKUNLP with the respective SHERLOCK models using bootstrap significance testing. Only the ∗-marked
measures are significantly different from their ◦-marked counterparts.

Data Model Development Evaluation

CUE SM ST ET FN CUE SM ST ET FN

Read et al. (2012) – – – – – 91.31 70.39 82.37 67.02 57.63
Packard et al. (2014) – 77.80 82.40 – – 91.31 73.10 85.40 – –

STANFORD-PARIS

no syntax 91.76 73.76 86.57 71.96 65.69 90.98◦ 75.81 87.69 60.66 59.40
sumoh 91.62 74.10 85.63 69.43 63.39 91.05 68.64 86.66 59.74 52.58
scatt 91.51 76.16 84.72 70.00 66.42 90.98 72.25 86.09 61.21 57.64
gcn 93.26 73.11 84.22 72.40 65.19 92.68∗ 73.83 86.89 63.69 58.07

TURKUNLP

no syntax 92.98 76.22∗ 85.61 71.11 66.42 90.71 72.09 86.92 59.88 55.18
sumoh 92.49 73.45 85.03 75.35 62.31 90.66 71.73 87.91 60.06 53.19
scatt 92.54 76.60 85.34 71.03 64.15 90.13 71.85 87.06 57.23 52.08
gcn 91.02 72.46◦ 84.90 73.49 63.15 90.98 71.43 86.57 63.40 54.54

Table 3: Results of our NR parser on the STANFORD-PARIS and TURKUNLP versions of the ConanDoyle-neg
development and evaluation sets when cues are predicted. The numerically best results are shown in bold. We
test for significant differences between our gcn with syntax models for STANFORD-PARIS and TURKUNLP and
respective models using no additional inputs. Only the ∗-marked measures are significantly different from their
◦-marked counterparts.
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Figure 3: Boxplots visualizing the variance of perfor-
mance on the evaluation set for the systems using gold
cues. We compare the different methods using and not
using additional syntactic information.
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Figure 4: Boxplots visualizing the variance of perfor-
mance on the evaluation set for the systems additionally
predicting cues. We compare the four models using no
syntax and using syntax with each of the three methods.

gold-standard cues as external graph features. Over-
lapping the gold-cue inputs with the additional
graph inputs is not optimal but avoids adding more
complexity to the model. Similar to SHERLOCK,
we handle affixal cues in post-processing, splitting
and classifying five known prefixes and one suffix
as cues, and the remainder as the negated event.
The results for these experiments are reported in
Table 2. On the STANFORD-PARIS version of the
evaluation data, our model with external syntactic
features via GCNs (gcn with syntax) outperforms
the SHERLOCK baseline by 2.85 FN F1 points;
on the TURKUNLP version, our best model uses
syntactic features via scaled attention (scatt with
syntax), beating the baseline by 1.84 FN F1 points.

Predicted Cues For the second set of experi-
ments, we also predict negation cues, and addi-
tionally report the F1 for cues (CUE). In order to
put these results into perspective, we contrast them

with the winning system of the *SEM 2012 shared
task by Read et al. (2012), and also with the MRS
Crawler of Packard et al. (2014). The results for
these experiments are reported in Table 3. Our
best models for both versions of the evaluation data
are the ones that do not use external syntactic fea-
tures at all (no syntax), with FN F1 scores of 59.40
(STANFORD-PARIS) and 55.18 (TURKUNLP), re-
spectively. The former result is 1.77 points higher
than the result reported by Read et al. (2012).

Significance Testing Given the rather small size
of the dataset, we follow the advice of Dror
et al. (2018) and test for signficance using the
bootstrap method (Berg-Kirkpatrick et al., 2012).
We compare our best-performing system for both
STANFORD-PARIS and TURKUNLP with the re-
spective SHERLOCK sytems, resampling the test
sets 106 times and setting our threshold to 5%, fol-
lowing standard methodology. For the second set
of experiments, where we additionally predict nega-
tion cues, we compare our best system to our sec-
ond-best system. We furthermore visualize the
variance of performance across all 10 systems on
the evaluation sets in Figures 3 and 4.

6 Discussion

In this section we discuss the results of our experi-
ments and place them in the broader context of the
research literature on negation resolution.

6.1 Gold Cues

We first discuss our results when using gold-stan-
dard cues, as in the EPE tasks.

Effect of Pre-processing Similar to the SHER-
LOCK baseline system, our system also performs
better with STANFORD-PARIS rather than with
TURKUNLP processed data (64.27 vs. 61.58
FN F1), even when no syntactic inputs are used
(62.15 vs. 60.48 FN F1). The tokenization, part-
of-speech tagging and lemmatization done by
STANFORD-PARIS thus seem to better fit the NR
task, and have likely also benefitted from the larger
and more diverse data used during training.

Handling Additional Inputs The most efficient
method to handle gold cues at input time, it turns
out, is our simplest method, concatenating each
contextual token with the sum of its heads. A likely
explanation for this is that this method is able to
directly read off the gold-cue information. This
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method however is clearly not able to handle ad-
ditional syntactic inputs (losing 4.47 FN F1 points
for STANFORD-PARIS), motivating the use of ei-
ther of the more advanced techniques. Combining
STANFORD-PARIS syntactic trees with the GCN
clearly performs best here, but does not point to-
wards a general trend; the plots in Figure 3 rather
show that most of the systems perform similarly,
with the exception of the sum-of-heads method
when using additional syntactic inputs.

6.2 Predicted Cues
When we task our system to also predict cues, as
in *SEM 2012, our best system outperforms Read
et al. (2012) and Packard et al. (2014) on most mea-
sures. Our neural graph parsing approch is clearly
better at identifying the relevant scope tokens (ST),
due to its pairwise classification approach, respec-
tively gaining 5.32 and 2.29 points in FN F1. This
generally also results in better performance for
matching complete scopes (SM). The system does
however struggle with telling events and regular
scopes apart, and is clearly outperformed by Read
et al. (2012) on that measure (6.36 points ET F1

for STANFORD-PARIS no syntax). Our system dif-
ferentiates between scopes and events using arc
labels only, and might not have seen enough data to
sufficiently train the labelling part of the network.

One slightly surprising result is that, even though
our best systems for both the STANFORD-PARIS

and the TURKUNLP version of the evaluation data
use syntactic inputs when gold-standard cues were
provided, our best systems for also predicting cues
do not rely on syntactic inputs at all.

6.3 Significant Learning
While the boxplots in Figures 3 and 4 show the
same general trends as our particular systems in
Tables 2 and 3, they also illustrate the considerable
variance of performance between runs. Choosing
the final system with regards to performance on the
development sets may lead to state-of-the-art per-
formance on the evaluation sets—this is the case
for our best performing system using gold cues and
additional syntax processed by a GCN, which per-
forms more than two points of FN F1 better than the
average system of its kind. However, we also see
examples to the opposite. Our system using gold
cues with scaled attention on STANFORD-PARIS

for example, performs more than two points FN F1

worse than the average on the evaluation set, even
though it performs three points better on the devel-

opment set. Thus, at least in this study, good perfor-
mance on the development sets is not necessarily
and indication for good performance on the final
evaluation set. This notion is further reinforced by
the lack of significant difference in performance
of our best systems, compared to SHERLOCK. For
the STANFORD-PARIS version of the data, even
nearly three points of FN F1 (64.27 vs. 61.42) do
not constitue a significant difference. The difficulty
to confidently analyse the results is also illustrated
by the somewhat erratic performance differences
across different settings and runs.

The NLP community has recently realized the
importance of proper testing in favour of simple
comparisons of benchmark scores (Gorman and
Bedrick, 2019). This becomes even more pro-
nounced when working with deep learning architec-
tures, where model selection is more complicated
(Moss et al., 2019) due to sensitivity to different
random seeds. When working with smaller datasets
such as ConanDoyle-neg, it is particularly impor-
tant to thoroughly analyse the results before claim-
ing that a new system improves the state of the art
(Dror et al., 2017).

7 Conclusion

We have introduced a novel approach to negation
resolution that remodels negation annotations into
dependency-style graph structures. These negation
graphs directly encode the pairwise cue–scope re-
lationships, and thus enable our neural network to
more easily learn them. We extended an already
powerful neural graph-parsing approach further to
additionally use arbitrary dependency graph struc-
tures as inputs. To validate our method, we revis-
ited the EPE 2017 and 2018 shared tasks and the
full *SEM 2012 shared task on negation resolution,
clearly outperforming each previously best system,
albeit none of our results is statistically significant.

We believe that our approach can be used to re-
structure other tasks as dependency-style graphs in
similar fashion, and thus reuse existing systems as
general purpose tools. Recasting the negation reso-
lution task as a graph-parsing problem allows us to
straightforwardly use a variety of such tools. With
most of these now using neural networks, we can
extend them to employ massive pre-trained models
such as BERT (Devlin et al., 2019) or ELMo (Pe-
ters et al., 2018). This would allow us to leverage
their general power into more specific tasks that
have only limited data available.
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