
Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 221–226
Virtual Meeting, July 9, 2020. c©2020 Association for Computational Linguistics

221

How much of enhanced UD is contained in UD?

Adam Ek Jean Philippe Bernardy
Centre for Linguistic Theory and Studies in Probability

Department of Philosophy, Linguistics and Theory of Science
University of Gothenburg

{adam.ek, jean-philippe.bernardy}@gu.se

Abstract

In this paper, we present the submission of
team CLASP to the IWPT 2020 Shared Task
on parsing enhanced universal dependencies
(Bouma et al., 2020). We develop a tree-to-
graph transformation algorithm based on de-
pendency patterns. This algorithm can trans-
form gold UD trees to EUD graphs with an
ELAS score of 81.55 and a EULAS score
of 96.70. These results show that much
of the information needed to construct EUD
graphs from UD trees are present in the UD
trees. Coupled with a standard UD parser,
the method applies to the official test data and
yields and ELAS score of 67.85 and a EULAS
score is 80.18.

1 Introduction

Universal Dependencies (UD) is a syntactic an-
notation schema focusing on representing shallow
syntactic dependencies between words. One of the
goals of UD has been to use it in semantic down-
stream tasks, such as event extraction (Fares et al.,
2018; McClosky et al., 2011) or negation resolu-
tion (Fares et al., 2018) among others. In general,
UD can be used as a shallow representation of ar-
gument structures, which are useful in a wide array
of semantic tasks.

However, the UD format restricts the shape of
dependencies to a tree structure. This can be lim-
iting because semantics dependencies can in prin-
ciple exhibit any graph structure. To remedy this
situation, the Enhanced Universal Dependencies
(EUD) schema was proposed (Schuster and Man-
ning, 2016). The goal of the schema is to make
certain implicit dependencies explicit, such as con-
joined subjects and objects. The enhanced depen-
dencies include additional edges between words, as
well as augmented labels. For example in enhanced
dependencies, the conjunction relation also include

what type of conjunction is used, e.g. and, or, but
and so on.

In this paper, we present our submission for the
IWPT 2020 Shared Task on parsing enhanced uni-
versal dependencies from annotated UD treebanks.
The task target treebanks from 17 different lan-
guages where the majority of the languages are
Indo-European with five notable exceptions, Tamil
(Dravidian), Arabic (Semitic), Finnish and Esto-
nian (Uralic). The goal of the task to produce valid
EUD graphs, given raw text as input.

In this context, this paper proposes to test the
following hypothesis:

(H1) Most of the information provided by the EUD
schema is contained in the basic UD schema.

That is, if (H1) holds, then it is possible to map,
algorithmically, UD trees to EUD graphs.

Thus, we set out to implement such an algorithm.
Concretely, we construct a tree-to-graph transfor-
mation, which recognizes patterns in the (basic)
universal dependencies to derive enhanced depen-
dencies.

This experiment provides a lower bound on the
amount of EUD information which can be extracted
from raw UD information, for representative inputs.
In other words, we measure how much of EUD
is contained in UD. This becomes a lower bound,
because a better algorithm can always be conceived,
and do better.

Conversely, additionally, by running our algo-
rithm after a state-of-the-art basic UD parser, we
will provide a baseline for the EUD reconstruction
task.

The enhanced dependency parsing is evaluated
using two metrics, ELAS and EULAS. ELAS cal-
culate the F1-score over both enhanced arcs and
labels (for example: “and” in the label “conj:and”).
EULAS on the other hand disregard label enhance-
ments and calculate the F1-score over the enhanced



222

edges. To illustrate, given the gold label “conj:and”
and a system prediction of “conj:or” (or “conj”,
i.e. if nothing is appended to the label), ELAS will
count this as an error while EULAS won’t.

Our results show that (H1) is vindicated: we
achieve an ELAS score of 81.55 and EULAS of
96.70 on human-annotated dependency trees. As
a baseline for the shared task, our method is also
effective, achieving an ELAS score of 67.85 and
a EULAS score of 80.18. (Thus losing about 15
percentage points when going through a machine-
generation phase to obtain UD trees.)

2 Method

In essence, our method is to apply, as far as possi-
ble, the tree-to-graph recipes provided by Schuster
and Manning (2016) to transform basic UD trees
into EUD graphs.

2.1 Procedure

To obtain basic UD trees for our system we use the
universal dependency treebanks provided by the
shared task organizers. From these we apply our
method on basic UD trees from two sources:

• for each language in the test data we use the
Stanford Biaffine Dependency Parser (Dozat
and Manning, 2016) provided in Stanza (Qi
et al., 2020). We used the stanza model trained
on the largest treebank of the language.

• the development and gold trees in the tree-
banks, from which we have removed the en-
hanced dependencies. Indeed, the gold data
comes with plain UD trees as well.

Thus when using the basic UD trees from the
Stanford parser we obtain a baseline for the task,
and when using the development/gold trees the
lower bound on EUD information contained in UD.

Then, we apply a tree-matching procedure
against the non-enhanced UD trees. The procedure
locally inserts enhanced edges or deletes unwanted
edges. Additionally (as a special case) the patterns
also re-label some edges.

Our system contains several patterns, which are
described in the next subsection. We first apply
the patterns that modify the edge labels with case
information. Then we apply all the other patterns,
which add (and sometimes remove) edges from the
basic tree. Here, we only apply the patterns on the
(relabeled) input trees and not on the graph of EUD

made by any other pattern. In this sense, one can
say that patterns are applied in parallel. Once this is
done, we convert the result back to the (enhanced)
CONLLU format.

2.2 Patterns
Perhaps surprisingly, the patterns that we need to
recognize are simple, involving only three nodes.
The two patterns to recognize are shown in Fig. 5.
Essentially, we need to match on three connected
nodes. We need to identify two types of patterns.
First, two arcs forming a two-step path (Figs. 5a,
5d and 5e). We refer to this style pattern as “Type
1”. Second, with two arcs pointing away from a
central node (Figs. 5b and 5c), referred to as “Type
2”. In both cases, we have additional constraints
on the (edge) labels. Together, the constraints on
graph topology and labels form patterns that we
can recognize and transform. The exhaustive list
of patterns and transformations follows.

1. Type 1 pattern, with a relation label, which
can be any of “nsubj”,“obj”, “amod”, “ad-
vcl”,“obl”, “mark”, “nmod”, followed by a
“conj” label. (Fig. 5a.) In this case we add
an edge with the relation label to the other
conjunct. A full dependency tree containing
this pattern can be found in Fig. 1.

2. Type 2 pattern with a a relation label being
either “nsubj” or “aux”, and a “conj” label
(Fig. 5b). We add a relation label to the other
conjunct, but only if the conjunct is not itself
“nsubj”. Indeed, if it were, then we are con-
joining two full sentences and then there is
no need for an enhanced dependency. A full
dependency tree containing this pattern can
be found in Fig. 2.

3. Type 2 pattern with “xcomp” and “nsubj”.
Here we add an “nsubj:xsubj” edge (Fig. 5c).

4. Type 1 pattern, with “acl:relcl” followed
by a relation label which can be either
“nsubj”,“obj”,“obl”, “advmod” (Fig. 5e). The
target node should also be a relative pronoun,
ie. it POS is “PRON” and its XPOS either
“WP” (who, whom) or “WDT” (that, which).
Indeed, this pattern is also found with other
type of pronouns, but then it does not corre-
spond to a relative clause. In this case we add
a “ref” edge to the pronoun and a (reverse) re-
lation edge between the first and second node.



223

The original relation edge is deleted. A full
dependency tree containing this pattern can
be seen in Fig. 4.

5. Type 1 pattern, with a conjunction followed
by a case marking (Fig. 5d). Exhaustively,
the type of labels are “case” followed by “obl”
or “nmod”; “cc” followed by “conj”, “mark”
followed by “advcl” or “acl”. In this case we
enhance the label with the lemma of the target
node. This pattern can be seen in Fig. 7.

Paul and Mary eat .

conj:and

cc

nsubj
root

punct

Figure 1: Example sentence for pattern shown in
Fig. 5a

She was reading or watching a movie

nsubj

nsubj

obj

root

aux

aux

conj:or

cc det

Figure 2: Example sentence for pattern shown in
Fig. 5b

John came from Paris

nsubj

root

obl:from

case

Figure 3: Example sentence for pattern shown in
Fig. 5d

2.2.1 Other patterns
For patterns Items 1 and 2, the direction of conjunc-
tion dependency could conceptually be inverted,
yielding two other patterns (shown in Figs. 6a
and 6b). However, we have not implemented these
patterns in our system. For the first pattern, the
reason is simple: it is not representable as a UD

Great Service and hairstyles that last

amod

root

cc

conj:and nsubj

ref

acl:relcl

Figure 4: Example sentence for pattern shown in
Fig. 5e

Eat Paul Mary
nsubj conj

nsubj

(a) Relation pointing to the conjuncts

was read watch
aux conj

aux
(b) Relation pointing away from the conjuncts.

house look new
nsubj xcomp

xsubj:nsubj

(c) Xcomp special case

from Paris comecase obl
obl:from

(d) Label taken from other word (lemma)

boy live who
acl:recl

nsubj

nsubj

ref
(e) Relative clause

Figure 5: Implemented transformation patterns. Added
elements are shown in bold.

tree (a node cannot have two heads). For the sec-
ond pattern, applying it results in a small loss in
performance across the board, and thus it is best
left inactive. Aditionally, we have not implemented
any pattern for dealing with ellipsis in the current
approach. We plan on addressing ellipsis in future
work.

3 Results

We present our official results for the shared task in
Table 1. The scores are obtained by applying our
tree-to-graph transformation to basic dependency
trees generated by the Stanford Dependency Parser.

The scoring for unlabeled edges is typically



224

Eat Paul Mary
nsubj conj

nsubj

(a) Source pattern not representable in UD format

was read watch
aux conj

aux
(b) Transformation pattern leading to a loss in performance

Figure 6: Transformation patterns not implemented.

LANG ELAS EULAS
ar 51.26 75.62
bg 84.90 87.72
cs 67.13 83.44
en 82.87 83.86
et 60.44 79.43
fi 65.96 83.30
fr 72.76 84.39
it 87.14 88.74
lv 66.01 80.60
nl 78.93 80.20
lt 52.56 67.37
pl 71.22 86.71
ru 70.37 88.02
sk 65.16 83.31
sv 71.35 73.84
ta 42.15 55.32
uk 63.24 81.24
Avg. 67.85 80.18
Std. 11.69 8.19

Table 1: Coarse ELAS and EULAS on the languages
in the shared task test data.

around 80%. The biggest outlier being Tamil, at
55.32%. The scoring for labeled edges is around
12 points lower, with more variation in scores.

As explained in the introduction, to isolate the ac-
curacy of the tree-to-graph transformation from the
performance of the underlying UD parser, we also
apply it to the human-annotated dependency trees.
We test our approach on both the development and
test data. The results from this experiment are
shown in Table 2.

The scoring for enhanced edges and unenhanced
labels (EULAS) is typically above 95%, with little
variation. Tamil is no longer an outlier. The scoring
for enhanced edges and labels can be classified into
two categories depending on the language. In one

DEV TEST
LANG ELAS EULAS ELAS EULAS
ar 66.44 96.38 64.14 96.55
bg 94.32 96.95 94.55 97.01
cs 75.65 94.63 76.52 95.12
en 97.57 98.53 97.64 98.65
et 73.35 93.96 72.30 95.53
fi 74.22 95.29 74.40 95.12
fr 83.59 97.93 88.15 99.05
it 96.29 97.61 96.15 97.77
lt 77.50 93.98 72.17 95.49
lv 69.21 96.10 77.47 93.91
nl 96.71 97.55 96.27 97.57
pl 87.03 97.33 80.95 96.49
ru 77.22 96.31 76.72 96.59
sk 72.24 95.82 75.37 96.42
sv 93.85 96.66 94.19 96.67
ta 72.49 99.58 75.04 99.48
uk 75.95 96.04 74.42 96.49
Avg. 82.97 96.53 81.55 96.70
Std. 10.42 1.52 10.24 1.43

Table 2: Coarse ELAS and EULAS on the gold trees in
the development and test data.

category the ELAS is nearly as good as the EULAS
case (bg, en, it, nl, sv). Another category scores
about 15 points lower (ar, cs, et, fi, lt, lv, ru, sk,
ta, uk). French and Polish scores are somewhere
in-between.

Comparing Table 1 and Table 2 suggests that the
performance of the full pipeline is highly depen-
dent on the underlying parser. In addition to the
ELAS and EULAS score being higher, the stan-
dard deviation is also much higher for EULAS,
8.19 points in the test versus 1.43 points on the
gold data.

To get a further sense on how much our algo-
rithm is sensitive to the quality of the input raw
UD trees, we can compare the score that it obtains
when fed the gold (raw) UD trees and the trees
provided by Stanza for the same text. The results
are shown in Table 3.

Official submission Stanza trees Gold trees
ELAS EULAS ELAS EULAS ELAS EULAS

Avg. 67.85 80.18 66.54 79.91 81.55 96.70

Table 3: Coarse ELAS and EULAS on the test data us-
ing our tree-to-graph algorithm on Stanza trees, Stanza
trees only and with gold trees.

We find that using our algorithm with stanza
trees only marginally increase the performance.
Given that we know that our trees are effective
for gold trees, this corroborates the suspicion that
while having a state-of-the-art performance in de-
pendency parsing, Stanza produces trees that have
a significant number of errors for the paths rele-



225

One answer is that the Pentagon prevented the State Department from running the CPA

nummod nsubj

mark

det nsubj

ccomp

det

compound

obj

mark

advcl:from

det

obj

Figure 7: Example sentence for pattern shown in Fig. 5d

vant to EUD. If the UD trees were of good quality
for the parts that are relevant for EUD, we would
see a larger increase in performance based on the
potential of our algorithm. To some extent, this
indicates that when developing a EUD parser, the
best approach may be to parse UD and EUD in
parallel, and not sequentially. This modus operandi
may help the parser to produce fewer UD errors for
the parts relevant to EUD.

4 Discussion/Analysis

We can draw the following conclusions from our
experiments:

• Our pattern recognizer fails to annotate many
enhanced labels for languages where case is
expressed by morphological features.

This is not surprising: we simply did not im-
plement any label rewriting based on such
features. (Indeed, the pattern Fig. 5d recog-
nizes case based on a preposition rather than a
morphological feature.) This is a shortcoming
which we plan to eliminate in future work.

This shortcoming explains much of the dis-
crepancy between the EULAS and the ELAS
scores.

• The performance of the system is heavily de-
pendent on the quality of the UD parser which
is used. In other words, our experiments show
that, even when using good UD parser, much
of the errors are imputable to the UD parser
rather than to the algorithmic rewriting step.

• Our tree-to-graph transformation works well
on the gold trees, missing less than 4% of
the edges, when given gold UD trees as input.
Therefore, Broadly speaking, (H1) is vindi-
cated: UD contains most of the information
which is necessary to reconstruct EUD graphs.

We note however that (not enhanced) UD is in-
capable of expressing the difference between
the structure of the following two sentences:

(1) She was reading or watching a movie.
(Fig. 2)

(2) She was cleaning and eating fruits.
(Fig. 8)

In (1) “a movie” is an object of a verb (“watch-
ing”) which is conjoined with another verb
(“reading”), but it applies only to a single
verb. In (2), we also have a conjunction be-
tween verbs, but “fruits” is the object of both
verbs. Yet, the UD structure is the same for
both sentences. And thus, our algorithm can-
not recognize the difference between the two
trees. One solution is to use EUD, but another
solution would be to use parse trees, which
can make the grouping explicit.

Figuring out which case applies depends on
the semantics and pragmatics.

She was cleaning and eating fruit

nsubj

nsubj

root

aux cc

conj:and

obj

obj

Figure 8: “She was cleaning and eating fruit”

Even though we have shown that UD contains
most information to recover EUD, EUD annota-
tions do have some additional value in certain cases.
However, because they have a more rich structure
(graph vs. tree), it may be that EUD is more suited
as inputs to machine-learning systems. Our sys-
tems can help to test this hypothesis by inserting



226

it (or not) in the training pipeline of a state-of-the-
art EUD parser. If the EUD parser performs just
as well with reconstructed EUD data compared to
human-constructed EUD data, then we would know
that manual EUD annotations are not necessary. It
is likely that we would observe a middle ground
situation, where reconstructed EUD data helps, but
does not supplant human-constructed EUD. In such
a situation, our system can be useful as a bootstrap-
ping tool. (We note however that excellent EUD
parsers are not available just yet; in fact they are
the purpose of the IWPT task which our system is
entering.)

In addition to bootstrapping, a run of our system
can provide a baseline for such systems. Indeed,
while performing well on gold data, our approach
is transparent (only 5 patterns are applied) and effi-
cient, requiring a few seconds to generate enhanced
graphs from a treebank.

Future work In addition to the shortcoming
about case labeling mentioned above, our system
struggles with labels that include multi-word to-
kens. For example, a valid adverbial clause mod-
ifier is so that. Currently our system is not able
to identify these. To incorporate this our model
would either need to utilize statistical or deep learn-
ing methods, or look for children with the “fixed”
relation.

Another case that our system is not capable of
handling is ellipsis. The problem of ellipsis is dif-
ficult, especially in a tree-rewriting approach. We
decided not to tackle this problem and instead plan
on using a deep learning parser for this task in
future work.

Yet our main venue for future work is combining
our simple, yet effective method, with deep learn-
ing for the problematic cases that are out of reach.
These cases include ellipsis, multi-word tokens,
objects of conjoined verbs.

Acknowledgments

We would like to thank the reviewers for their help-
ful comments.The research reported in this paper
was supportedby a grant from the Swedish Re-
search Council (VR project 2014-39) for the estab-
lishment of the Centre for Linguistic Theory and
Studies in Probability (CLASP) at the University
of Gothenburg.

References
Gosse Bouma, Djamé Seddah, and Daniel Zeman.

2020. Overview of the IWPT 2020 Shared Task
on Parsing into Enhanced Universal Dependencies.
In Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Depen-
dencies, Seattle, US. Association for Computational
Linguistics.

Timothy Dozat and Christopher D Manning. 2016.
Deep biaffine attention for neural dependency pars-
ing. arXiv preprint arXiv:1611.01734.

Murhaf Fares, Stephan Oepen, Lilja Øvrelid, Jari
Björne, and Richard Johansson. 2018. The 2018
shared task on extrinsic parser evaluation: on the
downstream utility of english universal dependency
parsers. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 22–33.

David McClosky, Mihai Surdeanu, and Christopher D
Manning. 2011. Event extraction as dependency
parsing. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies-Volume 1, pages
1626–1635. Association for Computational Linguis-
tics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D Manning. 2020. Stanza:
A python natural language processing toolkit
for many human languages. arXiv preprint
arXiv:2003.07082.

Sebastian Schuster and Christopher D Manning. 2016.
Enhanced english universal dependencies: An im-
proved representation for natural language under-
standing tasks. In Proceedings of the Tenth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’16), pages 2371–2378.


