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Abstract

The carbon footprint of natural language pro-
cessing research has been increasing in recent
years due to its reliance on large and ineffi-
cient neural network implementations. Dis-
tillation is a network compression technique
which attempts to impart knowledge from a
large model to a smaller one. We use teacher-
student distillation to improve the efficiency of
the Biaffine dependency parser which obtains
state-of-the-art performance with respect to
accuracy and parsing speed (Dozat and Man-
ning, 2017). When distilling to 20% of the
original model’s trainable parameters, we only
observe an average decrease of ∼1 point for
both UAS and LAS across a number of diverse
Universal Dependency treebanks while being
2.30x (1.19x) faster than the baseline model
on CPU (GPU) at inference time. We also ob-
serve a small increase in performance when
compressing to 80% for some treebanks. Fi-
nally, through distillation we attain a parser
which is not only faster but also more accu-
rate than the fastest modern parser on the Penn
Treebank.

1 Introduction

Ethical NLP research has recently gained attention
(Kurita et al., 2019; Sun et al., 2019). For exam-
ple, the environmental cost of AI research has be-
come a focus of the community, especially with re-
gards to the development of deep neural networks
(Schwartz et al., 2019; Strubell et al., 2019). Be-
yond developing systems to be greener, increasing
the efficiency of models makes them more cost-
effective, which is a compelling argument even for
people who might downplay the extent of anthro-
pogenic climate change.

In conjunction with this push for greener AI,
NLP practitioners have turned to the problem of
developing models that are not only accurate but
also efficient, so as to make them more readily

deployable across different machines with vary-
ing computational capabilities (Strzyz et al., 2019;
Clark et al., 2019; Vilares et al., 2019; Junczys-
Dowmunt et al., 2018). This is in contrast with the
recently popular principle of make it bigger, make
it better (Devlin et al., 2019; Radford et al., 2019).

Here we explore teacher-student distillation as
a means of increasing the efficiency of neural net-
work systems used to undertake a core task in
NLP, dependency parsing. To do so, we take
a state-of-the-art Biaffine parser from Dozat and
Manning (2017). The Biaffine parser is not only
one of the most accurate parsers, it is the fastest
implementation by almost an order of magnitude
among state-of-the-art performing parsers.

Contribution We utilise teacher-student distil-
lation to compress Biaffine parsers trained on a di-
verse subset of Universal Dependency (UD) tree-
banks. We find that distillation maintains accuracy
performance close to that of the full model and ob-
tains far better accuracy than simply implementing
equivalent model size reductions by changing the
parser’s network size and training normally. Fur-
thermore, we can compress a parser to 20% of
its trainable parameters with minimal loss in ac-
curacy and with a speed 2.30x (1.19x) faster than
that of the original model on CPU (GPU).

2 Dependency parsing

Dependency parsing is a core NLP task where the
syntactic relations of words in a sentence are en-
coded as a well-formed tree with each word at-
tached to a head via a labelled arc. Figure 1 shows
an example of such a tree. The syntactic informa-
tion attained from parsers has been shown to bene-
fit a number of other NLP tasks such as relation ex-
traction (Zhang et al., 2018), machine translation
(Chen et al., 2018), and sentiment analysis (Poria
et al., 2014; Vilares et al., 2017).
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Figure 1: Dependency tree example.

2.1 Current parser performance
Table 1 shows performance details of current state-
of-the-art dependency parsers on the English Penn
Treebank (PTB) with predicted POS tags from the
Stanford POS tagger (Marcus and Marcinkiewicz,
1993; Toutanova et al., 2003). The Biaffine parser
of Dozat and Manning (2017) offers the best trade-
off between accuracy and parsing speed with the
HPSG parser of Zhou and Zhao (2019) achiev-
ing the absolute best reported accuracy but with
a reported parsing speed of roughly one third of
the Biaffine’s parsing speed. It is important to
note that direct comparisons between systems with
respect to parsing speed are wrought with com-
pounding variables, e.g. different GPUs or CPUs
used, different number of CPU cores, different
batch sizes, and often hardware is not even re-
ported.

We therefore run a subset of parsers locally to
achieve speed measurements in a controlled envi-
ronment, also shown in Table 1: we compare a Py-
Torch implentation of the Biaffine parser (which
runs more than twice as fast as the reported speed
of the original implementation); the UUParser
from Smith et al. (2018a) which is one of the lead-
ing parsers for Universal Dependency (UD) pars-
ing; a sequence-labelling dependency parser from
Strzyz et al. (2019) which has the fastest reported
parsing speed amongst modern parsers; and also
distilled Biaffine parsers from our implementation
described below. All speeds measured here are
with the system run with a single CPU core for
both GPU and CPU runs.1

Biaffine parser is a graph-based parser ex-
tended from the graph-based BIST parser (Kiper-
wasser and Goldberg, 2016) to use a biaffine at-
tention mechanism which pairs the prediction of
edges with the prediction of labels. This results in

1This is for ease of comparability. Parsing can trivially
be parallelised by allocating sentences to different cores, so
speed per core is an informative metric to compare parsers
(Hall et al., 2014).

a fast and accurate parser, as described above, and
is used as the parser architecture for our experi-
ments. More details of the system can be found in
Dozat and Manning (2017).

3 Network compression

Model compression has been under considera-
tion for almost as long as neural networks have
been utilised, e.g. LeCun et al. (1990) intro-
duced a pruning technique which removed weights
based on a locally predicted contribution from
each weight so as to minimise the perturbation to
the error function. More recently, Han et al. (2015)
introduced a means of pruning a network up to
40 times smaller with minimal affect on perfor-
mance. Hagiwara (1994) and Wan et al. (2009)
utilised magnitude-based pruning to increase net-
work generalisation. More specific to NLP, See
et al. (2016) used absolute-magnitude pruning to
compress neural machine translation systems by
40% with minimal loss in performance. How-
ever, pruning networks leaves them in an irreg-
ularly sparse state which cannot be trivially re-
cast into less sparse architectures. Sparse tensors
could be used for network layers to obtain real-life
decreases in computational complexity, however,
current deep learning libraries lack this feature.
Anwar et al. (2017) introduced structured pruning
to account for this, but this kernel-based technique
is restricted to convolutional networks. More re-
cently Voita et al. (2019) pruned the heads of the
attention mechanism in their neural machine trans-
lation system and found that the remaining heads
were linguistically salient with respect to syntax,
suggesting that pruning could also be used to un-
dertake more interesting analyses beyond merely
compressing models and helping generalisation.

Ba and Caruana (2014) and Hinton et al. (2015)
developed distillation as a means of network com-
pression from the work of Bucilă et al. (2006),
who compressed a large ensemble of networks
into one smaller network. Similar and more re-
cent work, used this method of compressing many
models into one to achieve state-of-the-art pars-
ing performance (Kuncoro et al., 2016). Teacher-
student distillation is the process of taking a large
network, the teacher, and transferring its knowl-
edge to a smaller network, the student. Teacher-
student distillation has successfully been exploited
in NLP for machine translation, language mod-
elling, and speech recognition (Kim and Rush,
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speed (sent/s)
GPU CPU UAS LAS

Pointer-TD (Ma et al., 2018) - 10.2† 95.87† 94.19†

Pointer-LR (Fernández-González and Gómez-Rodrı́guez, 2019) - 23.1† 96.04† 94.43†

HPSG (Zhou and Zhao, 2019) 158.7† - 96.09† 94.68†

BIST - Transition (Kiperwasser and Goldberg, 2016) - 76±1‡ 93.9† 91.9†

BIST - Graph (Kiperwasser and Goldberg, 2016) - 80±0‡ 93.1† 91.0†

Biaffine (Dozat and Manning, 2017) 411† - 95.74† 94.08†

CM (Chen and Manning, 2014) - 654† 91.80† 89.60†

SeqLab (Strzyz et al., 2019) 648±20‡ 101±2‡ 93.67‡ 91.72‡

UUParser (Smith et al., 2018a) - 42±1 94.63 92.77
Biaffine (PyTorch) 1003±3 53±0 95.74 94.07
SeqLab 1064±13 99±1 93.46 91.49
Biaffine-D20 1189±4 391±2 92.84 90.73
Biaffine-D40 1153±3 96±0 94.59 92.64
Biaffine-D60 1112±6 71±1 94.78 92.86
Biaffine-D80 1033±5 61±0 94.84 92.95

Table 1: Speed and accuracy performance for state-of-the-art parsers and parsers from our distillation method,
Biaffine-Dπ compressing to π% of the original model, for the English PTB with POS tags predicted from the
Stanford POS tagger. In the first table block, † denotes values taken from the original paper and ‡ from Strzyz
et al. (2019). Values with no superscript (corresponding to the models in the shaded area, i.e. the second and third
blocks) are from running the models on our system locally with a single CPU core for both CPU and GPU speeds
(averaged over 5 runs) and with a batch size of 256 (excluding UUParser which doesn’t support batching) with
GloVe 100 dimension embeddings.

2016; Yu et al., 2018; Lu et al., 2017). Beyond
that it has also been successfully used in conjunc-
tion with exploring structured linguistic prediction
spaces (Liu et al., 2018). Latterly, it has also been
used to distill task-specific knowledge from BERT
(Tang et al., 2019).

Other compression techniques have been used
such as low-rank approximation decomposition
(Yu et al., 2017), vector quantisation (Wu et al.,
2016), and Huffman coding (Han et al., 2016). For
a more thorough survey of current neural network
compression methods see Cheng et al. (2018).

4 Teacher-student distillation

The essence of model distillation is to train a
model and subsequently use the patterns it learnt
to influence the training of a smaller model. For
teacher-student distillation, the smaller model, the
student, explicitly uses the information learnt by
the larger original model, the teacher, by compar-
ing the distribution of each model’s output layer.
We use the Kullback-Leibler divergence to calcu-
late the loss between the teacher and the student:

LKL = −
∑
t∈b

∑
i

P (xi) log
P (xi)
Q(xi)

(1)

where P is the probability distribution from the
teacher’s softmax layer, Q is the probability distri-
bution from the student’s, and xi is input vector to

the softmax corresponding to token wi of a given
tree t for all trees in batch b.

For our implementation, there are two probabil-
ity distributions for each model, one for the arc
prediction and one for the label prediction. By
using the distributions of the teacher rather than
just using the predicted arc and label, the student
can learn more comprehensively about which arcs
and labels are very unlikely in a given context, i.e.
if the teacher makes a mistake in its prediction,
the distribution might still carry useful informa-
tion such as having a similar probability for yg and
yp which can help guide the student better rather
than just learning to copy the teacher’s predictions.

In addition to the loss with respect to the
teacher’s distributions, the student model is also
trained using the loss on the gold labels in the
training data. We use categorical cross entropy to
calculate the loss on the student’s predicted head
classifications:

LCE = −
∑
t∈b

∑
i

log p(hi|xi) (2)

where hi is the true head position for token wi,
corresponding to the softmax layer input vector xi,
of tree t in batch b. Similarly, categorical cross en-
tropy is used to calculate the loss on the predicted
arc labels for the student model. The total loss for
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the student model is therefore:

L = LKL(Th, Sh) + LKL(Tlab, Slab)

+ LCE(h) + LCE(lab) (3)

where LCE(h) is the loss for the student’s pre-
dicted head positions, LCE(lab) is the loss for
the student’s predicted arc label, LKL(Th, Sh) is
the loss between the teacher’s probability distribu-
tion for arc predictions and that of the student, and
LKL(Tlab, Slab) is the loss between label distribu-
tions. This combination of losses broadly follows
the methods used in Tang et al. (2019) but is al-
tered to fit the Biaffine parser.

5 Methodology

We train Biaffine parsers and apply the teacher-
student distillation method to compress these
models into a number of different sizes for a num-
ber of Universal Treebanks v2.4 (UD) (Nivre et al.,
2019). We use the hyperparameters from Dozat
and Manning (2017), but use a PyTorch imple-
mentation for our experiments which obtains the
same parsing results and runs faster than the re-
ported speed of the original (see Table 1).2 The
hyperparameter values can be seen in Table 7 in
the Appendix. During distillation dropout is not
used as in earlier experiments with dropout per-
formance was hampered. And subsequent work
on distillation which uses dropout also didn’t per-
form well, but it isn’t clear if this is the cause of
the poorer performance, e.g. different treebanks
were used, UPOS tags weren’t, and no pre-trained
embeddings were used (Dehouck et al., 2020). Be-
yond lexical features, the model only utilises uni-
versal part-of-speech (UPOS) tags. Gold UPOS
tags were used for training and at runtime. Also,
we used gold sentence segmentation and tokeni-
sation. We opted to use these settings to com-
pare models under homogeneous settings, so as
to make reproducibility of and comparability with
our results easier.

Data We use the subset of UD treebanks sug-
gested by de Lhoneux et al. (2017) from v2.4, so
as to cover a wide range of linguistic features, lin-
guistic typologies, and different dataset sizes. We
make some changes as this set of treebanks was

2The implementation can be found at
github.com/zysite/biaffine-parser. Be-
yond adding our distillation method, we also included the
Chu-Liu/Edmonds’ algorithm, as used in the original, to
enforce well-formed trees.

chosen from a previous UD version. We exchange
Kazakh with Uyghur because the Kazakh data
does not include a development set and Uyghur
is a closely related language. We also exchange
Ancient-Greek-Proiel for Ancient-Greek-Perseus
because it contains more non-projective arcs (the
number of arcs which cross another arc in a
given tree) as this was the original justification
for including Ancient Greek. Further, we fol-
low Smith et al. (2018b) and exchange Czech-
PDT with Russian-GSD. We also included Wolof
as African languages were wholly unrepresented
in the original collection of suggested treebanks
(Dione, 2019). Details of the treebanks pertinent
to parsing can be seen in Table 2. We use pre-
trained word embeddings from FastText (Grave
et al., 2018) for all but Ancient Greek, for which
we used embeddings from Ginter et al. (2017),
and Wolof, for which we used embeddings from
Heinzerling and Strube (2018). When necessary,
we used the algorithm of Raunak (2017) to reduce
the embeddings to 100 dimensions.

For each treebank we then acquired the follow-
ing models:

i Baseline 1: Full-sized model is trained as nor-
mal and undergoes no compression technique.

ii Baseline 2: Model is trained as normal but
with equivalent sizes of the distilled mod-
els (20%, 40%, 60%, and 80% of the origi-
nal size) and undergoes no compression tech-
nique. These models have the same overall
structure of baseline 1, with just the number of
dimensions of each layer changed to result in a
specific percentage of trainable parameters of
the full model.

iii Distilled: Model is distilled using the teacher-
student method. We have four models were
the first is distilled into a smaller network with
20% of the parameters of the original, the sec-
ond 40%, the third 60%, and the last 80%. The
network structure and parameters of the dis-
tilled models are the exact same as those of the
baseline 2 models.

Hardware For evaluating the speed of each
model when parsing the test sets of each treebank
we set the number of CPU cores to be one and ei-
ther ran the parser using that solitary core or using
a GPU (using a single CPU core too). The CPU
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used was an Intel Core i7-7700 and the GPU was
an Nvidia GeForce GTX 1080.3

Experiment We compare the performance of
each model on the aforementioned UD treebanks
with respect to the unlabelled attachment score
(UAS) which evaluates the accuracy of the arcs,
and the labelled attachment score (LAS) which
also includes the accuracy of the arc labels. We
also evaluate the differences in inference time for
each model on CPU and GPU with respect to sen-
tences per second and tokens per second. We
report sentences per second as this has been the
measurement traditionally used in most of the lit-
erature, but we also use tokens per second as
this more readily captures the difference in speed
across parsers for different treebanks where the
sentence length varies considerably. We also re-
port the number of trainable parameters of each
distilled model and how they compare to the base-
line, as this is considered a good measure of how
green a model is in lieu of the number of floating
point operations (FPO) (Schwartz et al., 2019).4

6 Results and Discussion

Figure 2 shows the average attachment scores
across all test treebanks (all results presented in
this section are on the test treebanks) for the dis-
tilled models and the equivalent-sized base models
against the size of the model relative to the origi-
nal full model. There is a clear gap in performance
between these two sets of models with roughly
2 points of UAS and LAS more for the distilled
models. This shows that the distilled models do
actually manage to leverage the information from
the original full model. The full model’s scores
are also shown and it is clear that on average the
model can be distilled to 60% with no loss in per-
formance. When compressing to 20% of the full
model, the performance only decreases by about 1
point for both UAS and LAS.

Figures 3a and 3b show the differences in UAS
and LAS for the models distilled to 20% and
80% respectively for each treebank when com-
pared to the equivalent sized baseline model and
the full baseline model. The distilled models far
outperform the equivalent-sized baselines for all
treebanks. It is clear that for the smaller model

3Using Python 3.7.0, PyTorch 1.0.0, and CUDA 8.0.
4There exist a number of packages for computing the FPO

of a model but, to our knowledge, as of yet they do not include
the capability of dealing with LSTMs.

(a)

(b)

Figure 2: UAS (a) and LAS (a) against the model size
relative to the original full-sized model: BaseE, the
baseline models of equivalent size to the distilled mod-
els; Distill, the distilled models; Base, the performance
of the original full-sized model.

some treebanks suffer more when compressed to
20% than others when compared to the full base-
line model, e.g. Finnish-TDT and Ancient-Greek-
Perseus. These two treebanks have the largest
percentage of non-projective arcs (as can be seen
in Table 2) which could account for the decrease
in performance, with a more powerful model re-
quired to account for this added syntactic com-
plexity.

However, the two smallest treebanks, Tamil-
TTB and Wolof-WTB, actually increase in ac-
curacy when using distillation, especially Tamil-
TTB, which is by far the smallest treebank, with
an increase in UAS and LAS of about 4 points
over the full base model. This is likely the result
of over-fitting when using the larger, more power-
ful model, so that reducing the model size actually
helps with generalisation.

These observations are echoed in the results for
the model distilled to 80%, where most treebanks
lose less than a point for UAS and LAS against the
full baseline, but have a smaller increase in per-
formance over the equivalent-sized baseline. This
makes sense as the model is still close in size to the
full baseline and still similarly powerful. The in-
crease in performance for Tamil-TTB and Wolof-
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number of trees average sent length average arc length non-proj. arc pct
train dev test train dev test train dev test train dev test

Ancient-Greek-Perseus 11476 1137 1306 14.9 20.5 17.0 4.1 4.5 4.1 23.9 23.2 23.5
Chinese-GSD 3997 500 500 25.7 26.3 25.0 4.7 4.9 4.7 0.1 0.0 0.3
English-EWT 12543 2002 2077 17.3 13.6 13.1 3.7 3.5 3.6 1.0 0.6 0.6
Finnish-TDT 12217 1364 1555 14.3 14.4 14.5 3.4 3.4 3.4 1.6 1.9 1.8
Hebrew-HTB 5241 484 491 27.3 24.6 26.0 3.9 3.8 3.7 0.8 0.8 0.9
Russian-GSD 3850 579 601 20.5 21.2 19.9 3.5 3.7 3.7 1.1 1.0 1.2
Tamil-TTB 400 80 120 16.8 16.8 17.6 3.5 3.7 3.7 0.3 0.0 0.2
Uyghur-UDT 1656 900 900 12.6 12.8 12.5 3.5 3.5 3.5 1.1 1.3 1.4
Wolof-WTB 1188 449 470 20.8 23.9 23.1 3.5 3.8 3.6 0.4 0.4 0.5

Table 2: Statistics for salient features with respect to parsing difficulty for each UD treebank used: number of
trees, the number of data instances; average sent length, the length of each data instance on average; average arc
length, the mean distance between heads and dependents; non.proj. arc pct, the percentage of non-projective arcs
in a treebank.

gr zh en fi he ru ta ug wo avg
UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

Full 75.5 70.4 88.2 85.9 90.8 89.0 90.5 88.6 90.8 88.6 88.9 85.2 76.9 71.0 75.2 58.9 88.5 84.5 85.0 80.2
B-20 70.5 64.4 85.1 82.1 88.6 86.4 86.7 83.6 87.9 85.1 86.3 82.0 76.2 69.9 72.2 55.6 86.1 81.8 82.2 76.8
B-40 72.2 66.4 86.1 83.5 88.9 86.8 87.7 84.8 88.5 85.6 87.1 83.1 78.4 71.8 73.0 55.7 86.5 82.2 83.2 77.8
B-60 72.0 66.4 86.7 84.0 89.5 87.5 88.1 85.5 88.7 86.3 87.1 83.1 77.5 70.9 72.7 55.9 87.5 83.1 83.3 78.1
B-80 71.8 66.2 86.7 84.3 89.1 87.1 88.5 85.9 89.3 86.6 87.1 82.9 78.2 71.5 73.0 56.2 87.8 83.6 83.5 78.3
D-20 72.3 66.4 86.7 84.2 89.5 87.7 87.6 84.9 89.4 86.7 88.2 84.2 80.6 74.7 74.1 57.9 89.0 85.0 84.1 79.1
D-40 74.0 68.3 87.9 85.6 89.9 88.0 89.5 86.9 89.4 87.0 88.4 84.6 80.9 74.7 74.5 58.3 89.4 85.5 84.9 79.9
D-60 74.2 68.7 88.3 85.9 90.1 88.3 89.4 87.1 90.0 87.5 88.6 84.7 80.4 74.5 74.5 58.6 89.5 85.8 85.0 80.1
D-80 75.0 69.6 88.4 86.2 90.1 88.3 89.2 86.9 90.3 88.0 88.8 85.0 81.2 75.4 74.6 58.6 89.6 85.7 85.3 80.4

Table 3: Full attachment scores for each model and for each test treebank where Full means the original sized
model, B-X means training a model with X% of the trainable parameters of the original model, and D-X means
distilling to a model with X% of the trainable parameters of the original model.

WTB are greater for this distilled model, which
suggests the full model doesn’t need to be com-
pressed to such a small model to help with gener-
alisation. The full set of attachment scores from
our experiments can be seen in Table 3.

With respect to how green our distilled models
are, Table 5 shows the number of trainable pa-
rameters for each distilled model for each tree-
bank alongside its corresponding full-scale base-
line. We report these in lieu of FPO as, to our
knowledge, no packages exist to calculate the FPO
for neural network layers like LSTMs which are
used in our network. These numbers do not de-

Energy (kJ)
Full D-80 D-60 D-40 D-20

inf 0.32 0.31 0.27 0.25 0.24
w/ load 6.91 6.70 6.9 5.95 3.67

Table 4: Total inference energy consumption (inf) used
for all test treebanks (8K sentences) and also with the
energy consumption used to load each of the 9 mod-
els (w/ load). The standard deviation for inference en-
ergy consumption was 0.01 exclusively and for the con-
sumption with loading models it ranged from 0.06 to
0.15.

pend on the hardware used and strongly correlate
with the amount of memory a model consumes.
Different algorithms do utilise parameters differ-
ently, however, the models compared here are of
the same structure and use the same algorithm, so
comparisons of the number of trainable model pa-
rameters do relate to how much work each respec-
tive model does compared to another. Beyond this
we offer a nominal analysis of inference energy
consumption for each of the model sizes. These
measurements can be seen in Table 4. The full
baseline uses roughly 33% more than the small-
est distilled model. This difference is more pro-
nounced when including the energy used to load
the models (which might be a consideration if
the parser cannot be kept in memory) as the full
baseline almost uses twice as much energy as the
smallest distilled model.

Figures 4 and 5 show the parsing speeds on
CPU and GPU for the distilled models and for the
full baseline model in sentences and tokens per
second, respectively. The speeds are reported for
different batch sizes as this obviously affects the
speed at which a neural network can make predic-
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gr zh en fi he ru ta ug wo

Full 12.28 11.98 12.23 12.77 12.04 11.92 11.22 11.45 11.39
D-20 2.47 (19.7) 2.42 (20.2) 2.44 (19.7) 2.56 (19.7) 2.39 (19.2) 2.36 (19.3) 2.25 (19.6) 2.30 (20.2) 2.27 (19.5)
D-40 4.88 (39.3) 4.79 (39.5) 4.86 (39.3) 5.12 (40.2) 4.80 (40.0) 4.73 (39.5) 4.49 (39.3) 4.60 (40.4) 4.57 (39.8)
D-60 7.35 (59.8) 7.24 (60.5) 7.33 (59.8) 7.66 (59.8) 7.19 (59.2) 7.18 (59.7) 6.71 (59.8) 6.90 (60.5) 6.84 (60.2)
D-80 9.80 (80.3) 9.57 (79.8) 9.75 (79.5) 10.23 (80.3) 9.59 (79.2) 9.52 (79.8) 8.94 (79.5) 9.19 (79.8) 9.12 (80.5)

Table 5: Trainable model parameters (×106) with percentage of full model in parentheses, where Full means the
original sized model and D-X means distilling to a model with X% of the trainable parameters of the original
model.

(a)

(b)

Figure 3: Delta UAS and LAS for when comparing
both the original base model and equivalent-sized base
models for each treebank for two of our distilled mod-
els: (a) D-20, 20% of original model and (b) D-80, 80%
of original model.

tions, but the maximum batch size that can be used
on different systems varies significantly. As can
be seen in Figures 4a and 5a, the limiting factor in
parsing speed is the bottleneck of loading the data
onto the GPU when using a batch size less than
∼50 sentences. However, with a batch size of 256
sentences, we achieve an increase in parsing speed
of 19% over the full baseline model when consid-
ering tokens per second.

As expected, a much smaller batch size is re-
quired to achieve increases in parsing speed when

(a)

(b)

Figure 4: GPU (a) and single core CPU (b) speeds in
sentence per second with varying batch sizes for dis-
tilled models (D-X) and full-sized base model (Full).
Shaded areas show the standard error. Speeds for
Tamil-TTB are not included as the test treebank is too
small for larger batch sizes.

using a CPU. Even with a batch size of 16 sen-
tences, the smallest model more than doubles the
speed of the baseline. For a batch size of 256, the
distilled model compressed to 20% increases the
speed of the baseline by 130% when considering
tokens per second. A full breakdown of the pars-
ing speeds for each treebank and each model when
using a batch size of 256 sentences is given in Ta-
ble 6 in the Appendix.

Figure 6 shows the attachment scores and the
corresponding parsing speed against model size
for the distilled model and the full baseline model.
These plots clearly show that the cost in accu-
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(a)

(b)

Figure 5: GPU (a) and single core CPU (b) speeds in
tokens per second with varying batch sizes for distilled
models (D-X) and full-sized base model (Full). Shaded
areas show the standard error. Speeds for Tamil-TTB
are not included as the test treebank is too small for
larger batch sizes.

racy is neglible when compared to the large in-
crease in parsing speed. So not only does this
teacher-student distillation technique maintain the
accuracy of the baseline model, but it achieves
real compression and with it practical increases in
parsing speed and with a greener implementation.
In absolute terms, our distilled models are faster
than the previously fastest parser using sequence
labelling, as can be seen explicitly in Table 1 for
PTB, and outperforms it by over 1 point with re-
spect to UAS and LAS when compressing to 40%.
Distilling to 20% results in a speed 4x that of the
sequence labelling model on CPU but comes at a
cost of 0.62 points for UAS and 0.76 for LAS com-
pared to the sequence labelling accuracies. Fur-
thermore, the increase in parsing accuracy for the
smaller treebanks suggests that distillation could
be used as a more efficient way of finding optimal
hyperparameters depending on the available data,
rather than training numerous models with varying
hyperparameter settings.

We also need to consider training costs, an im-
portant factor to implement green AI. In this re-

(a)

(b)

Figure 6: Comparison of attachment scores and per-
centage increase of speed (tok/s) for different distilled
models with batch size 256: speed on GPU (a) and
speed on CPU (b). Shaded areas show the standard er-
ror. Speeds for Tamil-TTB are not included as the test
treebank is too small for larger batch sizes.

spect, while our full baseline model took 66.4
seconds per epoch to train on English-EWT (the
largest treebank used in this analysis), the base-
line reduced to 20% trainable parameters required
52.9s per epoch, and the distillation into 20% of
the original parameters clocked in at 103.1s per
epoch. The distillation process takes longer and
must be done after a full model is trained. How-
ever, the optimal model when distilling often oc-
curred earlier (about epoch 50, rather than 80-100)
suggesting less training is required.

In practice, the intended use of a parser should
be considered when evaluating the environmental
adequacy of distillation: in systems that will parse
at a large scale or be deployed for extended periods
of time, the savings at decoding time will offset the
increased carbon footprint from training, but this
may not be true in smaller-scale scenarios. How-
ever, in the latter, distillation can still be useful to
reduce hardware requirements of the machine(s)
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used for decoding, indirectly reducing emissions.

6.1 Future work

There are numerous ways in which this distilla-
tion technique could be augmented to potentially
retain more performance and even outperform the
large baseline models, such as using teacher an-
nealing introduced by Clark et al. (2019) where
the distillation process gradually secedes to stan-
dard training. Beyond this, the structure of the
distilled models can be altered, e.g. student mod-
els which are more shallow than the teacher mod-
els (Ba and Caruana, 2014). This technique could
further improve the efficiency of models and make
them more environmentally friendly by reducing
the depth of the models and therefore the total
number of trainable parameters.

Distillation techniques can also be easily ex-
panded to other NLP tasks. Already attempts
have been made to make BERT more wieldy by
compressing the information it contains into task-
specific models (Tang et al., 2019). But this can be
extended to other tasks more specifically and po-
tentially reduce the environmental impact of NLP
research and deployable NLP systems.

7 Conclusion

We have obtained results that suggest using
teacher-student distillation for UD parsing is an
effective means of increasing parsing efficiency.
The baseline parser used for our experiments was
not only accurate but already fast, meaning it was a
strong baseline from which to see improvements.
We obtained parsing speeds 2.30x (1.19x) faster
on CPU (GPU) while only losing ∼1 point for
both UAS and LAS when compared to the origi-
nal sized model. Furthermore, the smallest model
which obtains these results only has 20% of the
original model’s trainable parameters, vastly re-
ducing its environmental impact.

Acknowledgments

This work has received funding from the Eu-
ropean Research Council (ERC), under the Eu-
ropean Union’s Horizon 2020 research and in-
novation programme (FASTPARSE, grant agree-
ment No 714150), from the ANSWER-ASAP
project (TIN2017-85160-C2-1-R) from MINECO,
and from Xunta de Galicia (ED431B 2017/01,
ED431G 2019/01).

References
Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung.

2017. Structured pruning of deep convolutional neu-
ral networks. ACM Journal on Emerging Technolo-
gies in Computing Systems (JETC), 13(3):32.

Jimmy Ba and Rich Caruana. 2014. Do deep nets really
need to be deep? In Advances in Neural Information
Processing Systems, pages 2654–2662.
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A Appendix
Full D-20 D-40 D-60 D-80

gr
CPU(tok/s) 1211 ± 2 2842 ± 3 2086 ± 3 1638 ± 3 1390 ± 1

(sent/s) 75.4 ± 0.1 177.1 ± 0.2 130.0 ± 0.2 102.1 ± 0.2 86.6 ± 0.0

GPU(tok/s) 19219 ± 77 21017 ± 142 21296 ± 122 20346 ± 70 19202 ± 147
(sent/s) 1197.6 ± 4.8 1309.6 ± 8.9 1327.0 ± 7.6 1267.8 ± 4.3 1196.5 ± 9.1

zh
CPU(tok/s) 1124 ± 2 2503 ± 3 1872 ± 2 1490 ± 2 1278 ± 1

(sent/s) 46.8 ± 0.1 104.2 ± 0.1 77.9 ± 0.1 62.0 ± 0.1 53.2 ± 0.0

GPU(tok/s) 21255 ± 113 25665 ± 82 24862 ± 134 23567 ± 28 22663 ± 91
(sent/s) 884.7 ± 4.7 1068.3 ± 3.4 1034.9 ± 5.6 981.0 ± 1.2 943.4 ± 3.8

en
CPU(tok/s) 884 ± 1 2217 ± 10 1548 ± 3 1217 ± 1 1010 ± 7

(sent/s) 73.2 ± 0.1 183.5 ± 0.8 128.1 ± 0.3 100.7 ± 0.1 83.6 ± 0.6

GPU(tok/s) 16942 ± 25 20538 ± 60 19739 ± 109 19003 ± 90 17511 ± 57
(sent/s) 1402.2 ± 2.1 1699.8 ± 5.0 1633.7 ± 9.0 1572.7 ± 7.4 1449.2 ± 4.7

fi
CPU(tok/s) 988 ± 1 2586 ± 3 1767 ± 2 1371 ± 2 1153 ± 0

(sent/s) 72.9 ± 0.0 190.9 ± 0.2 130.4 ± 0.2 101.2 ± 0.1 85.1 ± 0.0

GPU(tok/s) 18325 ± 46 22181 ± 50 21408 ± 130 20220 ± 90 19013 ± 33
(sent/s) 1352.4 ± 3.4 1637.0 ± 3.7 1580.0 ± 9.6 1492.3 ± 6.7 1403.2 ± 2.4

he
CPU(tok/s) 1180 ± 1 2644 ± 3 1964 ± 2 1582 ± 1 1337 ± 1

(sent/s) 47.2 ± 0.0 105.7 ± 0.1 78.5 ± 0.1 63.3 ± 0.0 53.5 ± 0.0

GPU(tok/s) 22202 ± 98 26441 ± 150 25418 ± 181 24233 ± 176 22651 ± 89
(sent/s) 887.4 ± 3.9 1056.8 ± 6.0 1016.0 ± 7.2 968.6 ± 7.1 905.4 ± 3.5

ru
CPU(tok/s) 734 ± 1 1717 ± 3 1237 ± 1 976 ± 1 832 ± 1

(sent/s) 38.7 ± 0.0 90.6 ± 0.1 65.3 ± 0.1 51.5 ± 0.1 43.9 ± 0.1

GPU(tok/s) 16383 ± 87 19661 ± 137 18337 ± 44 17901 ± 65 17014 ± 21
(sent/s) 864.9 ± 4.6 1037.9 ± 7.2 968.0 ± 2.3 944.9 ± 3.4 898.2 ± 1.1

ta
CPU(tok/s) 1110 ± 2 2334 ± 5 1799 ± 1 1464 ± 2 1251 ± 2

(sent/s) 67.0 ± 0.1 140.8 ± 0.3 108.5 ± 0.1 88.3 ± 0.1 75.5 ± 0.1

GPU(tok/s) 17188 ± 194 19829 ± 126 19771 ± 106 18540 ± 98 18172 ± 151
(sent/s) 1037.0 ± 11.7 1196.3 ± 7.6 1192.8 ± 6.4 1118.6 ± 5.9 1096.4 ± 9.1

ug
CPU(tok/s) 1058 ± 1 2289 ± 3 1806 ± 2 1404 ± 2 1199 ± 2

(sent/s) 92.2 ± 0.1 199.4 ± 0.3 157.3 ± 0.2 122.4 ± 0.2 104.5 ± 0.1

GPU(tok/s) 17974 ± 35 21298 ± 82 21004 ± 93 19738 ± 70 18963 ± 132
(sent/s) 1566.0 ± 3.0 1855.6 ± 7.2 1829.9 ± 8.1 1719.6 ± 6.1 1652.1 ± 11.5

wo
CPU(tok/s) 1245 ± 2 2559 ± 5 2021 ± 3 1614 ± 2 1398 ± 2

(sent/s) 56.3 ± 0.1 115.6 ± 0.2 91.3 ± 0.1 72.9 ± 0.1 63.2 ± 0.1

GPU(tok/s) 20225 ± 74 24361 ± 94 21564 ± 73 20661 ± 102 21059 ± 105
(sent/s) 913.8 ± 3.4 1100.6 ± 4.2 974.2 ± 3.3 933.4 ± 4.6 951.4 ± 4.7

avg
CPU(tok/s) 1070 ± 21 2440 ± 39 1808 ± 32 1431 ± 26 1218 ± 23

(sent/s) 63.5 ± 2.1 146.8 ± 5.4 108.1 ± 3.8 85.3 ± 2.9 72.5 ± 2.4

GPU(tok/s) 18933 ± 243 22503 ± 307 21488 ± 271 20463 ± 251 19666 ± 252
(sent/s) 1124.7 ± 33.3 1336.3 ± 40.1 1282.8 ± 41.7 1220.4 ± 38.8 1168.2 ± 34.8

Table 6: Speeds with batch size 256.

hyperparameter value

word embedding dimensions 100
pos embedding dimensions 100
embedding dropout 0.33
BiLSTM dimensions 400
BiLSTM layers 3
arc MLP dimensions 500
label MLP dimensions 100
MLP layers 1
learning rate 0.2
dropout 0.33
momentum 0.9
L2 norm λ 0.9
annealing 0.75∧(t/5000)
ε 1×10−12

optimiser Adam
loss function cross entropy
epochs 100

Table 7: Hyperparameters for full-sized baseline models.


