Statistical Deep Parsing for Spanish using Neural Networks

Luis Chiruzzo
Facultad de Ingenieria
Universidad de la Republica
Montevideo, Uruguay
luischir@fing.edu.uy

Abstract

This paper presents the development of a deep
parser for Spanish that uses a HPSG grammar
and returns trees that contain both syntactic
and semantic information. The parsing pro-
cess uses a top-down approach implemented
using LSTM neural networks, and achieves
good performance results in terms of syntac-
tic constituency and dependency metrics, and
also SRL. We describe the grammar, corpus
and implementation of the parser. Our process
outperforms a CKY baseline and other Span-
ish parsers in terms of global metrics and also
for some specific Spanish phenomena, such as
clitics reduplication and relative referents.

1 Introduction

The syntactic analysis of sentences is one of the key
activities within the Natural Language Processing
pipeline, and is often seen as a necessary step that
must be performed before extracting deeper infor-
mation such as semantics. Two main paradigms
have historically dominated the work on syntactic
analysis: constituency parsing, where the sentence
is structured as a tree of linguistically motivated
segments called constituents; and dependency pars-
ing, where the sentence is structured as a set of
bi-lexical dependencies with each word associated
to another word that acts as its head.

Throughout the years there have been attempts
to create deeper syntactic models that try to com-
bine both syntactic and semantic notions in the
same analysis, for example CCG (Steedman, 1996),
HPSG (Pollard and Sag, 1994) or TAG (Joshi,
1985). The process of analyzing a sentence in one
of these formalisms is often called deep parsing.
Over the last years the use of deep neural networks
has advanced the state of the art in many NLP
tasks, and though some work has been done for
performing deep parsing using these architectures
(mainly in English and for CCG), few works have

132

Dina Wonsever
Facultad de Ingenieria
Universidad de la Republica
Montevideo, Uruguay
wonsever@fing.edu.uy

focused on the application of these techniques to
other formalisms or other languages. In this work,
we present a neural network architecture for deep
parsing Spanish sentences using the HPSG formal-
ism.

The rest of the paper is structured as follows:
Section 2 describes the grammar and corpus we
use. Section 3 introduces our parsing architecture
and the baseline we compare it to. Section 4 shows
an analysis of results. Section 5 describes rele-
vant related work. Finally, section 6 gives some
conclusions and future perspectives.

2 Grammar and Corpus

We use a HPSG style grammar (Pollard and Sag,
1994) adapted to Spanish. HPSG grammars are
unification grammars that operate on feature struc-
tures. Each word is defined by a feature structure
that indicates the combinatorial properties of the
word: how it can be combined to other words in
order to form phrases. Because of this, these gram-
mars tend to have few rules, which are very generic.
When applying a rule, the process of unification
validates that both the conditions of the rule and
the constraints imposed by the expressions being
combined are met, and the resulting phrases inherit
some of the features of their children in order to
define their own combinatorial properties.

2.1 Feature structure

Our grammar defines morphological, syntactic va-
lence, and semantic role label features, as shown
in figure 1. The HEAD feature contains the part-of-
speech and the morphological attributes of the word
such as number and gender. The VAL feature con-
tains the local syntactic valence features: what are
the expected specifier, complements, or modifier
that could be associated to the word, and we add
a CLITICS feature that is specially important for
Spanish as clitic pronouns could act as arguments

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 132—144
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

_word l
[[nlvial...
PER 12]3
HEAD NUM sg | pl
AGR |NUMssg|p
GEN f|m
SPEC <expr>
SYN COMPS <expr>
CLITICS <expr>
VAL
MOD <expr>
COORD_LEFT <expr>
COORD_RIGHT <expr>
NONLOCAL [REL <expr>]
ARGO expr
ARGI1 expr
SEM |ARGS
ARG2 expr
TEXT text

Figure 1: Feature structure for words in our grammar.

of verbs. We also include two features used by
conjunctions to guide the analysis of coordinated
structures.

In a simplification from the original HPSG the-
ory, the only non-local dependencies modeled in
our grammar are the relative clauses that act as
modifiers of a noun phrase. This is represented
by the REL feature, which allows the grammar to
support argument sharing in relative clauses such
as “La manzana que comi” / “The apple I ate”.

The grammar incorporates semantic features for
modeling the semantic role label structure for the
sentence. Unlike the way semantics is modeled in
standard HPSG (Sag et al., 1999), which uses min-
imal recursion semantics (Copestake et al., 2005),
our approach to semantics uses the simpler Prop-
Bank notation (Bonial et al., 2010). The feature
SEM includes features derived from PropBank rep-
resentation: ARGO for proto-agent, ARG1 for proto-
patient, ARGM for modifying adjuncts, etc. Con-
sider, for example, the feature structure for the
word “come” / “eats” shown in figure 2, which
coindexes the syntactic specifier and complement
to the corresponding proto-agent and proto-patient
semantic arguments.

2.2 Rules

The grammar uses only thirteen combinatorial rules
for forming phrases. These rules describe in broad
terms how to combine expressions, but the unifica-
tion process also takes into account the constraints
imposed by the expressions as well as the ones

<

133

[word]
[HEAD v

SYN SPEC <[SYN.HEAD n]>
VAL

COMP < [SYN.HEAD n]>

ARGO <>

SEM
ARG1 <>

TEXT come

Figure 2: Feature structure for the word “come” /
‘eats”, that expects a noun phrase as specifier (subject)
and a noun phrase as complement (direct object), which
are also coindexed as proto-agent and proto-patient se-
mantic arguments.

defined in the rules.

For example, consider the head_comp rule de-
fined in figure 3. This rule takes the two expres-
sions shown on the left side of the arrow. The left
expression (marked as head) expects at least one
complement, which is the right expression (shown
only as a coindexation box, meaning any expres-
sion that unifies with what the left expression ex-
pects). The result is the phrase shown on the right
side of the arrow: a phrase that will have the same
features as the head expression except the COMP
feature, which will expect one less complement.
This definition is only a description of what this
rule does in particular, but the unification process
by which the rules are applied will also ensure that
the constraints defined within the expressions are
held. If we combine the word “come” / “eats” as
defined in figure 2 with a complement phrase, the
rule application will fail (not unify) if the comple-
ment is not a noun phrase.

(H) {

Figure 3: Definition of the head_comp rule.

expr phrase

+—>[

VAL [COMP < | >} VAL [COMP <>}

All rules in our grammar are binary, and they
are designed taking into account that the order of
constituents in Spanish is not as strict as in English.
For example, even though Spanish is officially an
SVO language like English, the sentences “El tren
llego” and “Llegé el tren” are two equally valid
ways of saying “The train arrived”, where the
second case uses a postponed subject. The thirteen
rules in our grammar are the following:

* Two rules for attaching a specifier (or sub-

ject) to the left or to the right of a head:
spec_head and head_spec.

* Two rules for attaching a complement to the
left or to the right of a head: comp_-head and
head_comp.

* One rule for attaching a semantic comple-
ment to the right of a head: head_comp_sem.
This rule is used for building more complex
verb phrases such as “ha ido” / “has gone” or
“comienza a cantar” / “begins to sing”.

Two rules for attaching a modifier to the left
or to the right of a head: mod_head and
head_mod.

One rule for attaching a clitic pronoun to the
left of a head: clitic_head.

One rule for attaching a relative clause to the
right of a head: head_rel.

Two rules for attaching a punctuation marker
to the left or to the right of a head:
punct_head and head_punct.

Two rules for binarizing coordinated struc-
tures: coord_left and coord_right.

Consider the following sample sentence:

[El nifio come una manzana roja | !

(The boy eats a red apple) W

The parse tree for sentence 1 using our grammar

is shown in figure 4. Although the figure shows

a simplified version of the tree (with only one ex-

panded node for the main verb and substituting the

non-leaf nodes for the name of the applied rule)

each node in the tree is a complete feature struc-

ture with reentrancies to other parts of the tree that

indicate the syntactic and semantic argument struc-
tures.

2.3 Composition of the corpus

Our experiments use a corpus of about half a mil-
lion words annotated with our grammar based on
the AnCora (Taulé et al., 2008) Spanish corpus that
contains approximately 17,000 sentences labeled
with CFG-style syntactic annotations and other in-
formation such as the semantic arguments structure.
The corpus was transformed semi-automatically
into our grammar (Chiruzzo and Wonsever, 2016,
2018). The transformation process involved using

134

heuristics for identifying heads, binarizing phrases
and finding the grammar rules to apply, and re-
parsing the corpus using unification over feature
structures while manually correcting the conver-
sion errors. The training, development and test
partitions used in this work are the standard An-
Cora partitions used for the CoNLL-2009 shared
task (Haji¢ et al., 2009), around 418K words for
training, 50K for development and 50K for test.

spec_head

spec_head head_comp

[word

HEAD v
SPEC
COMP

SYN

VAL

El nifio spec_head

SEM

ARGO
ARG1
TEXT come

una head_mod

manzana roja

Figure 4: Simplified tree for “El nifio come una man-
zana roja” / “The boy eats a red apple”. Only the node
for “come” is expanded, but each of the nodes in the
tree is a feature structure that contains the correspond-
ing combinatorial and semantic information.

3 Parser development

This section describes the LSTM top-down parsing
architecture we use in this work and the baselines
we compare it to.

3.1 Top-down parser

Our parsing approach divides the parsing process
into two steps: first creating a basic binary tree
of phrases, where each non-leaf node is annotated
with the corresponding rule, and then finding which
of the phrases should act as arguments to their re-
spective heads.

3.1.1 Split and rule calculation

The first step is a top-down process that takes as
input a sequence of words and decides how to split
the sequence in two so that the sub-sequences are
valid constituents, indicating which grammar rule
should be applied in that node. For example, if we
take sentence 1 as input, the output would look like
following:
[El nifio]| [come una manzana roja |
Rule: spec_head

The method proceeds recursively for each con-

stituent that has at least two words. In this case, it

will take the sequence “El nifio” and split it so as
to separate the determiner from the noun:
[El] [nifio]
Rule: spec_head
The second sub-sequence would be split so as
to separate the main verb from the noun phrase
complement of the verb, resulting in the following:

[come] [una manzana roja |
Rule: head_comp

This top-down process is iterated until there are
no more sub-sequences left to split, effectively
transforming the original sentence into a binary tree
of words, labeled with the corresponding grammar
rules for each non-leaf node. The result is shown
in figure 5.

spec_head
spec_head head_comp
/\ /\
El nifio come spec_head
una head_mod
/\

manzana

Figure 5: Binary tree with rule labels for the sentence
“El nifio come una manzana roja” / “The boy eats a red
apple”, result of the first step of the parsing process.

3.1.2 Arguments calculation

Once this basic tree is created, using the calculated
rules it is possible to derive the syntactic features
and mark the heads for each node in the tree. With
the syntactic features in place, the second step tries
to determine which of the syntactic arguments of
the predicates should also be set as semantic argu-
ments.

This step considers each head that could be taken
as predicate (in our case verbs, nouns and adjec-
tives are possible predicates), and each syntactic
argument, and calculates if it should be applied as a
semantic feature, and which label it should use. In
practice, the method takes the following elements
as input:

* The sequence of words corresponding to the
top-most constituent that includes the predi-
cate, the head, and the argument.

* The candidate argument being classified.
* The word marked as head.

¢ The feature that relates the head and the can-
didate argument.

135

roja

The result of the method could be none (if the
candidate should not be considered an argument)
or a feature between arg0 and argM. The input
values and expected outcomes for our example are
the following:

[El nifiosprc comen gAp una manzana roja | — arg0
[El nifio come g g Ap una manzana rojacomp]— argl

[una manzanapgepap rojaprop 1= none

After this step is finished, the tree will look like
the one in figure 4.

3.2 Implementation

Both steps of the process are implemented using
neural networks. The first step is a neural network
whose input is a sequence of words and whose out-
put is the probability of splitting the sentence at
each point in the sequence, and the probabilities
of rules for each split point. The method proceeds
greedily selecting only the split point with maxi-
mum probability and the corresponding rule.

Split
Probability

Figure 6: Architecture of the neural network for the
sequence split and rule calculation step.

The network (shown in figure 6) is built using
stacked bidirectional LSTM layers: the first layer
contains a word embeddings model (300 dimen-
sions, trained using word2vec for a 6 billion
words Spanish corpus); then three layers of stacked
bidirectional LSTMs of size 300; then a fully con-
nected layer of size 150; and finally a softmax layer
that outputs, for each word in the sequence, the
grammar rule to apply or none if the word should
not be used for splitting in the current step. The
probability of the none label is used as the proba-
bility of splitting at each point in the sequence.

The second step is implemented using a neural
network that takes a word (the head), a sequence
of words representing the argument to classify, an-
other sequence that represents the outer constituent
that contains both the head and the argument, and

Outer Syntacti
. Argumen
Constituent ? 8 9 Head ? Rule'

Semantic 6
Role Label
Figure 7: Architecture of the neural network for the
argument identification step.

the syntactic rule used to associate the head to the
argument. It returns the probability for each argu-
ment category (or none). The network (as shown
in figure 7) has an embeddings layer for the words;
then three layers of stacked bidirectional LSTMs
of size 150 (in this case they output only one repre-
sentation for each sequence, instead of one for each
word); then a fully connected layer of size 150; and
finally a softmax layer that gives the probability
distribution for the labels.

We trained several instances of both networks
varying the number and sizes of the differ-
ent layers using keras (Chollet, 2015) over
tensorflow (Abadi et al., 2015), optimizing
against the development partition. The number
of units for the LSTM and dense layers varied be-
tween 150 and 600, and we tried using one, two or
three LSTM layers and different values of dropout.
Only the results for the best models are reported.

3.3 Baseline CKY parser

In order to compare our parser to more standard
HPSG parsing approaches, we implemented an-
other statistical parsing strategy for this grammar,
with a bottom-up approach similar to (Matsuzaki
et al., 2007): using the CKY algorithm with a prob-
abilistic model to find the best tree. The simplest
implementation of the CKY algorithm for HPSG
would imply applying all rules to the pairs of ex-
pressions found at each step. However, the feature
unification method proved to be too slow for doing
this in reasonable time, so we relied on a simpli-
fication to speed up the process: We designed a
set of supertags based on the grammar categories
that contain the necessary information to infer the
possible rules to apply given a pair of supertags.
Considering sample sentence 1, the main verb of
the sentence (“come” / “eats”) has a noun phrase
specifier to its left (“El nifio” / “The boy”), which

also acts as ARGO, and a noun phrase complement
to its right (“una manzana roja” / “a red apple”),
which also acts as ARG1. This will be the infor-
mation conveyed by the supertag for come, which
is v—snaO-x-cnal. The leftmost character is
the part-of-speech of the word and the rest is a de-
scription of the use of the word in context, where x
represents the position of the word. This tag means:
a verb that expects a noun phrase acting as speci-
fier on its left (sn) coindexed with ARGO, plus a
noun phrase acting as a complement on its right
(cn) coindexed with ARG1. The corresponding
supertags for the whole sentence are the following:

El/d—x nifio/n—-sd-x come/v—-sna0—-x—cnal
unal/d—x manzana/n-sd-x roja/la-mn-x

The possible rules to apply to a pair of words
depend on the supertags associated to those words.
Once they are combined following a certain rule,
the resulting phrase will have a new tag that could
be used to continue the parsing process. The tag
structure is simple enough so that the possible rules
to apply can be predicted in terms of regular ex-
pressions over the supertags (much faster than the
unification method) but also expressive enough so
that the invalid combinations are filtered out.

3.3.1 Probabilistic Model

We created a probabilistic model in a way similar
to a PCFG. One way of doing this would be consid-
ering each possible supertag as a non terminal, the
problem with this approach is that the number of su-
pertags is very large: 4146 different supertags in the
training corpus. Consequently, the number of times
the combination of a particular pair of supertags ap-
pears in the corpus is very low (sparsity problem).
To mitigate this, we created simpler models for
abstracting the non terminals by reducing the infor-
mation in the supertags and calculated the rule prob-
abilities based on those abstractions. For example,
a supertag v-sna0O-x—-cnal-csa2 could have
the abstract tag vcs, that indicates only the POS
(verb) and the features it expects (complements and
specifier) but not the finer grained information. Our
model uses an average of probabilities calculated
over these abstract tags, and assigns a very small
probability to unseen tag combinations in order to
avoid giving rare examples zero probability. Notice
that the abstract tags have no effect in the process
of determining the possible rules to apply (the full
supertag is used for that), but only for estimating
the probability of application of a rule.

136

3.3.2 Supertagger

The CKY algorithm relies on knowing the exact
categories of the words to find the valid rules to ap-
ply, but when parsing a sentence from scratch that
information would not be available. As the number
of possible categories per word is large, we trained
a supertagger for calculating the most suitable su-
pertags given a sentence. Its inputs are the sentence
words and POS-tags and it returns a sequence of
supertags. The architecture for this supertagger is
similar to the top-down parser: the first layer con-
tains a word embeddings model (300 dimensions)
and a POS embeddings model (5 dimensions); then
three layers of stacked bidirectional LSTMs of size
450; then a fully connected layer of size 450; and
finally a softmax layer that selects one out of 4146
possible supertags. The network achieves 89.1%
accuracy over the development corpus and 88.7%
for the test corpus considering the top selected tag.

As the performance is not perfect, the sequence
of supertags selected might be invalid for forming
a tree according to the grammar rules. To mitigate
this problem, if a tree is not found we enable two
fallback rules with low probability (head_none
and none_head) that combine two arbitrary nodes
and take either the left one or the right one as heads.
These rules guarantee that a tree will be found, but
they make the process much slower as many more
subtrees are tried during parsing.

4 Experimental results

In this section we present the experimental re-
sults for our LSTM top-down neural network ar-
chitecture and the baselines in terms of syntac-
tic parsing and semantic role labeling. We also
present an analysis of execution time for the dif-
ferent approaches. We compare our method to the
CKY baseline defined before and six well estab-
lished baselines for Spanish parsing. Three of the
baselines are the parsers contained in the Freel-
ing library (Padré and Stanilovsky, 2012), which
include both dependency parsing and SRL: Tx-
ala (Batalla et al., 2005), Treeler! and a LSTM
implementation. The other baselines are the pre-
trained Spanish models Spanish of spaCy? (mod-
elses_core_news_smand es_core_news_md)
and UDPipe (Straka and Strakova, 2017) (model
Spanish-AnCora), which only include depen-
dency parsing but no SRL. We show the perfor-

Uhttp://treeler.Isi.upc.edu/
*https://spacy.io

mance of the (unrealistic) CKY parser using gold
supertags as an upper bound for the CKY perfor-
mance, but also the more realistic CKY using the
tags predicted by the supertagger.

4.1 Syntactic parsing

The performance metrics used for the syntactic
parsing results are the following:

Constituency F1: The F1 score for the predicted
constituents against the expected constituents in
a tree. This metric is very strict and penalizes
strongly any deviations in the order of application
of rules, as swapping the order of only two rules
could change many different constituents inside
a tree. There are Labeled (L-Cons) or Unlabeled
(U-Cons) versions of this metric with or without
considering the correct grammar rule.

Dependency Accuracy: As all the rules are bi-
nary and they all define a head, it is possible to
infer a dependency structure where each word is
associated to a corresponding head. This structure
contains the same information as the constituent
trees except the information about the order of the
rules application. This metric calculates the accu-
racy of assigning each word to its appropriate head,
and it is more relaxed compared to constituency F1.
Labeled (L-Dep) and Unlabeled (U-Dep) versions
of this metric (with or without the grammar rule)
are defined.

137

Model U-Cons | L-Cons | U-Dep | L-Dep
LSTM Top-down 87.57 82.06 91.32 88.96
CKY Gold tags 77.16 72.72 92.07 92.05
CKY Supertagger 66.08 59.33 83.34 81.03
FreeLing LSTM - - 83.15 -
FreeLing Treeler - - 83.61 -
FreeLing Txala - - 69.75 -
spaCy es_sm - - 83.01 -
spaCy es_md - - 83.69 -
UDPipe - - 82.09 -

Table 1: Results of the syntactic parsing experiments
over the test set.

Table 1 shows the performance results for the dif-
ferent experiments. The “CKY Gold tags” model
is the unrealistic model that we consider as upper
bound for the CKY process, the more realistic ver-
sion is the “CKY Supertagger”. As seen in the
table, the best performing model in constituency
and dependency metrics is the LSTM top-down
approach. The CKY model does not perform well
in terms of constituency even when using the gold
supertags, probably because it mixes the order of
application of rules: it gets only up to 77%, but

for the dependency metrics (which ignore the rule
application order) it gets around 92%. The CKY
using the supertagger, as expected, performs worse
than that. On the other hand, the performance of
the top-down approach is very robust, outperform-
ing even the CKY with gold supertags for the con-
stituency metrics, and achieving comparable results
for the dependency metrics.

The top-down parser also outperforms the ex-
ternal baselines for this corpus. Notice, however,
that a direct comparison is difficult given that we
are using a different grammar formalism. The only
metric that could be considered comparable across
the different parsers in this context would be the
U-Dep, analogous to the UAS metric in depen-
dency parsing, but even for this not all parsers are
trained using the same dependency frameworks and
they might have differences in how they determine
which words are heads. For example, spacy and
UDPipe are trained on corpora annotated using the
Universal Dependencies framework (Nivre et al.,
2016), which prefers using content words over func-
tion words as heads (Alonso and Zeman, 2016).
In order to compare to these parsers, we post-
processed the results and transformed the heads
of prepositional phrases, copulas and other struc-
tures in order to adapt it to our format. Section 4.4
shows other approaches to the evaluation of some
aspects of the results, considering some particu-
lar phenomena of the language and how well the
different parsers deal with them. In these cases it
was also necessary to post-process the results to
adapt the different ways the parsers represent these
phenomena in order to compare them.

4.2 Semantic role labeling

The performance metric used in this case is the F1
measure for SRL taken as bi-lexical dependencies.
We report two versions of the metric: the unlabeled
version (U-SRL) measures if the argument was cor-
rectly matched as a semantic argument of its head
regardless of the selected label, while the labeled
version (L-SRL) also considers if the appropriate
semantic role label was selected.

Table 2 shows the results for the semantic role
labeling experiments. In this case, the (unrealis-
tic) CKY using gold tags is the best performing
method, and can be seen as an upper bound for per-
formance. Our top-down approach gets almost as
good results for the unlabeled metric, but performs
a little worse for selecting the correct labels. The

138

Model U-SRL | L-SRL
LSTM Top-down 87.68 80.66
CKY Gold tags 88.51 87.51
CKY Supertagger | 81.48 75.78
FreeLing LSTM 68.50 60.74
FreeLing Treeler 69.10 61.53
FreeLing Txala 52.17 45.73

Table 2: Results of the semantic role labeling experi-
ments over the test set.

top-down approach also outperforms all the other
baselines.

4.3 Execution time

Model Time (ms)

LSTM Top-down 86.1
CKY Gold tags 288.7
CKY Supertagger 1,237.3
FreeLing LSTM 60.3
FreeLing Treeler 948.5
FreeLing Txala 41.8
spaCy es_sm (no SRL) 9.3
spaCy es_md (no SRL) 19.8
UDPipe (no SRL) 21.8

Table 3: Average time in milliseconds for parsing a sen-
tence in the test set.

Table 3 shows the average time for parsing a
sentence in the test set (1,692 sentences) for the
different models. The experiments were run on
an Intel 17, 2.7GHz, 16GB RAM, without GPU
acceleration. The metrics in the table are an aver-
age over all sentence lengths, but figure 8 shows
a breakdown of execution times for different sen-
tence length ranges (up to 80) for our approaches.

12

10 20 30 40 50 60 70 80

== CKY Gold == CKY Super LSTM Top-down

Figure 8: Breakdown of execution time in seconds for
different input sizes.

In this case, the parsers based on neural networks
seem to have an advantage over the others in terms
of speed. The fastest parsers are the spaCy and
UDPipe models, but we must take in consideration

LSTM CKY CKY | Freeling | Freeling | Freeling | spaCy | spaCy
Top-down | Gold | Supert. Txala LSTM Treeler | es.sm | es.md | UDPipe
Postponed P 82.22 99.25 | 84.25 60.00 69.74 74.07 60.11 | 59.92 57.37
Subjects R 64.02 98.89 | 76.01 19.92 65.49 62.73 56.45 | 59.59 52.39
F 71.99 99.07 | 79.92 2991 67.55 67.93 5823 | 59.75 54.77
Clitics P 98.76 100. 98.71 96.44 78.25 80.67 84.99 | 83.47 82.33
Identification R 99.03 100. 95.46 85.83 88.58 88.44 97.38 | 97.93 96.83
F 98.90 100. 97.06 90.82 83.09 84.38 90.76 | 90.12 89.00
Acc 85.28 95.46 | 83.63 75.10 80.47 80.88 - - -
Clitics MP 76.20 98.46 | 65.05 72.03 82.67 83.50 - - -
Classification MR 66.52 88.18 | 57.80 44.02 51.51 54.60 - - -
MF 70.60 92.78 | 61.00 49.20 56.37 58.63 - - -
Clitics P 32.69 100. 75.00 8.33 22.05 30.23 - - -
Reduplication R 35.41 81.25 | 18.75 2.08 31.25 27.08 - - -
F 34.00 89.65 | 30.00 3.33 25.86 28.57 - - -
Relatives P 90.60 100. 92.27 72.84 76.59 78.23 69.16 | 70.85 66.49
Identification R 89.00 99.72 | 81.00 54.95 58.61 59.02 55.08 | 55.35 52.23
F 89.80 99.86 | 86.27 62.64 66.41 67.28 61.32 | 62.05 58.51
Acc 76.12 81.14 | 57.67 4.21 43.15 42.06 - - -
Relatives MP 64.73 84.36 | 54.32 30.54 40.75 40.76 - - -
Classification =~ MR 55.32 7847 | 37.82 7.63 24.78 24.39 - - -
MF 59.02 72.39 | 43.29 6.54 29.18 28.62 - - -
Relative P 73.61 77.68 | 67.69 37.23 60.46 63.30 54.17 | 55.53 49.56
Referents R 72.32 7747 | 59.43 28.08 46.26 47.76 43.14 | 43.55 38.94
F 72.96 77.58 | 63.29 32.01 5242 54.44 48.03 | 48.82 43.61
Coordinations P 65.49 74.02 | 5492 24.48 56.53 56.09 41.39 | 4247 37.22
Identification R 65.22 7723 | 4825 22.20 53.49 53.00 43.85 | 44.34 39.59
F 65.36 75.59 | 51.37 23.28 54.96 54.50 42.59 | 43.38 38.37

Table 4: Results of the experiments for some language phenomena in Spanish. We show precision, recall and F1
score for identification tasks, and accuracy and macro metrics for classification tasks.

that they only perform dependency parsing and not
SRL. Our LSTM top-down approach, and FreeL-
ing LSTM and Txala (rule-based) parsers are in
intermediate positions, while the CKY approaches
and the FreeLing Treeler parser are way behind. If
we break down the execution time of our top-down
process, we get that there is a balance in the time
spent at each step: 54.1 ms for syntactic parsing
and 31.9 ms for argument identification. This could
be sped up using a unified architecture.

As seen in figure 8, the top-down approach exe-
cution time seems to grow close to linearly while
for CKY it grows faster, particularly for the CKY
with supertagger. This is because, especially for
longer sentences, the probability of obtaining a se-
quence of tags that does not form a correct tree is
much higher as the sentence grows, so the fallback
rules have to be enabled more frequently, rendering
the process much slower.

4.4 Analysis

Besides the global metrics shown so far, we wanted
to test the performance of the parsers for some of
the Spanish language characteristics that inspired
the grammar rules and behavior in the first place
(see Section 2.2). We tested the parsers on how
well they detect the following phenomena:

139

Postponed subjects: Identifying a subject that oc-
curs on the right of the verb, as opposed to the more
usual left position.

Clitics identification and classification: Detect-
ing the clitic pronouns that accompany a verb and
classifying them according to SRL.

Clitics reduplication: In Spanish, clitic pronouns
can be used in lieu of an explicit object, but it is
also possible to include both the object and the
corresponding clitic at the same time. This is called
clitic reduplication or clitic doubling.

Relatives identification and classification: De-
tecting the relative pronouns and expressions
that are attached to some verbs creating relative
sentences, and classifying them according to SRL.

Relatives referent identification: Besides identi-
fying the relative pronoun and its verb, the parser
must also properly identify the nominal referent for
the relative pronoun.

Coordinations identification: Finding chains of
(two or more) coordinated elements.

Table 4 shows the results for these experiments
over the test set for the different parsers. In the
results, we can see that the LSTM Top-down parser
performs better for most experiments, except for
the postponed subject identification where CKY
with supertagger performs better. At least for these

phenomena, the results seem to indicate that both
parsers outperform the other baselines. However,
we must take in consideration that, as mentioned
in section 4.1, the output of the different parsers
had to be post-processed in order to recognize the
different phenomena, so there could be some noise
in the evaluation introduced by this transformation.

5 Related work

Most of the work over the last years on deep pars-
ing using neural network architectures has been
done for the CCG formalism and for English lan-
guage. For example (Xu et al., 2015) uses a re-
current neural network for improving the supertag-
ging and parsing accuracy for CCG, while (Ambati
et al., 2016) describes a neural networks architec-
ture that performs CCG parsing. For HPSG, the
work by (Zhou and Zhao, 2019) is very relevant
as they try to derive a HPSG grammar from the
Penn Treebanks in English and Chinese and use
an self-attention based mechanism followed by a
CKY decoder to parse them, obtaining very good
results. In our work, however, we focus in HPSG
for the Spanish language and define a different ar-
chitecture for parsing: a top-down approach with
LSTMs.

Our approach to HPSG development is similar
to another relevant statistical parser for HPSG in
English, the Enju parser (Matsuzaki et al., 2007;
Zhang et al., 2010), which was created by trans-
forming the English Penn Treebank through a set of
rules into HPSG format and used this transformed
corpus to train a statistical model. Another relevant
precedent for HPSG is the LKB (Copestake, 2002)
platform together with the PET (Callmeier, 2000)
parser, used to define HPSG grammars in English
and other languages (in particular the Spanish Re-
source Grammar (Marimon, 2010)), although they
do not use neural networks for the parsing process.
We differ from the Spanish Resource Grammar in
that we derive the feature structures from a large
corpus instead of building them manually, with
the aim of building a purely statistical parser that
could, for example, handle slightly ungrammatical
sentences or out of vocabulary concepts better.

The CKY with supertagging method we com-
pare to in this work follows a similar approach to
the parsing methods used for deep syntactic gram-
mars such as CCG (Curran et al., 2006; Lewis and
Steedman, 2014), HPSG (Matsuzaki et al., 2007,
Dridan, 2009; Zhang et al., 2010) and TAG (Kasai

140

et al., 2017; Friedman et al., 2017).

Much more work on applying neural network
architectures to parsing has been done for the two
more classical syntactic paradigms: constituency
and dependency parsing. For constituency parsing,
(Socher et al., 2013) defines a class of recurrent
neural networks that combine pairs of words and
builds a tree bottom-up, with the aim of improving
sentiment analysis in English sentences. On the
other hand, (Vinyals et al., 2015) frames the pars-
ing process as a translation between a sentence in
natural language and the bracketed representation
of its parse tree. Other authors train neural models
to predict the actions to be performed in a transition
based shift-reduce constituency parser (Dyer et al.,
2016), combining it with a sequence-to-sequence
modeling (Liu and Zhang, 2017), or encoding the
parsing stack using a recurrent network (Watanabe
and Sumita, 2015). In (Cross and Huang, 2016)
a transition based constituency parser gets good
results for English and French using LSTMs for
representing word spans instead of partially derived
trees.

Another approach that focuses on determining
the word spans in the tree is used in (Stern et al.,
2017), which describes a top-down parser that
greedily splits a sentence in constituents and as-
signs labels to them, processing the text spans with
LSTMs in order to generate an intermediate rep-
resentation. This approach is the most similar we
found to the one we use, the main differences are
that they work for French, they use a standard con-
stituency grammar while ours is a strictly binarized
HPSG grammar, and we add a further step for pre-
dicting the argument structure of predicates for the
generated trees. Related approaches for English
include: (Gaddy et al., 2018), that calculates the
score and label for each sentence span then uses
CKY to find the optimal tree; (Shen et al., 2018),
that predicts the syntactic distances for words and
builds the tree top-down using these distances.

Compared to English, there are few works that
focus on Spanish parsing. For constituency parsing,
(Cowan and Collins, 2005) tries two approaches
to improve standard PCFG parsers: including mor-
phological information in the probabilistic model,
and a reranking method with max-margin criterion
trained over a set of global features from the parse
trees. Their evaluation against the Cast3LB cor-
pus, a subset of AnCora, achieves a constituent
F1 of 83.6 and 85.1 respectively. (Le Roux et al.,

2012) experiments with Spanish parsing using a
PCFG with latent annotations with a simplified
tagset, achieving 85.47 F1 over the Cast3LB cor-
pus.

There is considerably more work done for de-
pendency parsing and SRL in Spanish, beginning
in the CoNLL-X (Buchholz and Marsi, 2006) and
CoNLL-2009 (Haji€ et al., 2009) shared tasks. The
best LAS achieved for Spanish were 82.3 (max
span tree approach) and 81.3 (transition based
approach). Later on, (Lloberes et al., 2010) de-
scribes a dependency grammar and a rule-based
dependency parser for Spanish (one of the Freel-
ing parsers (Padr6 and Stanilovsky, 2012)) trans-
forming the result of a shallow parser, achieving
81.13 UAS and 73.88 LAS. In (Ballesteros et al.,
2010) they describe a set of experiments using Malt-
Parser (Nivre et al., 2007) to determine how much
corpus size, sentence length or other factors con-
tribute to the dependency Spanish parsing perfor-
mance. The latest efforts in dependency parsing
have generally focused on using the Universal De-
pendencies (Nivre et al., 2016) framework. For
example in CoNLL 2017 (Zeman et al., 2017) and
CoNLL 2018 (Zeman et al., 2018) shared tasks
on multilingual parsing from raw text to Univer-
sal Dependencies the best parsers achieve LAS of
87.29 (Dozat et al., 2017) and 90.93 (Che et al.,
2018) respectively for Spanish.

6 Conclusions

We presented a statistical deep parser for Spanish
that outputs trees in the HPSG formalism. The
parser uses a top-down approach for building the
tree followed by a second step for calculating
the arguments, both steps are implemented using
LSTM neural networks. The parser gets good re-
sults for performance compared to a CKY baseline
and to other parsing baselines in Spanish, achiev-
ing 87.57% unlabeled and 82.06% labeled con-
stituency F1, and 91.32% unlabeled and 88.96%
labeled dependency accuracy. It also achieves good
performance for SRL, getting 87.68% unlabeled
and 80.66% labeled F1, and beats the baselines for
some particular Spanish phenomena we analyzed.

Although the results improve over the baseline
methods, there is still room for improvement, espe-
cially in terms of execution time. We plan to build
a unified architecture that could perform both the
syntactic and the arguments step at the same time,
which could help lower the execution times and it

141

might also help the network generalize better in
order to improve the prediction of labels in SRL. It
would be also very interesting to try this approach
to other languages such as English, and also lan-
guages that share some of the characteristics we
analyzed such as Italian or French.

References

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Mar-
tin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
giang Zheng. 2015. TensorFlow: Large-Scale Ma-
chine Learning on Heterogeneous Systems. Soft-
ware available from tensorflow.org.

Héctor Martinez Alonso and Daniel Zeman. 2016. Uni-
versal dependencies for the ancora treebanks. Proce-
samiento del Lenguaje Natural, 57:91-98.

Bharat Ram Ambati, Tejaswini Deoskar, and Mark
Steedman. 2016. Shift-reduce ccg parsing using
neural network models. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 447-453.

Miguel Ballesteros, Jests Herrera, Virginia Francisco,
and Pablo Gervias. 2010. Improving parsing accu-
racy for spanish using maltparser. Procesamiento
del Lenguaje Natural, 44.

Jordi Atserias Batalla, Elisabet Comelles Pujadas, and
Aingeru Mayor. 2005. Txala un analizador libre de
dependencias para el castellano. Procesamiento del
Lenguaje Natural, 35.

Claire Bonial, Olga Babko-Malaya, Jinho D Choi, Jena
Hwang, and Martha Palmer. 2010. PropBank an-
notation guidelines. Center for Computational Lan-
guage and Education Research Institute of Cognitive
Science University of Colorado at Boulder.

Sabine Buchholz and Erwin Marsi. 2006. Conll-x
shared task on multilingual dependency parsing. In
Proceedings of the tenth conference on computa-
tional natural language learning, pages 149-164.
Association for Computational Linguistics.

Ulrich Callmeier. 2000. Pet—a platform for experi-
mentation with efficient hpsg processing techniques.
Natural Language Engineering, 6(1):99-107.

http://tensorflow.org/
http://tensorflow.org/

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. 2018. Towards better UD parsing:
Deep contextualized word embeddings, ensemble,
and treebank concatenation. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pages
55-64, Brussels, Belgium. Association for Compu-
tational Linguistics.

Luis Chiruzzo and Dina Wonsever. 2016. Transform-
ing the AnCora corpus to HPSG. In Proceedings of
the Joint 2016 Conference on Head-driven Phrase
Structure Grammar and Lexical Functional Gram-
mar, Polish Academy of Sciences, Warsaw, Poland,
pages 182—193, Stanford, CA. CSLI Publications.

Luis Chiruzzo and Dina Wonsever. 2018. Span-
ish HPSG Treebank based on the AnCora Cor-
pus. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC-2018,).

Francois Chollet. 2015. Keras.
com/fchollet/keras.

Ann Copestake. 2002. Implementing typed feature
structure grammars, volume 110. CSLI publica-
tions Stanford.

https://github.

Ann Copestake, Dan Flickinger, Carl Pollard, and
Ivan A Sag. 2005. Minimal recursion semantics: An
introduction. Research on language and computa-

tion, 3(2-3):281-332.

Brooke Cowan and Michael Collins. 2005. Morphol-
ogy and reranking for the statistical parsing of span-
ish. In Proceedings of the conference on Human
Language Technology and Empirical Methods in
Natural Language Processing, pages 795-802. As-
sociation for Computational Linguistics.

James Cross and Liang Huang. 2016. Span-based con-
stituency parsing with a structure-label system and
provably optimal dynamic oracles. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 1-11. Associ-
ation for Computational Linguistics.

James R Curran, Stephen Clark, and David Vadas.
2006. Multi-tagging for lexicalized-grammar pars-
ing. In Proceedings of the 21st International Confer-
ence on Computational Linguistics and the 44th an-
nual meeting of the Association for Computational
Linguistics, pages 697-704. Association for Compu-
tational Linguistics.

Timothy Dozat, Peng Qi, and Christopher D. Manning.
2017. Stanford’s graph-based neural dependency
parser at the CoNLL 2017 shared task. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies,
pages 20-30, Vancouver, Canada. Association for
Computational Linguistics.

Rebecca Dridan. 2009. Using lexical statistics to im-
prove HPSG parsing. Ph.D. thesis, University of
Saarland.

142

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 199-209. Association for Com-
putational Linguistics.

Dan Friedman, Jungo Kasai, R. Thomas McCoy,
Robert Frank, Forrest Davis, and Owen Rambow.
2017. Linguistically rich vector representations
of supertags for TAG parsing. In Proceedings of
the 13th International Workshop on Tree Adjoining
Grammars and Related Formalisms, pages 122—131,
Umed, Sweden. Association for Computational Lin-
guistics.

David Gaddy, Mitchell Stern, and Dan Klein. 2018.
What’s going on in neural constituency parsers? an
analysis. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 999—-1010.
Association for Computational Linguistics.

Jan Haji¢, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antonia Marti, Lluis
Marquez, Adam Meyers, Joakim Nivre, Sebastian
Pado, Jan étepa’mek, Pavel Stranak, Mihai Surdeanu,
Nianwen Xue, and Yi Zhang. 2009. The conll-2009
shared task: Syntactic and semantic dependencies
in multiple languages. In Proceedings of the Thir-
teenth Conference on Computational Natural Lan-
guage Learning (CoNLL 2009): Shared Task, pages
1-18. Association for Computational Linguistics.

Aravind Krishna Joshi. 1985. Tree adjoining gram-
mars: How much context-sensitivity is required to
provide reasonable structural descriptions?

Jungo Kasai, Robert Frank, R Thomas McCoy, Owen
Rambow, and Alexis Nasr. 2017. Tag parsing with
neural networks and vector representations of su-
pertags. In Conference on Empirical Methods in
Natural Language Processing, pages 1712—1722.

Joseph Le Roux, Benoit Sagot, and Djamé Seddah.
2012. Statistical parsing of spanish and data driven
lemmatization. In ACL 2012 Joint Workshop on
Statistical Parsing and Semantic Processing of Mor-
phologically Rich Languages (SP-Sem-MRL 2012),
pages 6—pages.

Mike Lewis and Mark Steedman. 2014. Improved ccg
parsing with semi-supervised supertagging. Trans-
actions of the Association for Computational Lin-

guistics, 2:327-338.

Jiangming Liu and Yue Zhang. 2017. Encoder-decoder
shift-reduce syntactic parsing. In Proceedings of
the 15th International Conference on Parsing Tech-
nologies, pages 105—114, Pisa, Italy. Association for
Computational Linguistics.

https://doi.org/10.18653/v1/K18-2005
https://doi.org/10.18653/v1/K18-2005
https://doi.org/10.18653/v1/K18-2005
http://cslipublications.stanford.edu/HPSG/2016/headlex2016-chiruzzo-wonsever.pdf
http://cslipublications.stanford.edu/HPSG/2016/headlex2016-chiruzzo-wonsever.pdf
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/K17-3002
https://doi.org/10.18653/v1/K17-3002
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024
https://www.aclweb.org/anthology/W17-6213
https://www.aclweb.org/anthology/W17-6213
https://doi.org/10.18653/v1/N18-1091
https://doi.org/10.18653/v1/N18-1091
http://aclweb.org/anthology/W09-1201
http://aclweb.org/anthology/W09-1201
http://aclweb.org/anthology/W09-1201
http://www.aclweb.org/anthology/W17-6315
http://www.aclweb.org/anthology/W17-6315

Marina Lloberes, Irene Castellon, and Lluis Padro.
2010. Spanish freeling dependency grammar. In
LREC, volume 10, pages 693—699.

Montserrat Marimon. 2010. The spanish resource
grammar. In Proceedings of the International Con-
ference on Language Resources and Evaluation,
LREC, pages 17-23, Valletta, Malta.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.
2007. Efficient hpsg parsing with supertagging and
cfg-filtering. In IJCAI, pages 1671-1676.

Joakim Nivre, Marie-Catherine De Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, et al. 2016. Universal dependencies
v1: A multilingual treebank collection. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
1659-1666.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, Giilsen Eryigit, Sandra Kiibler, Svetoslav
Marinov, and Erwin Marsi. 2007. MaltParser: A
language-independent system for data-driven depen-
dency parsing. Natural Language Engineering,
13(2):95-135.

Lluis Padr6 and Evgeny Stanilovsky. 2012. Freeling
3.0: Towards wider multilinguality. In LREC2012.

Carl Pollard and Ivan A Sag. 1994. Head-driven
phrase structure grammar. University of Chicago
Press.

Ivan A Sag, Thomas Wasow, Emily M Bender, and
Ivan A Sag. 1999. Syntactic theory: A formal in-
troduction, volume 92. Center for the Study of Lan-
guage and Information Stanford, CA.

Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessan-
dro Sordoni, Aaron Courville, and Yoshua Bengio.
2018. Straight to the tree: Constituency parsing
with neural syntactic distance. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1171-1180, Melbourne, Australia. Association for
Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631-1642. Association for Computational
Linguistics.

Mark Steedman. 1996. A very short introduction to
ccg. Unpublished paper. http://www. cogsci. ed. ac.
uk/steedman/paper. html.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017.
A Minimal Span-Based Neural Constituency Parser.

143

In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 818-827. Association for Com-
putational Linguistics.

Milan Straka and Jana Strakova. 2017. Tokenizing,
pos tagging, lemmatizing and parsing ud 2.0 with
udpipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88-99, Vancouver, Canada.
Association for Computational Linguistics.

Mariona Taulé, M. Antonia Marti, and Marta Recasens.
2008. AnCora: Multilevel Annotated Corpora for
Catalan and Spanish. In Proceedings of the Sixth
International Conference on Language Resources
and Evaluation (LREC’08), Marrakech, Morocco.
European Language Resources Association (ELRA).
Http://www.lrec-conf.org/proceedings/Irec2008/.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Proceedings of the
28th International Conference on Neural Informa-
tion Processing Systems - Volume 2, NIPS’ 15, pages
2773-2781, Cambridge, MA, USA. MIT Press.

Taro Watanabe and Eiichiro Sumita. 2015. Transition-
based neural constituent parsing. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1169-1179. Associ-
ation for Computational Linguistics.

Wenduan Xu, Michael Auli, and Stephen Clark. 2015.
Ccg supertagging with a recurrent neural network.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 2: Short Papers), pages
250-255.

Daniel Zeman, Jan Haji¢, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. Conll 2018 shared task: Mul-
tilingual parsing from raw text to universal depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Uni-
versal Dependencies, pages 1-21, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Daniel Zeman, Martin Popel, Milan Straka, Jan
Haji¢, Joakim Nivre, Filip Ginter, Juhani Luoto-
lahti, Sampo Pyysalo, Slav Petrov, Martin Pot-
thast, Francis Tyers, Elena Badmaeva, Memduh
Gokirmak, Anna Nedoluzhko, Silvie Cinkova, jr.
Jan Hajic, Jaroslava Hlavacov4, Vaclava Kettnerova,
Zdetika UreSov4, Jenna Kanerva, Stina Ojala, Anna
Missild, Christopher Manning, Sebastian Schuster,
Siva Reddy, Dima Taji, Nizar Habash, Herman Le-
ung, Marie-Catherine de Marneffe, Manuela San-
guinetti, Maria Simi, Hiroshi Kanayama, Valeria
de Paiva, Kira Droganova, Héctor Martinez Alonso,
Cagr1 Coltekin, Umut Sulubacak, Hans Uszkoreit,

https://doi.org/10.18653/v1/P18-1108
https://doi.org/10.18653/v1/P18-1108
http://aclweb.org/anthology/D13-1170
http://aclweb.org/anthology/D13-1170
http://aclweb.org/anthology/D13-1170
https://doi.org/10.18653/v1/P17-1076
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://dl.acm.org/citation.cfm?id=2969442.2969550
http://dl.acm.org/citation.cfm?id=2969442.2969550
https://doi.org/10.3115/v1/P15-1113
https://doi.org/10.3115/v1/P15-1113

Vivien Macketanz, Aljoscha Burchardt, Kim Harris,
Katrin Marheinecke, Georg Rehm, Tolga Kayade-
len, Mohammed Attia, Ali Elkahky, Zhuoran Yu,
Emily Pitler, Saran Lertpradit, Michael Mandl a! nd
Jesse Kirchner, Hector Fernandez Alcalde, Jana Str-
nadova, Esha Banerjee, Ruli Manurung, Antonio
Stella, Atsuko Shimada, Sookyoung Kwak, Gustavo
Mendonga, Tatiana Lando, Rattima Nitisaroj, and
Josie Li. 2017. Conll 2017 shared task: Multilingual
parsing from raw text to universal dependencies. In
Proceedings of the CoNLL 2017 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies, pages 1-19, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Y. Zhang, Takuya Matsuzaki, and Jun’ichi Tsujii. 2010.
Forest-guided supertagger training. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics, pages 1281-1289. Association
for Computational Linguistics.

Junru Zhou and Hai Zhao. 2019. Head-driven phrase
structure grammar parsing on Penn treebank. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2396-2408, Florence, Italy. Association for Compu-
tational Linguistics.

144

https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230

