Self-Training for Unsupervised Parsing with PRPN

Anhad Mohananey'*’ Katharina Kann?>* Samuel R. Bowman'
'New York University
2University of Colorado Boulder
{anhad, bowman}@nyu.edu
katharina.kann@colorado.edu

Abstract

Neural unsupervised parsing (UP) models
learn to parse without access to syntactic anno-
tations, while being optimized for another task
like language modeling. In this work, we pro-
pose self-training for neural UP models: we
leverage aggregated annotations predicted by
copies of our model as supervision for future
copies. To be able to use our model’s predic-
tions during training, we extend a recent neural
UP architecture, the PRPN (Shen et al., 2018a),
such that it can be trained in a semi-supervised
fashion. We then add examples with parses
predicted by our model to our unlabeled UP
training data. Our self-trained model outper-
forms the PRPN by 8.1% F1 and the previous
state of the art by 1.6% F1. In addition, we
show that our architecture can also be help-
ful for semi-supervised parsing in ultra-low-
resource settings.

1 Introduction

Unsupervised parsing (UP) models learn to parse
sentences into unlabeled constituency trees with-
out the need for annotated treebanks. Self-training
(Yarowsky, 1995; Riloff et al., 2003) consists of
training a model, using it to label new examples
and, based on a confidence metric, adding a subset
to the training set, before repeating training. For
supervised parsing, results with self-training have
been mixed (Charniak, 1997; Steedman et al., 2003;
McClosky D, 2006). For unsupervised dependency
parsing, Le and Zuidema (2015) obtain strong re-
sults by training a supervised parser on outputs
of unsupervised parsing. UP models show low
self-agreement between training runs (Kim et al.,
2019a), while obtaining parsing performances far
above chance. Supervising one run with confident

*Equal contribution.
fNow at Electronic Arts.

105

LANGUAGE
MODEL
D,

e e

Figure 1: Our parser, represented by the dotted box,
outputs syntactic distances Dy and D;. Both D, and
D; can be supervised, but D; can also be learned in a
latent manner.

parses from the last could combine their individ-
ual strengths. Thus, we ask the question: Can UP
benefit from self-training?

In order to answer this question, we propose
SS-PRPN, a semi-supervised extension of the UP
architecture PRPN (Shen et al., 2018a), which can
be trained jointly on language modeling and su-
pervised parsing. This enables our model to lever-
age silver-standard annotations obtained via self-
training for supervision. Our approach draws on the
idea of syntactic distances, which can be learned
both as latent variables (Shen et al., 2018a) and
as explicit supervision targets (Shen et al., 2018b).
We use both of these, leveraging annotations ob-
tained via UP to supervise the two different outputs
of the parser, in addition to standard UP training.

SS-PRPN, in combination with self-training, im-
proves over its original version by 8.1% F1 and
over the previous state of the art (Kim et al., 2019a)
by 1.6% F1, when trained and evaluated on the
English PTB (Marcus et al., 1999): UP can indeed
benefit from self-training. We further perform an
analysis of our self-training procedure, finding that
longer sentences benefit most from self-training.

Although our primary motivation for the de-

Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 105-110
Virtual Meeting, July 9, 2020. (©2020 Association for Computational Linguistics

velopment of a semi-supervised architecture is to
enable self-training, we further hypothesize that,
since language modeling and parsing annotations
seem to provide complementary information, UP
should aid low-resource supervised parsing. As a
proof of concept, we employ SS-PRPN for semi-
supervised training. In extremely-low-data regimes
with no more than 250 labeled parses, SS-PRPN
outperforms supervised and unsupervised baselines
in most settings on unlabeled parsing, and in all
settings on labeled constituency parsing.

Related Work Following the line of research on
non-neural UP models (Clark, 2001; Klein and
Manning, 2002; Bod, 2006), early approaches to
neural UP (Yogatama et al., 2017; Choi et al., 2018)
obtain improved performance on downstream tasks,
yet show highly inconsistent behavior in parsing
(Williams et al., 2018).

Recently, Shen et al. (2018a) introduce the first
high performing neural UP model (Htut et al.,
2018). Dyer et al. (2019) raise concerns that
PRPN’s parsing methodology is biased towards
English trees. Though these concerns are serious,
they are largely orthogonal to our research question
regarding the helpfulness of self-training for UP.

Several models have been introduced since:
Shen et al. (2019) propose an architecture con-
sisting of an LSTM (Hochreiter and Schmidhu-
ber, 1997) with a modified update function for the
LSTM cell state, Kim et al. (2019a)—the current
state-of-the-art—introduce a model based on a mix-
ture of probabilistic context-free grammars, Kim
et al. (2019b) present unsupervised learning of re-
current neural networks grammars, Li et al. (2019)
combine PRPN with imitation learning, and Droz-
dov et al. (2019) employ a recursive autoencoder.
Kim et al. (2020) examine tree induction from pre-
trained models.

2 Model

Syntactic Distances In order to parse a sentence,
a computational model needs to output some kind
of variables representing a unique tree structure.
The variables we use are syntactic distances as in-
troduced by Shen et al. (2018a). They represent the
syntactic relationships between all successive pairs
of words in a sentence. If the distance between two
neighboring words is large, they belong to differ-
ent subtrees, and, thus, their traversal distance in
the tree is large. A parse tree can be created by
finding the maximum syntactic distance, splitting

106

Algorithm 1: Tree to latent distances D;

1 Dy < [1] * leavesiree > leavest e :leaf count of tree
2 b+ 0

3 maz < 100 > max: max possible depth of tree
4 Function DISTANCE (tree, b, max)

5 DISTANCE (tree;, b, max-1)

6 X < tree, > tree,: right child of tree
7 while True do

8 if x; is empty then

9 D;[b + leavesiree, | < max

10 break

11 end

12 X < X > x;: left child of x
13 end

the sentence into sub-trees there, and repeating this
process recursively for each sub-tree until a single
token is left.

Two different formulations of syntactic distance
have been proposed to realize this basic intuition:
The first, which we refer to as D;, is introduced by
Shen et al. (2018a) as a latent variable in their UP
model. Since, for self-training, we supervise D;
with values predicted by our model, we introduce
Algorithm 1, which is used to convert a tree to dis-
tances ;. The second kind of distance, denoted
here as D, is introduced by Shen et al. (2018b)
as labels for direct supervision. We use their algo-
rithms to map trees to distances D, and vice versa,
and ask readers to refer to Shen et al. (2018b) for
details.

We design our parser in such a way that it can
predict both. We treat the decision whether D, or
Dy are used at test time as a hyperparameter. The
reasons why we employ both types of distances are
two-fold: D, unlike D;, cannot be learned in an
unsupervised fashion, which is critical for a semi-
supervised architecture. Empirically, supervising
purely on D; performs poorly.

The Parser Our parser, cf. Figure 1, consists
of an embedding layer and a convolutional layer
which are followed by two different components:
a linear output layer that predicts DD, and a second
convolutional layer that predicts D;.

Formally, given an input sentence s =
to,t1,...,tn—1, our parser predicts D, as:
li—1,
hi = ReLUW, | "2) (1)
ti
d; = ReLU (Wah;+byg) 2)

Algorithm 2: Self-training for UP

Unlabeled data X

Training set X1 < ()

Train n. UP models on Xy

for s; € Xy do
ng <— number of models agreeing on parse p(s;)
if n, > pn. then

X+ XU p(si)

end

end

Train model on Xy and X7

> add confident parse

LT Y I N

=
)

where W, are the weights of the first convolutional
layer, W, are the weights of the output layer corre-
sponding to Dy, and b, and b, are bias vectors. Ly
is the filter size. D); involves similar computations,
but is the output of the second layer.

Distance Loss When we have silver-standard an-
notations from self-training available, we compute
the loss for both syntactic distances directly. Since
the relative ranking between distances—rather than
absolute values—defines the tree structure, we train
our parser with a hinge ranking loss following Shen
et al. (2018b). Our distance loss L, is the weighted
sum of the distance losses corresponding to D;
(Lg) and Dg (Lsg):

L, = aLsg + (]- - Oé)le (3)

Language Modeling Loss In order to optimize
the parameters of our parser without direct supervi-
sion, we further feed its output—the predictions for
D;—into a language model, following Shen et al.
(2018a).

Multi-Task Training Our parser is trained in a
semi-supervised fashion with losses correspond-
ing to (i) learning the distances in a latent manner
through language modeling, and (ii) supervising di-
rectly on distances. We sample batches from both
objectives at random.

Self-Training For self-training, cf. Algorithm
2, we first train n. models on the unlabeled PTB
training set X;7. We then have them predict parse
trees for all sentences in X;. If more than p
n. models (with u as a hyperparameters) agree
on the same parse, we add it as a silver-standard
labeled example to the parsing training set X,. We
use Algorithm 1 and the respective algorithm by
Shen et al. (2018b) to convert consensus trees into
distances D; and D,. We then train a new model
on both Xy and X7.

Model Fl(w)
PRPN 39.8 (5.6)
PRPN (ours) 46.3 (6.3)
C-PCFG 52.8 (3.8)
URNNG 44.8 (4.1)
SS-PRPN 54.4 (0.6)
Left Branching (LB) 13.1
Right Branching (RB) 16.5
Random 21.4

Table 1: Results on the English PTB test set, with the
model tuned on the dev set. LB, RB and Random base-
lines are taken as-is from Htut et al. (2018). Since eval-
uation of C-PCFG, PRPN and URNNG is done against
binary gold trees, results might differ from the original
papers.

3 Experimental Design

Data and Metrics We experiment on the English
Penn Treebank Marcus et al. (PTB; 1999). For
evaluation, we compute the F1 score of the out-
put parses against binarized gold parses following
Williams et al. (2018). The code for our model is
published online!.

Baselines We compare against an unsupervised
recurrent neural network grammar (URNNG; Kim
et al., 2019b), a compound probabilistic context
free grammar (C-PCFG; Kim et al., 2019a), and
Shen et al. (2018a)’s PRPN. We re-implement and
tune PRPN in our code base.

Hyperparameters We tune our hyperparameters
on the development set. Hidden states and word
embeddings have 300 and 100 dimensions, respec-
tively. We set the weight o = 0.5. For self-training,
we obtain best results with y = 60% and n. = 15.
We further experiment with converting either D
or D into final parse trees, and find that D; works
best.

4 Results and Analysis

Unsupervised Parsing Performance Table 1
shows our results. SS-PRPN outperforms all base-
lines: our model obtains a 1.6% higher F1 score
than the strongest baseline. It further improves sub-
stantially over comparable non-self-trained base-
lines: by 14.6% over PRPN and by 8.1% over our
reimplementation of it. SS-PRPN also shows a
much lower variance. This demonstrates that self-
training is indeed a viable approach for UP.

"https://github.com/anhad13/SelfTraining AndLRP

107

Av. Av. Av.Fl #sents

Length Depth
Self-training 7.0 33 82.2 1897
PTB gold 20.9 10.6 100.0 39701

Table 2: Statistics of our best self-training annotations
compared to PTB.

Length 0-10 10-20 20-30 30-40 >40

Ex. 115 573 613 295 94
% Ex. improved 20% 36.8% 49.7% 52.8% 55.3%

Table 3: Percentage of development examples im-
proved by SS-PRPN in comparison to PRPN, listed by
sentence length.

Analysis of Self-Training We interpret agree-
ment rate as our confidence value for self-training,
with the hypothesis that, as agreement among mod-
els increases, there is a higher likelihood that the
parse is correct. In Figure 2, we show that, as
expected, the F1 score increases as more models
agree, for the best self-training run (15 individual
models, or the second last row in Table 1).

Additionally, Figure 2 and Table 2 show that self-
training annotations consist of shorter sentences
and shallower trees than our dataset’s average, i.e.,
mostly of easier sentences.

Our final hypothesis is that self-training helps
mostly for longer sentences, since models often
agree on shorter ones anyways and, trivially, longer
sentences leave more room for error. Table 3 shows
the development set performance and the number
of examples for varying sentence lengths. As ex-
pected, self-training yields the greatest gains for
longer sentences.

120 ————— 18,000

100 |- |®av. length 115,000
= 4 av. depth . §
5 80| — w 12,000 §
a . . g
= | |
5 60| - - {9,000 £
5 o = °
— L} g
=~ 404 {6,000 E
- Z

20 o X - 3,000

L
s 3
Pt S S0 S S0 S S

U Il Il Il Il Il 0
345 6 7 8 9101112131415

bl
Number of Models Agreeing

Figure 2: Statistics for self-training (n, = 15): As
agreement among UP models goes up, parsing F1 im-
proves, and average depth and length go down.

108

[[3

] SP
—— PRPN
— C-PCFG
—— URNNG [

RNNG
s+ SS-PRPN

|
100 150 200
5 T T T

Binary F1

50

45

Binary F1

40

s SP
4+ SS-PRPN

200

Il Il
100 150 250

Figure 3: Low-resource parsing on the PTB. The first
and second plots show unlabeled and labeled F1 respec-
tively, plotted against the training data size.

Low-Resource Parsing Performance We fur-
ther investigate how SS-PRPN performs when lim-
ited gold parses are available in addition to unla-
beled data. To predict constituency labels, we add
and train an additional linear output layer after the
first convolutional layer. We find that, on the devel-
opment set, converting [, into parse trees works
better for low-resource parsing than D;. As super-
vised baselines, we employ Dyer et al. (2016)’s
recurrent neural network grammar (RNNG) and a
supervised parser (SP) based on syntactic distances
(Shen et al., 2018b). Figure 3 shows results for 50
to 250 annotated examples. The upper part shows
the unlabeled parsing performance in comparison
to the UP baselines. We outperform all baselines
for 50 to 150 examples, while SP performs slightly
better with more annotations. When looking at la-
beled F1 in the lower part of Figure 3, SS-PRPN
clearly outperforms SP, which indicates that unla-
beled data can be leveraged in the low-resource
setting.

5 Conclusion

We introduce a semi-supervised neural architecture,
SS-PRPN, which is capable of UP via self-training.
Our self-trained models strongly outperform com-
parable baselines, and advance the state of the art

on PTB by 1.6% F1. Analyses show that our ap-
proach yields most gains for longer sentences. Our
architecture can also leverage limited amounts of
parsing supervision when available. We conclude
that it is beneficial to develop better UP models for
semi-supervised settings.

6 Acknowledgements

This work has benefited from support of Sam-
sung Research through the project Improving Deep
Learning using Latent Structure and the donation
of Titan V GPU by NVIDIA Corporation.

References

Rens Bod. 2006. An all-subtrees approach to unsuper-
vised parsing. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and
44th Annual Meeting of the Association for Compu-
tational Linguistics.

Eugene Charniak. 1997.
a context-free grammar and word
AAAI/IAAL 2005.

Statistical parsing with
statistics.

Jihun Choi, Kang Min Yoo, and Sang-goo Lee. 2018.
Learning to compose task-specific tree structures. In
Thirty-Second AAAI Conference on Artificial Intelli-
gence.

Alexander Clark. 2001. Unsupervised induction of
stochastic context-free grammars using distribu-
tional clustering. In Proceedings of the 2001 work-
shop on Computational Natural Language Learning.
Association for Computational Linguistics.

Andrew Drozdov, Patrick Verga, Mohit Yadav, Mohit
Iyyer, and Andrew McCallum. 2019. Unsupervised
latent tree induction with deep inside-outside recur-
sive auto-encoders. In Proceedings of the North
American Chapter of the Association for Computa-
tional Linguistics.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A Smith. 2016. Recurrent neural network
grammars. In Proceedings of the North American
Chapter of the Association for Computational Lin-
guistics.

Chris Dyer, Gabor Melis, and Phil Blunsom. 2019. A
critical analysis of biased parsers in unsupervised
parsing. arXiv:1909.09428.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural computation.

Phu Mon Htut, Kyunghyun Cho, and Samuel Bowman.
2018. Grammar induction with neural language
models: An unusual replication. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing.

109

Taeuk Kim, Jihun Choi, Daniel Edmiston, and Sang-
goo Lee. 2020. Are pre-trained language models
aware of phrases? simple but strong baselines for
grammar induction. In /CLR.

Yoon Kim, Chris Dyer, and Alexander Rush. 2019a.
Compound probabilistic context-free grammars for
grammar induction. In Proceedings of Association
for Computational Linguistics. Association for Com-
putational Linguistics.

Yoon Kim, Alexander M Rush, Lei Yu, Adhiguna Kun-
coro, Chris Dyer, and Gabor Melis. 2019b. Unsuper-
vised recurrent neural network grammars. In Pro-
ceedings of the North American Chapter of the As-
sociation for Computational Linguistics.

Dan Klein and Christopher D Manning. 2002. A gener-
ative constituent-context model for improved gram-
mar induction. In Proceedings of Association for
Computational Linguistics. Association for Compu-
tational Linguistics.

Phong Le and Willem Zuidema. 2015. Unsupervised
dependency parsing: Let’s use supervised parsers.
arXiv preprint arXiv:1504.04666.

Bowen Li, Lili Mou, and Frank Keller. 2019. An im-
itation learning approach to unsupervised parsing.
arXiv:1906.02276.

Mitchell Marcus et al. 1999. Treebank-3 1dc99t42 web
download. Philidelphia: Linguistic Data Consor-
tium.

Johnson M McClosky D, Charniak E. 2006. Effective
self-training for parsing. North American Chapter
of the Association of Computational Linguistics.

Ellen Riloff, Janyce Wiebe, and Theresa Wilson. 2003.
Learning Subjective Nouns using Extraction Pattern
Bootstrapping. In Proceedings of CoNLL.

Yikang Shen, Zhouhan Lin, Chin-Wei Huang, and
Aaron Courville. 2018a. Neural language modeling
by jointly learning syntax and lexicon. In ICLR.

Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessan-
dro Sordoni, Aaron Courville, and Yoshua Bengio.
2018b. Straight to the tree: Constituency parsing
with neural syntactic distance. In Proceedings of the
Association for Computational Linguistics.

Yikang Shen, Shawn Tan, Alessandro Sordoni, and
Aaron Courville. 2019. Ordered neurons: Integrat-
ing tree structures into recurrent neural networks. In
ICLR.

Mark Steedman, Miles Osborne, Anoop Sarkar,
Stephen Clark, Rebecca Hwa, Julia Hockenmaier,
Paul Ruhlen, Steven Baker, and Jeremiah Crim.
2003. Bootstrapping statistical parsers from small
datasets. In Proceedings of European chapter of the
Association for Computational Linguistics. Associa-
tion for Computational Linguistics.

Adina Williams, Andrew Drozdov, and Samuel R Bow-
man. 2018. Do latent tree learning models identify
meaningful structure in sentences? Transactions of
the Association for Computational Linguistics.

David Yarowsky. 1995. Unsupervised Word-Sense Dis-
ambiguation Rivaling Supervised Methods. In Pro-
ceedings of ACL.

Dani Yogatama, Phil Blunsom, Chris Dyer, Edward
Grefenstette, and Wang Ling. 2017. Learning to
compose words into sentences with reinforcement
learning. In ICLR.

110

