
Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 98–104
Virtual Meeting, July 9, 2020. c©2020 Association for Computational Linguistics

98

Lexicalization of Probabilistic Linear Context-free Rewriting Systems

Richard Mörbitz and Thomas Ruprecht
Faculty of Computer Science

Technische Universität Dresden
01062 Dresden, Germany

{richard.moerbitz,thomas.ruprecht}@tu-dresden.de

Abstract

In the field of constituent parsing, probabilis-
tic grammar formalisms have been studied to
model the syntactic structure of natural lan-
guage. More recently, approaches utilizing
neural models gained lots of traction in this
field, as they achieved accurate results at high
speed. We aim for a symbiosis between prob-
abilistic linear context-free rewriting systems
(PLCFRS) as a probabilistic grammar formal-
ism and neural models to get the best of both
worlds: the interpretability of grammars, and
the speed and accuracy of neural models. A
combination of these two could be achieved
by applying supertagging to PLCFRS. This ap-
proach requires lexical grammar formalisms.
Here, we present a procedure which turns any
PLCFRS G into an equivalent lexical PLCFRS
G′. Moreover, we show how the derivations
in G′ can be transformed to obtain their corre-
sponding original derivations in G. Our con-
struction for G′ preserves the probability as-
signment and does not increase parsing com-
plexity compared to G.

1 Introduction

Constituency parsing is a syntactical analysis in
NLP that aims to enhance sentences with, usually
tree-shaped, phrase structures (for an example cf.
the left of Fig. 1). Formalisms such as context-free
grammars (CFG) are used in this setting because
they are conceptually simple, interpretable, and
parsing is tractable (cubic in sentence length).

Discontinuous constituents span non-contiguous
sets of positions in a sentence. The resulting phrase
structures do not take the shape of a tree anymore,
as they contain crossing branches (cf. the left of
Fig. 1), and cannot be modeled by CFG. As a coun-
termeasure, many corpora (e.g., the Penn Treebank
(PTB)) denote these phrase structures as trees nev-
ertheless and introduce designated notations for

discontinuity, which is then often ignored in pars-
ing. However, discontinuity occurs in about 20 %
of the sentences in the PTB, and parsing discon-
tinuous constituents can improve accuracy (Evang
and Kallmeyer, 2011). For this, so-called “mildly
context-sensitive” grammar formalisms have been
investigated, e.g., tree-adjoining grammars (TAG;
Joshi et al., 1975) and linear context-free rewrit-
ing systems (LCFRS; Vijay-Shanker et al., 1987).
Their increased expressiveness comes at the cost
of a higher parsing complexity: given a sentence
of length n, parsing is in O(n6) for TAG and
O(n3·fanout(G)) for an LCFRS G. The fanout is
grammar-specific and reflects the degree of dis-
continuity in the rules of G. The expressiveness
of TAG equals that of LCFRS with fanout 2. An
LCFRS derivation of a discontinuous phrase is
shown in the right of Fig. 1.

Supertagging has been used for more efficient
parsing with lexical TAG (Bangalore and Joshi,
1999). A TAG is lexical if each rule contains one
word. A supertagger selects for each position of
the input sentence a subset of the rules of the TAG;
these are the so-called supertags. Parsing is then
performed with the much smaller grammar of su-
pertags. Recently, the performance of supertagging
has been improved by using neural classifiers for
the selection of supertags (Vaswani et al., 2016).
The goal of our research is to use supertagging
for parsing with LCFRS, because they are more
expressive than TAG.

In this paper, we lay the theoretical founda-
tions for a supertagging-based LCFRS parser. As
LCFRS obtained from corpora such as the PTB
are usually not lexical, we employ a lexicalization
procedure. It can be seen as an instance of the tech-
nique for lexicalization of multiple context-free
tree grammars (Engelfriet et al., 2018). However,
our approach is more concise and does not increase
the fanout of the grammar (thus preserving parsing

99

VP

VBZ

is

VP

VBN

scheduled

NP

NP

DT

A

NN

hearing

PP

IN

on

NP

DT

the

NN

issue

NP

NN

today

NP2 → (x1
1, x

1
2) (NP1,PP)

NP1 → (x1
1x1

2) (DT,NN)

DT→ (A) NN→ (hearing)

PP→ (x1
1x1

2) (IN,NP1)

IN→ (on) NP1 → (x1
1x2

1) (DT,NN)

DT→ (the) NN→ (issue)

Figure 1: Left: a discontinuous phrase structure tree of the sentence A hearing is scheduled on the issue today.
Right: an LCFRS derivation of the discontinuous noun phrase A hearing on the issue.

complexity). Moreover, the approach is extended
to account for probabilistic parsing. Furthermore,
we introduce a procedure which recovers from each
derivation of a lexicalized LCFRS all correspond-
ing derivations of the original grammar.

This short paper is to be seen as a report on
our approaches to lexicalization and recovery of
derivations. An implementation of the supertagger
and experimental evaluation are currently work in
progress.

2 Preliminaries

The set of non-negative (resp. positive) integers is
denoted byN (resp.N+). We abbreviate {1, ..., n} by
[n] for each n ∈ N. Let A be a set; the set of (finite)
strings over A is denoted by A∗. An alphabet is a
finite and non-empty set.

Let S be some set whose elements we call sorts.
An S -sorted set is a tuple (A, sort) where A is a
set and sort: A→ S . Usually, we identify (A, sort)
with A, and denote sort by sortA and sort−1(s) by
As for each s ∈ S . The usual notation for sets
(∈,⊆,∪, . . .) is used with sorted sets in the intu-
itive manner. Now let A be an (S ∗ × S)-sorted
set. The set of trees over A is the S -sorted set
TA where TA

s = {a(t1, . . . , tk) | k ∈ N, s1, . . . , sk ∈

S , a ∈ A(s1···sk ,s), t1 ∈ TA
s1
, . . . , tk ∈ TA

sk
} for each

s ∈ S . A ranked set A is an (S ∗ × S)-sorted set
where S = {s}; the notation rkA(a) = k abbreviates
sortA(a) = (sk, s), and Ak abbreviates A(sk ,s). If we
use a usual set B in place of a ranked set, we will
silently assume rkB(b) = 0 for each b ∈ B. Let X
be a set. We let A(X) = {a(x1, . . . , xk) | k ∈ N, a ∈
Ak, x1, . . . , xk ∈ X}.

LCFRS. Linear context-free rewriting systems
extend the rule-based string rewriting mechanism
of CFG to string tuples; we describe the gener-

ation process by compositions. Let k ∈ N and
s1, . . . , sk, s ∈ N+; a Σ-composition is a tuple
(u1, . . . , us) where each u1, . . . , us is a non-empty
string over Σ and variables of the form x j

i where
i ∈ [k] and j ∈ [si]. Each of these variables must
occur exactly once in u1 · · · us and they are ordered
such that x1

i occurs before x1
i+1 and x j

i occurs before
x j+1

i for each i ∈ [k−1] and j ∈ [si −1]. We denote
the set of Σ-compositions by CΣ

(s1···sk ,s); we drop
the superscript in the case Σ = ∅ (then C(s1···sk ,s)
is finite); we drop the subscript if we admit any
configuration of k, s1, . . . , sk and s. We associate
with each composition (u1, . . . , us) ∈ CΣ

(s1···sk ,s) a
function from k string tuples, where the i-th tuple
is of length si, to a string tuple of length s. This
function is denoted by ~(u1, . . . , us)�. Intuitively, it
replaces each variable of the form x j

i in u1, . . . , us

by the j-th component of the i-th argument.

An LCFRS is a tuple G = (N, Σ, S ,R) where • N
is a finite N+-sorted set (non-terminals), • Σ is an
alphabet (terminals), • S ∈ N1 (initial non-ter-
minal), and • R is a finite (N∗ × N)-sorted set
(rules). Each rule is of the form A→ c(B1, . . . , Bk),
where k ∈ N, A, B1, . . . , Bk ∈ N, and
c ∈ CΣ

(sortN (B1)··· sortN (Bk),sortN (A)). The sort of the rule
is (B1 · · · Bk, A); we call A the left-hand side (lhs),
B1, . . . , Bk the right-hand side (rhs) and c the rule’s
composition. We drop the parentheses around the
rhs if k = 0. We call rules of the form • A → c
where A , S terminating, • A→ c(B) monic, and
• A → c(B1, ..., Bk) where k ≥ 2 branching, and
denote the set of these rules in R by R(T), R(M)

and R(B), respectively. A rule is called lexical,
if its composition contains at least one terminal.
The lcfrs G is called lexical, if each rule is lex-
ical. The set of (complete) derivations in G is
DG = TR

S . Let w ∈ Σ∗ and d = r(d1, . . . , dk) ∈ TR

100

with r = A → c(B1, . . . , Bk). The yield of d is
yd(d) = ~c�(yd(d1), . . . , yd(dk)).

PLCFRS. A probabilistic LCFRS is a tuple
(G, µ) where G = (N, Σ, S ,R) is an LCFRS and
µ: R→ [0, 1] maps each rule to a probability. The
weight of a derivation d = r (d1, . . . , dk) ∈ TR is
wt(d) = µ(r) · wt(d1) · · ·wt(dk).

Top-down Tree Transducers. A top-down tree
transducer (TT) is a tuple A = (Q, Σ, ∆, qi, δ) where
• Q is a finite set (states), • Σ and ∆ are ranked
alphabets (input and output alphabet), • qi ∈ Q
(initial state), and • δ is a finite set (transitions).
Each transition is of the form q(σ(x1, . . . , xk))→ t,
where σ ∈ Σk and t ∈ T∆∪Q({x1,...,xk}). We call a
transition linear (resp. non-deleting) if each vari-
able in {x1, . . . , xk} occurs at most once (resp. at
least once) in t. We call A deterministic if, for each
q ∈ Q an σ ∈ Σ, there is at most one transition of
the form q(σ(x1, . . . , xk)) → t in δ. We call it lin-
ear (resp. non-deleting) if each transition is linear
(resp. non-deleting).

In a TT with ε-rules (εTT), the set δ may also
contain transitions of the form q(x1)→ t where t ∈
T∆∪Q({x1}) and q ∈ Q. We treat them analogously to
transitions where k = 1.

The transduction of A is expressed in terms of the
binary derivation relation ⇒A over T∆∪Q(TΣ). We
write s ⇒A t if there is a subtree q(σ(s1, . . . , sk))
in s and a transition q(σ(x1, . . . , xk)) → t′ such
that t is obtained by replacing q(σ(s1, . . . , sk)) in s
by t′ and replacing xi by si for each i ∈ [k]. The
transduction of A is the relation ~A� = {(s, t) ∈
TΣ ×T∆ | qi(s) ⇒∗A t}. If A is deterministic, we
consider ~A� a function.

TTs are a special case of TTs with regular looka-
head (TTR) that were used by Engelfriet et al.
(2018). For an excellent overview on tree trans-
ducers, we refer to Maletti (2010).

Equivalence of (P)LCFRS. Two LCFRS G and
G′ are called ldTTR-equivalent if there are two
linear and deterministic TTR, T and T ′, such
that • ~T�(d) ∈ DG′ and yd(~T�(d)) = yd(d)
for each d ∈ DG, and • ~T ′�(d′) ∈ DG and
yd(~T ′�(d′)) = yd(d′) for each d′ ∈ DG′ . Two
PLCFRS (G, µ) and (G′, µ′) are called ldTTR-
equivalent if G and G′ are ldTTR-equivalent and
• wt(~T�(d)) ≥ wt(d) for each d ∈ DG, and
• wt(~T ′�(d′)) ≥ wt(d′) for each d′ ∈ DG′ .
~T�, as well as ~T ′�, may map multiple deriva-

tions to one single derivation. The relation between

the weights assures that this mapped derivation
assumes the greatest of the original derivations’
weights.

3 Lexicalizing LCFRS

For the remainder, we assume (without loss of gen-
erality; cf. Seki et al., 1991) a PLCFRS (G, µ)
where G = (N, Σ, S ,R) is terminal- and initial-
separated, i.e. each rule is either of the form
A → (σ) with σ ∈ Σ or A → c(B1, . . . , Bk) where
c ∈ C (i.e. c contains no terminal symbols) and
none of B1, . . . , Bk is S . Starting with (G, µ), we
incrementally construct a lexical PLCFRS in three
steps:

1. Monic rules are removed.

2. Terminating rules are removed and, for each
branching rule, each subset of rhs nontermi-
nals is replaced with lexical symbols of match-
ing terminating rules. This construction ob-
tains terminating rules with at least two lexical
symbols and each constructed monic rule con-
tains at least one lexical symbol.

3. A terminal is cut from each terminating
rule and pasted into a remaining non-lexical
branching rule if a derivation with the branch-
ing rule reaches the terminating rule at some
point. At the end of this step, each rule con-
tains at least one terminal.

The first two steps are direct instances of the lex-
icalization for multiple context-free tree grammars
as introduced by Engelfriet et al. (2018).

Step 1 (Dechain). In the first step, we remove
each monic rule and chain its composition with the
composition of each other reachable rule.
Definition 1. Let k ∈ N, s, s′, s1, . . . , sk ∈ N+,
c ∈ C(s1···sk ,s) and c′ ∈ C(s,s′). We denote the com-
position ~c′�(c) ∈ Cs1···sk ,s′ by c′ ◦ c. �

The set of rules Rdc is the smallest set
R̂ such that • R \ R(M) ⊆ R̂ • for each
A → c1(B) ∈ R(M) and B → c2(C1, ...,Ck) ∈ R̂,
the rule A→ c1 ◦ c2 (C1, ...,Ck) is in R̂. We define
the function µdc: Rdc → [0, 1] such that, for each
rule r = A→ c (C1, ...,Ck) ∈ Rdc, the value is
µdc(r) = max

{
µ(r)

}
∪{

µ(r1) · µdc(r2) | r1 = A→ c1(B) ∈ R(M),

r2 = B→ c2(C1, ...,Ck) ∈ Rdc: c1 ◦ c2 = c
}
.

The set Rdc, as well the function µdc, can be effi-
ciently computed with an instance of the algorithm
by Aho et al. (1974, alg. 5.5), cf. alg. 1 in app. A.

101

PP→ (x1
1x1

2) (IN,NP1)

IN→ (on) NP1 → (x1
1x2

1) (DT,NN)

DT→ (the) NN→ (issue)

ρ(1) = on

ρ(1) = the ρ(2) = issue

PP→ (on x1
1) (NP1)

NP1 → (the issue)

Figure 2: Fusing of terminals. Left: derivation of Gdc.
Right: corresponding derivation of Gft, where the ter-
minals of the leaves are inserted into their parent rules.

Step 2 (Fuse Terminals). In this step, the sym-
bols of the terminating rules are inserted into non-
terminating (terminal-free) rules. The intuition is
given in Fig. 2. For the formal definition we first
introduce the insertion operation.

Definition 2. Let A→ c(B1, . . . , Bk) be a rule, π ⊆
{i ∈ [k] | Bi ∈ N1} and ρ: π → Σ. Moreover, let
i1, . . . , ik−|π| be the indices in [k] \ π in ascending
order. The composition c[ρ] is obtained from c
by replacing each variable of the form x j

i • by ρ(i)
if i ∈ π, or • by x j

`
if i` = i. We denote A →

c[ρ](Bi1 , . . . , Bik−|π|) by A→ c(B1, . . . , Bk)[ρ]. �

For each rule r = A → c(B1, . . . , Bk), we de-
fine the set F(r) =

{
ρ: π → Σ | π ⊆ [k],∀i ∈

π: Bi → (ρ(i)) ∈ R(T)
dc

}
. It contains each function

that replaces a subset of r’s rhs nonterminals with
terminal symbols respecting the terminating rules;
we use it to define the set of rules Rft and the func-
tion µft: Rft → [0, 1]:

Rft =
{
r[ρ] | r ∈ Rdc \ R(T)

dc , ρ ∈ F(r)
}
,

µft(r′) = max
{
µdc(r) ·

∏
i∈π
µdc

(
Bi → (ρ(i))

)
| r ∈ Rdc \ R(T)

dc , ρ ∈ F(r): r[ρ] = r′
}
.

Step 3 (Propagate Terminals). In this final step,
terminal symbols are inserted into the remaining
non-lexical branching rules. Intuitively, one termi-
nal symbol is cut from each terminating rule, which
now has at least two occurrences of terminal sym-
bols. This symbol is then pasted into a non-lexical
branching rule that reaches the rule it was cut from
via its second right-hand side nonterminal. If there
are rules between the terminating rule the symbol
was cut from and the rule it shall be pasted into,
then the information that a terminal can be pasted
through these rules is propagated via the nontermi-
nals. For this we extend the set of nonterminals to
Npt = N ∪ N × Σ, where (A, σ) ∈ N × Σ indicates
that σ was cut from a rule with left-hand side A
(sortNpt(A, σ) = sortN(A) for each (A, σ) ∈ N × Σ).

Fig. 3 shows an example of how the terminal sym-
bols are propagated through a derivation.

Definition 3. Let σ ∈ Σ and r be a rule of the
form A → (σu1, u2, ..., us) (B1, ..., Bk). We denote
(A, σ)→ (u1, ..., us) (B1, ..., Bk) by cut(r). �

Definition 4. Let r = A → c (B1, ..., Bk) be a
rule and i ∈ [k]. We obtain c′ from c by replac-
ing the variable x1

i with σx1
i and denote A →

c′ (B1, ..., (Bi, σ), ..., Bk) by pastei
σ(r). �

Let R(6Σ)
ft denote the set of rules in R(B)

ft without
terminals. We define the sets of rules

R′ =
{
paste2

σ(r) | r ∈ R(6Σ)
ft , σ ∈ Σ

}
∪ (R(B)

ft \ R(6Σ)
ft)

Rpt = (Rft \ R(B)
ft) ∪ R′

∪
{
cut(A→ c) | A→ c ∈ R(T)

ft
}

∪
{
cut(paste1

σ(r)) | r ∈ R′ ∪ R(M)
ft , σ ∈ Σ

}
.

Note that, in contrast to Engelfriet et al. (2018),
we do not need to split the rules’ compositions,
because we always cut the first symbol. Therefore,
the fanout of the grammar is unchanged.

The applications of cut and paste that led to a
rule in Rpt are unambiguously determined from the
lhs and rhs nonterminals in N×Σ. These operations
are unambiguously reversible; for each r′ ∈ Rpt,
there is a rule in r ∈ Rft uniquely determined such
that r′ is exactly one of • r, • paste2

σ(r), • cut(r),
• cut(paste1

σ(r)), or • cut(paste1
σ1

(paste2
σ2

(r))). We
define the function µpt: Rpt → [0, 1] such that
µpt(r′) = µft(r) for each r′ ∈ Rpt.

Theorem 5. The PLCFRS ((Npt, Σ, S ,Rpt), µpt)
and (G, µ) are ldTTR-equivalent.

4 Unlexicalizing Derivations

The ultimate goal of parsing is to obtain derivations
of the original grammar (G, µ), which are quite
different from the derivations of the transformed
grammar ((Npt, Σ, S ,Rpt), µpt). Therefore we seek
a transformation from TRpt to TR.

Engelfriet et al. (2018) have introduced deter-
ministic linear and non-deleting TTR from TRpt to
TRft , from TRft to TRdc , and from TRdc to TR; they
were used to show ldTTR-equivalence of the cor-
responding grammars. The composition of these
transducers yields a transduction from TRpt to TR.
However, for recovering derivations, these trans-
ducers are not adequate, as a derivation in TRft or
TRdc may have multiple possible originals in TRdc

or TR, respectively. We want to be able to obtain all
of these derivations, as this may be beneficial for

102

NP2 → (x1
1, x

1
2) (NP1,PP)

NP1 → (A hearing) PP→ (on x1
1) (NP1)

NP1 → (the issue)

cutpaste2
on

cut
paste1

the

NP2 → (x1
1, on x1

2) (NP1, (PP, on))

NP1 → (A hearing) (PP, on)→ (the x1
1) ((NP1, the))

(NP1, the)→ (issue)

Figure 3: Propagation of terminals. Left: derivation of a (partly lexicalized) LCFRS before the application of
step 3. Right: derivation after step 3, where the is propagated from the leaf to the PP rule and on is propagated
from there to the NP2 rule, thus lexicalizing it.

later stages of an application (e.g., when selecting
k best derivations is desired).

For this, we employ two approaches. We map
each derivation in TRpt to its unique original deriva-
tion by using the transducer of (Engelfriet et al.,
2018); we denote this transducer by T←−pt. It real-
izes a deterministic tree relabeling which is already
indicated at the end of the previous section. For
the other two transductions, we define novel non-
deterministic tree transducers.

Transduction TRft → TRdc . Let r = A →

c(B1, ..., Bk) ∈ Rft, π ⊆ {i ∈ [k] | Bi ∈ N1},
ρ: π→ Σ and i1, . . . , ik−|π| be the elements of [k] \π
in ascending order. We denote the tree r(d1, . . . , dk),
where di = Bi → (ρ(i)) if i ∈ π and di = ∗(x`) if
i = i`, by r(x1, . . . , xk)[ρ].

We define the linear and non-deleting TT T←−
ft

=

({∗},Rft,Rdc, ∗, δ), where δ is the smallest set such
that, for each rule r = A→ c(B1, ..., Bk) ∈ Rdc\R

(T)
dc

and ρ ∈ F(r), the transition ∗
(
r[ρ](x1, ..., xk−|π|)

)
→

r(x1, ..., xk)[ρ] is in δ.

Transduction TRdc → TR. Let us denote the
composition (x1, ..., xsortN (A)) by idA for each A ∈ N.
We define the linear and non-deleting εTT T←−

dc
=

(Q,Rdc,R, (S , idS), δ) where Q =
⋃

A,B∈N{B} ×
C(sortN (B),sortN (A)) and δ is the smallest set that con-
tains,
• for each (B, c) ∈ Q, r = B → c′(B1, . . . Bk) ∈

R \ R(M) and A ∈ N, the transition

(B, c)
(
A→ c◦c′ (B1, ..., Bk) (x1, ..., xk)

)
→ r

(
(B1, idB1)(x1), ..., (Bk, idBk)(xk)

)
,

• for each (A, c) ∈ Q and r = A→ c′(B) ∈ R(M),
the transition (A, c)(x1)→ r

(
(B, c ◦ c′)(x1)

)
.

The transduction ~T←−
dc
� ◦ ~T←−

ft
� ◦ ~T←−pt�: TRpt →

TR, i.e., the composition of the three transductions
introduced in this section, is the inverse of the
transduction ~T� from the proof of Theorem 5 (cf.
App. B, p. 7). Therefore, the k best derivations
in (G, µ) must be among the transductions of the

k best derivations in ((Npt, Σ, S ,Rpt), µpt), which
benefits the enumeration of k best derivations.

5 Conclusion

Based on Engelfriet et al. (2018), we have in-
troduced a procedure which constructs for every
PLCFRS G an equivalent lexicalized PLCFRS G′.
Moreover, we have described how to recover from
each derivation of G′ all corresponding derivations
of G. In future work, we will use our approach to
implement a supertagging-based LCFRS parser.

Acknowledgements

We thank our colleague Kilian Gebhardt as well
as the anonymous reviewers for their insightful
comments on drafts of this paper.

References
Alfred V Aho, John E. Hopcroft, and Jeffrey D. Ull-

man. 1974. The design and analysis of computer
algorithms. Pearson Education India.

Srinivas Bangalore and Aravind K. Joshi. 1999. Su-
pertagging: An approach to almost parsing. Compu-
tational linguistics, 25(2):237–265.

Joost Engelfriet, Andreas Maletti, and Sebastian
Maneth. 2018. Multiple context-free tree gram-
mars: Lexicalization and characterization. Theoreti-
cal Computer Science, 728:29–99.

Kilian Evang and Laura Kallmeyer. 2011. PLCFRS
parsing of English discontinuous constituents. In
Proceedings of the 12th International Conference on
Parsing Technologies, pages 104–116, Dublin, Ire-
land. Association for Computational Linguistics.

Aravind K. Joshi, Leon S. Levy, and Masako Takahashi.
1975. Tree adjunct grammars. 10(1):136–163.

Andreas Maletti. 2010. Survey: Tree transducers in
machine translation. In NCMA, pages 11–32. Cite-
seer.

Andreas Maletti and Giorgio Satta. 2009. Parsing al-
gorithms based on tree automata. In Proceedings of

https://www.aclweb.org/anthology/W11-2913
https://www.aclweb.org/anthology/W11-2913
https://doi.org/http://dx.doi.org/10.1016/S0022-0000(75)80019-5
http://dl.acm.org/citation.cfm?id=1697236.1697238
http://dl.acm.org/citation.cfm?id=1697236.1697238

103

the 11th International Conference on Parsing Tech-
nologies, IWPT ’09, pages 1–12, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and
Tadao Kasami. 1991. On multiple context-free
grammars. 88(2):191–229.

Ashish Vaswani, Yonatan Bisk, Kenji Sagae, and Ryan
Musa. 2016. Supertagging with LSTMs. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
232–237.

Krishnamurti Vijay-Shanker, David Jeremy Weir, and
Aravind K. Joshi. 1987. Characterizing structural
descriptions produced by various grammatical for-
malisms. In Proceedings of the 25th Annual Meet-
ing on Association for Computational Linguistics,
ACL ’87, pages 104–111, Stroudsburg, PA, USA.
Association for Computational Linguistics.

A Supplemental Algorithms

Algorithm 1 comps shows an instance of the alg.
by (Aho et al., 1974, alg. 5.5) that we use to com-
pute Rdc and µdc efficiently.
Require: terminal-separated PLCFRS (G, µ)

where G = (N, Σ, S ,R)
Ensure: dechain(N,R, µ) = (Rdc, µdc)

1: max v← w denotes v← max(v, w)
2: function comps(N, R, µ)
3: let (mA→c(B) = 0 | A, B ∈ N, c ∈ C)
4: mr ← µ(r) ∀r ∈ R(M)

5: mA→idA(A) ← 1 ∀A
6: for B ∈ N do
7: for A,C ∈ N \ {B} do
8: for c1, c2 ∈ C do
9: w′ ← mA→c1(B) · mB→c2(C)

10: max mA→c1◦c2 (C) ← w′

11: return m
12: function dechain(N, R, µ)
13: m← comps(N,R, µ)
14: let (µ̂A→c(B1,...,Bk) = 0 | A, B1, ..., Bk ∈

N, c ∈ C)
15: R′ ← R \ R(M)

16: µ̂r′ = µ(r′) ∀r′ ∈ R′

17: for r = B→ c2(C1, ...,Ck) ∈ R \ R(M) do
18: for A ∈ N, c1 ∈ C: mA→c1(B) , 0 do
19: r′ ← A→ c1 ◦ c2(C1, ...,Ck)
20: R′ ← R′ ∪ {r′}
21: max µ̂r′ ← mA→c1(B) · µ(r)

22: let µ: R′ → [0, 1] with µ′(r′) = µ̂r′∀r′ ∈ R′

23: return (R′, µ′)

B Supplemental Proofs

We prove thm. 5 in two steps.
First lem. 7 shall prove that the (unweighted)

underlying grammars, G and (Npt, Σ, S ,Rpt) are
ldTTR-equivalent. As linear and deterministic TTR

are closed under composition, the idea is to con-
struct two of them for each step, one that trans-
duces derivations in the original to derivations in
the constructed grammar and vice versa. The three
transducers for each direction are then composed
to obtain transductions from derivations in G to
derivations in (Npt, Σ, S ,Rpt) and vice versa.

Thm. 5 additionally proves the preservation of
the weights. Similarly to the above, we show that
the PLCFRS constructed in each of the three steps
are ldTTR-equivalent. The property is clearly tran-
sitive.

Definition 6. A TTR is a tuple A = (Q, Σ, ∆, qi, δ)
where Q, Σ, ∆ and qi are as in TT, and transitions
in δ are of the form q(σ(x1: L1, . . . , xk: Lk): L0)→
t where q ∈ Q, σ ∈ Σk, t ∈ T∆∪Q({x1,...,xk}) and
L0, . . . , Lk are regular tree languages.1 We omit
some of the languages L0, . . . , Lk if they are TΣ . We
define the binary relation⇒A over T∆∪Q(TΣ) such
that s⇒A t if there is a subtree q(σ(s1, . . . , sk)) in
s and a transition q(σ(x1: L1, . . . , xk: Lk): L0)→ t′

such that •σ(s1, . . . , sk) ∈ L0, s1 ∈ L1, . . . , sk ∈ Lk,
and • t is obtained by replacing q(σ(s1, . . . , sk)) in
s by t′ and replacing xi by si for each i ∈ [k]. �

Lemma 7. The LCFRS G and (Npt, Σ, S ,Rpt) are
ldTTR-equivalent.

Proof. The first two steps are instances of lems. 32
and 37 by Engelfriet et al. (2018), therefore we will
only show the third step.

Step 3. For the construction, we consider Rft and
Rpt as ranked sets. For each R̂ ∈ {Rft,Rpt} and rule
of the form r = A → c(B1, . . . , Bk) ∈ R̂, we let
rkR̂(r) = k.

Let, for each σ ∈ Σ, Rσ and RX be the sets
of all rules in Rft of the form A → c(B1, . . . , Bk)
where c is of the form (σu1, u2, . . . , us) and
(x1

1u1, u2, . . . , us), respectively. To decide whether
a terminal symbol may be propagated through a
derivation, we define the look-ahead language Lσ

1Regular tree languages are recognized by regular tree au-
tomata. We refer to Maletti and Satta (2009) for an overview.

https://doi.org/10.1016/0304-3975(91)90374-B
https://doi.org/10.1016/0304-3975(91)90374-B
https://doi.org/10.3115/981175.981190
https://doi.org/10.3115/981175.981190
https://doi.org/10.3115/981175.981190

104

for each σ ∈ Σ as the smallest set L such that

L = {r(d1, . . . , dk) | r ∈ Rσ, d1, . . . , dk ∈ TRft}

∪ {r(d1, . . . , dk) | r ∈ Rx, d1 ∈ L,

d2, . . . , dk ∈ TRft}.

Observation 8. Let d ∈ TRft and σ ∈ Σ. The
following are equal: 1. d ∈ Lσ, and 2. yd(d) is of
the form (σu1, u2, . . . , us).

We define the ldTTR Tpt = ({p, ∗},Rft,Rpt, ∗, δ)
where δ contains the following transitions

1. ∗(r(x1, . . . , xk)) → r(∗(x1), . . . , ∗(xk)) for
each r ∈ Rft \ R(6Σ)

ft ,

2. for each r ∈ R(6Σ)
ft , ∗(r(x1, x2: Lσ, x3, . . . , xk))

→ paste2
σ(r)(∗(x1), p(x2), ∗(x3), . . . , ∗(xk)),

3. p(r)→ cut(r) for each r ∈ R(T)
ft ,

4. for r ∈ R(M)
ft ∪ (R(B)

ft \ R(6Σ)
ft) and σ ∈ Σ,

p(r(x1: Lσ, x2, . . . , xk))
→ cut(paste1

σ(r))(p(x1), ∗(x2), . . . , ∗(xk)), and

5. for each r ∈ R(6Σ)
ft and σ1, σ2 ∈ Σ,

p(r(x1: Lσ1 , x2: Lσ2 , x3, . . . , xk))
→ r′(p(x1), p(x2), ∗(x3), . . . , ∗(xk)) where
r′ = cut(paste1

σ1
(paste2

σ2
(r))).

Let us have a close look at some constructions
in these transitions. Let r = A → c(B1, . . . , Bk)
be a rule and (vi ∈ (Σ∗)fo(Bi) | i ∈ [k]). We de-
note the composition of cut(r) by cut(c) and the
composition of pastei

σ(r) by pastei
σ(c).

Observation 9. Let cut(c) be defined, then
~cut(c)�(v1, . . . , vk) = cut(~c�(v1, . . . , vk)).

Observation 10. Let vi be of the form
(σu1, u2, . . . , us) for i ∈ [k] and σ ∈ Σ.
~pastei

σ(c)�(v1, . . . , cut(vi), . . . , vk) =

~c�(v1, . . . , vk).

Using the observations 8–10 one can easily show
that, for each d ∈ TRft and d′ ∈ TRpt : 1. if
∗(d) ⇒∗Tpt

d′, then yd(d) = yd(d′), and 2. if
p(d)⇒∗Tpt

d′, then yd(d′) = (u1, . . . , us) and d ∈ Lσ
where (σu1, . . . , us) = yd(d). This concludes the
proof in the direction TRft → TRpt .

For the other direction, we observe that the ap-
plications of cut and paste to obtain the rules in
Rpt can easily be determined by the occurrences
of the nonterminals in N × Σ. The transduction
TRpt → TRft is thus a deterministic relabeling and
can be implemented by a deterministic top-down

tree transducer. Engelfriet et al. (2018, lem. 42, pg.
39) came to the same conclusion for their construc-
tion. �

Theorem 5. The PLCFRS ((Npt, Σ, S ,Rpt), µpt)
and (G, µ) are ldTTR-equivalent.

Proof sketch. We split the proof into the two re-
maining properties to show:

1. wt(~T�(d)) ≥ wt(d) for each d ∈ TR, and

2. wt(~T ′�(d′)) ≥ wt(d′)2 for each d′ ∈ TRpt .

(item 1) The weight functions in sec. 3 are obvi-
ously defined in such a way that the weight of a con-
structed rule is the greatest product of weights for
all involved rules in the construction. For each step,
the transducer T replaces the rules in the derivation
d with an unambiguous constructed rule (this fol-
lows from the inductive structure of the previous
proof). Therefore, the weight wt(~T�(d)) must be
greater than wt(d).

(item 2) For each step, the transducer T ′ gives
us some derivation that contains the rules that were
used to construct the rules in d′. The construction
of T ′ for the steps 1 and 2 is ambiguous, so that
we can choose any combination of rules used to
construct r′ for each rule r′ in d′. ~T ′�(d′) then con-
tains each rule in these combinations. Intuitively,
we choose the combination of rules with greatest
product of weights. Then the weight wt(~T ′�(d′))
is wt(d′). �

2More specifically, we prove wt(~T ′�(d′)) = wt(d′) for
each d′ ∈ TRpt .

