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Abstract
In this paper, we present LinTO, an intelligent voice platform and smart room assistant for improving efficiency and productivity in
business. Our objective is to build a Spoken Language Understanding system that maintains high performance in both Automatic
Speech Recognition (ASR) and Natural Language Processing while being portable and scalable. In this paper we describe the LinTO
architecture and our approach to ASR engine training which takes advantage of recent advances in deep learning while guaranteeing
high-performance real-time processing. Unlike the existing solutions, the LinTO platform is open source for commercial and
non-commercial use.
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1. Introduction
Speech processing is an active research topic in the signal
processing community. There has been a growing interest,
both commercial and academic, in creating intelligent ma-
chines that interact with humans by voice, suggesting the
capability of not only recognizing what is said, but also of
extracting the meaning from the spoken language (TUR-
ING, 1950).
Advances in machine learning, Automatic Speech Recogni-
tion (ASR), and Natural Language Processing (NLP) have
lead to dramatic advances in Spoken Language Understand-
ing (SLU) during the last two decades, evolving from rela-
tively simple tasks such as spoken keyword extraction to
much more complicated ones involving language under-
standing in more extended natural language interactions
(Serdyuk et al., 2018; Coucke et al., 2018). These achieve-
ments have unlocked many practical voice applications, e.g.
voice assistants, which are now used in many contexts, in-
cluding autonomous vehicles (Pfleging et al., 2012), and
smart homes1 (Coucke et al., 2018). Popular commercial
solutions for voice assistance include Cortana-Microsoft2,
DialogFlow-Google3, Watson-IBM4 or Alexa-Amazon.
SLU is an active research and development field at the in-
tersection of ASR and NLP that focuses on the task of ex-
tracting meaning from spoken utterances. Unlike speech
recognition, SLU is not a single technology but a combi-
nation of technologies: it is a system that requires each of
its interdependent components to perform well with respect
to speech, speech recognition errors, various characteristics
of uttered sentences, and speaker intent detection. This is
significantly more difficult to achieve than written language
understanding (Tur and De Mori, 2011).
Our objective in this paper is to introduce the LinTO Voice
Platform designed for business environments, a competi-
tive solution for voice assistance. Unlike the previous solu-

1https://demo.home-assistant.io/
2https://www.microsoft.com/en-us/cortana
3https://cloud.google.com/dialogflow
4https://www.ibm.com/watson

tions, all the components of our platform are open source5

for commercial and non-commercial use. All models and
components are made available for download for use on our
platform.
We outline the design of a SLU system that achieves high
performance in terms of response time and accuracy with
cloud computing based solutions. This is done by opti-
mizing the trade-off between accuracy and computational
efficiency of the two main ASR components: the acoustic
model and the language model. While the acoustic model
component must be trained on a large corpus using sophis-
ticated deep learning techniques requiring a lot of compu-
tational resources in order to achieve high performance, the
language model component can be trained on the linguistic
domain of the application assistant rather than the domain
of the entire spoken language. The total computational cost
of the ASR is thus reduced by reducing the cost of the lan-
guage model while even improving its in-domain accuracy.

2. LinTO Platform
LinTO is an open-source client-server system that enables
the conception, deployment and maintenance of software
and hardware clients with a voice-activated user interface.
The system boosts the ease of use and productivity in both
administrative management and customer application con-
texts, offering hands-free vocal control processes, multiple-
speaker speech recognition, and voice access for customer
applications.
The LinTO platform features a friendly user console, the
LinTO admin, used to design, build and manage specific
voice assistants. Each assistant is composed of the mod-
els and resources necessary to execute its desired functions,
and may include any number of skills, or intention-action
pairs defined for a particular process, e.g. delivering a ver-
bal weather report if asked about the weather (see section
4.). These are represented in the LinTO admin as an easily
manipulable workflow (see Figure 1).
The workflow defines and runs the models of the corre-
sponding SLU pipeline (Figure 2) which is composed of

5https://doc.linto.ai/#/repos
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Figure 1: A LinTO Admin workflow describing a voice assistant that incorporates several skills

Figure 2: The LinTO SLU architecture

the ASR and NLU engines. The ASR engine recognizes
spoken language and transcribes it into text by first
mapping the audio stream into a sequence of probabilities
over acoustic units (or phones) using an acoustic model
(AM), and then converting the outputs of the AM to
text using a language model (LM). The NLU engine
interprets the language. Specifically, it goes beyond speech
recognition to determine a user’s intent from her decoded
spoken language input (e.g. a query about the weather
forecast). Once the user query is interpreted, the final step
is to compute a response using a dialogue manager. The
response can take multiple forms depending on the request,
e.g., an audio response if asked about the weather or an
action on a connected device if asked to play a song.

In accordance with our performance, portablity and scala-
bility objectives, we developed an SLU system using cloud-
based technologies and offering a service that meets three
basic requirements:

1. Can be deployed in any system

2. Can handle a high number of queries

3. Responds in real time with high accuracy

To address the first requirement, we take advantage of
Docker technology in order to create ”containerized” ser-
vices that can be used in any OS environment. For the scal-
ability requirement, we implement Docker Swarm, a con-
tainer orchestration tool that helps manage multiple con-
tainers deployed across multiple host machines, such that
the service can be scaled up or down depending on the
number of queries (see Figure 3). Finally, in order to pro-
vide an accurate, real-time response, we design the SLU

components to optimize the trade-off between accuracy and
computational efficiency. For instance, since the size of the
AM architecture has an impact on the computational cost
and the accuracy, we determine the final model size by tak-
ing into account target resources and the desired accuracy.
Similarly for the LM and the NLU components, the models
are trained to reduce size and increase in-domain accuracy
by restricting the vocabulary as well as the variety of the
queries they should model.

Figure 3: Service manager using Docker Swarm for con-
tainer orchestration

The LinTO platform and all its services and components
are released publicly6, at no cost for commercial and non-
commercial use. The language currently supported by our
platform is French.

3. The Acoustic Model
The AM is the first component of ASR engine and first step
of the SLU pipeline, and is therefore crucial to the function-
ing of the entire system. It is responsible for converting raw
audio data to a sequence of acoustic units, or phones. It is

6https://doc.linto.ai/
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usually trained on large speech corpus using deep networks
in order to model context variations, speaker variations, and
environmental variations. Given that these variations are
the main factors impacting the accuracy of a speech recog-
nition system, robust modeling of them is imperative to suc-
cessful speech-to-text transcription.
There are two major research directions in acoustic model-
ing. The first one focuses on collecting a large, in-domain
speech corpus adapted to the context of application of the
assistant in order to build a robust model. The second one
focuses on improving machine learning techniques to better
model the long temporal speech contexts. In the next sub-
sections, we will address both directions, first detailing our
methods for collecting, processing and validating training
data, and then describing the acoustic model architecture.

3.1. Data preparation
A large amount of transcribed data is needed in order to
train the deep networks used for speech recognition mod-
els, including AMs. A robust AM requires several thousand
hours of audio training data with corresponding transcripts.
This data must be formatted to include a set of audio ex-
tracts and matching transcripts which are cut into segments
of lengths suitable for acoustic training (optimally a few
tenths a of second).
In recent years there has been a rapid increase in the amount
of open source multimedia content on the internet, making
collecting a large speech corpus more feasible. We have
created a French corpus using various publicly available
sources, including those made available by the LibriVox
project7, a community of volunteers from all over the world
who record public domain texts. We reformat this data by
segmenting and realigning the transcripts, and we also re-
move any transcription errors. Our corpus preparation pro-
cess is presented in Figure 4 and detailed in the following
subsections.

Figure 4: Audio alignment procedure used in the creation
of the corpus

3.1.1. Audio segmentation
We segment the audio recordings using Vocal Activity De-
tection (VAD) technique, which detects the presence or ab-
sence of human speech. We use the detected non-speech
intervals to split the audio at intervals of 0.5 seconds or
less. After segmentation, we must re-align the audio snip-
pets with their transcriptions.

3.1.2. Text alignment
To match the audio segments with the original text, we use
a pre-trained acoustic model with a language model biased

7https://librivox.org/

to the specific vocabulary in order to transcribe each audio
segment. The proposed procedure consists of two stages.
During the first stage, we normalize the original text in or-
der to adapt it for language model generation. Addition-
ally, the obtained text is extended by a set of extra-words
including numbers, ordinal numbers, most common abbre-
viations, and punctuation signs in order to anticipate anno-
tation errors. Next, both the normalized original text and
the audio segments are split into n parts. The text in each
part is then converted into a decoding graph. This is done to
avoid automatic transcription errors by increasing the likeli-
hood that the audio will be matched to some portion of the
text. Finally, we transcribe each audio segment using the
pre-trained acoustic model along with the decoding graph
that matches the audio.
In order to analyze the quality of the transcription, we de-
velop an alignment algorithm to get the best match between
the transcriptions and the normalized original text. We are
inspired by Levenshtein alignment algorithm (Levenshtein,
1966). Once the alignment is obtained, the word error
rate (WER), a common metric used to compare the accu-
racy of the transcripts produced by speech recognition, is
computed between the reference and the hypothesis. Possi-
ble sources of text-audio mismatch include inaccuracies in
ASR prediction, as well as in the original text (e.g., normal-
ization errors, annotation errors). At this stage, it is possible
to retain the segments that are below a low WER threshold
and discard the others.
We then move to the second stage, where we further im-
prove the audio transcription using a custom-generated de-
coding graph for each audio segment. This is done as fol-
lows. First, the decoding graph is formed from a combina-
tion of three original text segments. Our aim is to have a
decoding graph with a high bias in order to overcome the
ASR errors, and to increase the accuracy of the transcrip-
tion with respect to the first stage. Then, we always use the
pre-trained acoustic model with the new decoding graphs
to decode the audio segments. Figure 5 shows different ex-
amples of errors and the results generated during alignment
stage 1 and 2. At the end of this stage, we retain only the
segments with a WER of 0.

3.1.3. AM training data
We have collected about 500 hours of read French speech
from various freely available sources, including: Common-
voice8, M-AILabs9 and librivox. The alignment process
produces a set of aligned audio of size approximately 200
hours performed mainly on librivox data. For the first and
second decoding pass, we use a pre-trained triphone deep
neural network-based AM.

3.2. Acoustic model architecture
Hybrid acoustic models are widely adopted in the cur-
rent state-of-the-art systems combining a Hidden Markov
Model (HMM) with a Deep Neural Network (DNN). The
HMM describes temporal variability while the DNN com-
putes emission probabilities from HMM states in order to

8https://voice.mozilla.org/
9https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/
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a-

Reference: aux artistes ou aux savants dont l’ appui aide à percer dans la branche où ils priment
Hypothesis (Stage 1): aux artistes ou aux savants dont l’ appui aide à entre guillemets percer dans la branche où
ils priment
Hypothesis (Stage 2): aux artistes ou aux savants dont l’ appui aide à entre guillemets percer dans la branche où
ils priment

b-

Reference: pour lesquels ils n’ admettent pas la critique qu’ ils acceptent aisément s’ il s’ agit de leurs chefs d’
oeuvre
Hypothesis (Stage 1): pour lesquels ils n’ admettent pas la critique qu’ ils acceptent aisément s’ agit de leurs
chefs d’ oeuvre
Hypothesis (Stage 2): pour lesquels ils n’ admettent pas la critique qu’ ils acceptent aisément s’ il s’ agit de leurs
chefs d’ oeuvre

c-
Reference: lui préfèreront même des adversaires comme mm ribot et deschanel
Hypothesis (Stage 1): lui préfèreront même des adversaires comme messieurs ribot et deschanel
Hypothesis (Stage 2): lui préfèreront même des adversaires comme messieurs ribot et deschanel

Figure 5: Examples of the audio transcription obtained in the first and second stage. a- Errors in text normalization
overcome in the first and second stage. b- Words deleted in the first stage but correctly recognized in the second one. c-
’messieurs’ expanded abbreviation in the original text perfectly transcribed by ASR.

model and map acoustic features to phones (Hinton et al.,
2012).
Over the last few years, various deep learning techniques
have been proposed to improve the emission probabilities
estimation (Graves et al., 2013). In fact, modeling long
term temporal dependencies is critical in acoustic model-
ing: by modeling the temporal dynamics in speech, the
acoustic model can effectively capture the dependencies be-
tween acoustic events and thus improve speech recognition
performance (Peddinti et al., 2015). One of the most popu-
lar techniques is the Time-Delay Neural Network (TDNN)
(Waibel et al., 1989) which has been shown to be effective
in modeling long range temporal dependencies (Peddinti et
al., 2015).
Our AM is designed to guarantee high transcription accu-
racy while requiring fewer computational resources. We
use a neural network that maps sequences of speech
frames to sequences of triphone HMM state probabilities.
The speech frames are obtained by computing the mel-
frequency cepstral coefficients (MFCC) from the audio sig-
nal. The neural network combines a time-delay layers and
an attention mechanism that selects the temporal locations
over the input frame sequence where the most relevant in-
formation is concentrated (Bahdanau et al., 2016). The se-
lection of elements from the input sequence is a weighted
sum:

ct =
∑
l

αtlhl (1)

where αtl are the attention weights. This mechanism helps
to improve the acoustic modeling of the network and to sub-
sequently improve speech recognition performance (Bah-
danau et al., 2016; Lu, 2019).
In the literature, the acoustic model achieving human par-
ity (Xiong et al., 2016) is a complex neural network, com-
posed of several hundred of million parameters. The size of
these models along with the language model, increase the
computational resources necessary not only to perform real

time decoding, but also to scale them. Models with a vari-
able number of parameters, i.e. different number of layers
and neurons, can be trained and evaluated in terms of ac-
curacy and computational cost. This can help to select the
most appropriate model that optimizes a trade-off between
accuracy and computation time.
We train deep neural AMs using the Kaldi toolkit 10. Our
typical architectures have 7 time-delay layers and an atten-
tion layer. The input vector to the model consists of 40
MFCC features, and 100 speaker and channel features com-
puted using an i-vector speaker-adaptive model (Garimella
et al., 2015). It is trained with the lattice-free MMI criterion
(Povey et al., 2016), using gradient descent with start and
final learning rates of 0.001 and 0.0001 respectively.

4. The Language Model
The language model is the second component of the ASR
engine and of the SLU pipeline. Like the acoustic model,
it is designed to optimize a trade-off between transcription,
precision and computational cost.
The LM converts the sequence of probabilities over acous-
tic units predicted by the AM into a probable word se-
quence, while taking into account the probability of word
co-occurrence (Chelba et al., 2012b). Once the text is ob-
tained, the NLU module extracts the intent of the user from
the decoded query. The LM and NLU have to be mutu-
ally consistent in order to optimize the accuracy of the SLU
engine, and together they make up the language modeling
component.
A large vocabulary LM consisting of several million n-
grams (Chelba et al., 2012a) can adequately capture the lin-
guistic knowledge of a target language (e.g. syntax and se-
mantics) in order to more accurately transcribe a sequence
of acoustic units. But this results in a large search space
that greatly increases decoding time for the LM, and effects
ASR performance as a whole. To avoid such limitations to

10https://github.com/kaldi-asr/kaldi
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(a) Model Graph Gm

(b) Gtown Graph

(c) G = ReplaceFST (Gm, Gtown)

Figure 6: Graph G creation process with a simple query of the form “je vais à #VILLE” (in English “I am going to #TOWN”

the performance of our SLU, we restrict the vocabulary of
the LM to a particular use case domain.
This domain is defined by the set of skills the assistant
is designed to handle (e.g. SmartRoomEquipment, Meet-
ingReport, MeetingControl for a smart business assistant,
or SmartLights, SmartMusic skills for smart home assis-
tant). Each skill contains one or multiple intents (i.e. user-
intentions11), that furnish a concentrated vocabulary which
is sufficient to correctly model the sentences encountered
by the assistant. While the AM is trained once per lan-
guage, this specialized LM can be trained quickly on the
reduced vocabulary, which is sufficient to with improve-
ments to the overall performance of the SLU.

4.1. LM training data
The data used to train the specialized LM (as well as the
NLU) consists of sentences expressing the desired intents.
These are the queries listed manually by the user to which
one or more entities can be bound. For example, the skill
MeetingReport contains the intent ShowMeetingReport, to
which the entities date and report-type are bound, giving
“show the meeting summary of the date 21 April 2019” to
the dialogue manager which then executes the correct ac-
tion.
Entities are predefined and provided by the platform –
e.g. numbers, colors, date and times, etc, and can be
bound to different intents. Using the same example, the
values associated with the date and report-type entities in
the query can be specified as follows: “show the meeting
(summary)[report-type] of the date (21 April 2019)[date]”.
The entity report-type is a custom list of values (e.g. full
transcription, summary, notes).

4.2. Model generation
The map from the output of the acoustic model to the
most likely sequence of words is carried out using a Viterbi
search in a decoding graph which is a weighted finite state
transducer (wFST) (Mohri et al., 2002). This graph is the
composition of four wFST graphs: H contains the HMM

11Overall, a user intent spots what a user is looking for when
conducting a search query

definitions, C represents the context-dependency, L is the
lexicon, and G is a bigram or a trigram language model.
For more details refer to (Mohri et al., 2002) and references
therein. In this paper, we focus on the construction of the L
graph and G graph since they are the most important parts
of the decoding graph that must be adapted to the domain-
specific data.
The lexicon (i.e. dictionary) consists of a set of words with
their phonetic pronunciations. This pair (word/phonemes)
allows us to associate a sequence of words with the pre-
dicted phonetic sequence provided by the acoustic model.
In this work we use an open-source lexicon (French
Prosodylab dictionary12), composed of more than 100,000
words with their SAMPA phonetization (McAuliffe et al.,
2017). Since this lexicon may not include all possible
words, the new words in the data used to train the G graph
are first automatically phoneticized and then added to the
lexicon in order to allow the decoding graph to correctly
predict these words. The word’s phonetization is performed
using a Grapheme-to-Phoneme (G2P) model trained using
phonetisaurus toolkit13. The obtained lexicon is then con-
verted into L graph using a Kaldi function.
After preparing the L graph, the first step in building G is
the preparation of the set of queries that the user may make
to the assistant. Given the data described in section 4.1.,
the values of each entities in the queries are replaced by
an identifier of the entity. For example, the query “show
the meeting (summary)[report-type] of the date (21 April
2019)[date]” is mapped to “show the meeting #report-type
of the date #date”. Next, an n-gram model is trained on the
resulting queries and then converted to a wFST, which we
called the main graph Gm.
In order to bind the entities to the main graph, each entity e
is converted into an acceptor graph Ge that encodes the list
of values of that entity. Next, these graphs Ge are merged
with the main graph Gm to obtain the final graph G. This
process is illustrated by a sample query in Figure 6.

12https://montreal-forced-aligner.readthedocs.io/en/latest/pre-
trained models.html

13https://github.com/AdolfVonKleist/Phonetisaurus
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5. Performance Evaluation
The aim of this work is to develop an SLU system that
achieves high performance in terms of response time and
accuracy. This system must correctly predict the intent and
the entities of a spoken utterance in order to execute the
correct action. In this paper, our focus is to improve the
performance of the ASR engine which has a strong impact
on the SLU performance.
In this section, we present the different experiments carried
out under different conditions. The objective is to evaluate
the ASR engine and in particular the LM of a smart busi-
ness assistant. While the response time is used to analyse
the speed of the decoder, the accuracy of the transcription
is usually measured using the word error rate (WER). The
experiments are conducted on French language. Thirteen
queries related to the context of the meeting are chosen for
evaluation. Examples are:

• “Baisse la lumière de (10)[number] pourcent” (Turn
down the light 10 percent)

• “Active le chronomètre pour (4 heures)[time] de
réunion” (Activate the chronometer for 4 hours)

• “Affiche le compte-rendu de la réunion du (12
septembre 2018)[date] concernant le (résumé automa-
tique)[subject]” (Post the meeting minutes from the
September 12 meeting about automatic summariza-
tion.

• “Invite (Sonia)[person] à la visioconférence de (de-
main)[date]” (Invite Sonia to the video-conference to-
morrow)

These queries are recorded in order to build an evaluation
corpus. For this purpose, we record the queries with 16
speakers (14 native and 2 non-native, including 10 men
and 6 women between 21 and 30 years old). The record-
ing are carried out with the YETI – Blue Microphone in a
meeting room, with a sampling frequency of 16 Khz and a
speaker/microphone distance of 80 cm.
We varied the number of the queries (intents) on which the
LM is trained to evaluate the quality of recognition based
on the number of skills. Four models are built, defined as
follows:

• First Model: using only the thirteen evaluation queries

• Second Model: using 76 queries which represents the
following 7 skills:

– control-equipment: manage the meeting room
equipment (contains 8 queries);

– time: gives the time (contains 8 queries);

– meeting time: gives the meeting time (contains
11 queries);

– chrono: adjust the stopwatch of the meeting (9
queries);

– meeting-report: which gives the meeting report
(5 queries);

– meeting-participant: manage the meeting partici-
pants (5 queries);

– videoconf: manage the video conference (17
queries).

• Third Model: We use 171 queries in this model
which represent 14 skills: weather, news, mail, note,
meeting-control (recording, meeting mode), traffic,
control-Linto, control-equipment, time, meeting-time,
chrono, meeting-report, meeting-participant, video-
conf.

• Fourth Model: In this model, we use 237 queries
which represents 22 skills.

In order to evaluate the impact of the adapted language
model over the large vocabulary model on the response
time, we use a large vocabulary model trained on the text
of the speech corpus.
Results
The results of the evaluations in terms of WER, SER (Sen-
tence/Command Error Rate) as well as the response time
are presented in the following table.

Table 1: Performance evaluation in terms of WER for the
different language models.

WER[%] SER[%] Time[s]

Large vocabulary model 25.75 70.67 237

Adapted language model (1) 4.28 20.67 195

Adapted language model (2) 4.62 22.12 199

Adapted language model (3) 5.23 25.00 204

Adapted language model (4) 5.37 25.48 216

The first evaluation consists of comparing the results ob-
tained using a conversational recognition mode (using the
large vocabulary model) on the one hand, and an adapted
language model on the other. The objective of this evalu-
ation is to highlight the performance and response time of
the control systems.
As shown in Table 1, the WER results of the control sys-
tems are better than those obtained by the large vocabulary
system with a gain of 20%. It can be concluded that the
models adapted to the assistant are more advantageous. Ad-
ditionally, the response time of these models is shorter than
that of the conversational system thanks to the relatively
small size of the language models in terms of vocabulary
(words).
The second series of evaluations allows us to analyze the
consequence of the complexity of the language model in
terms of the number of commands trained on the recogni-
tion performance.
Table 1 shows a slight loss in WER (1%) obtained by
switching from a 13-queries model (Model 1) to a 237-
queries model (Model 4). On the other hand, in terms of
response time, we see a loss of 21s / 208 evaluated queries
from the M4 model compared to the M1 model.
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6. Conclusion
In this paper, we presented LinTO, an open-source voice
platform for business environments. It is a spoken language
understanding system that achieves high performance in
terms of accuracy and response time, is portable and scal-
able, and can be tailored to meet the needs of specific
business contexts in the form of skills. We described the
techniques and adaptations applied to the system’s acoustic
model and language model: for the acoustic model, we took
advantage of recent advances in machine learning while op-
timizing computational cost; for the language model we
trained the adapted automatic speech recognition compo-
nent to correctly model only the sentences that are found in
the domain supported by the SLU, which is implemented
in a particular context. Overall, these techniques optimize
a trade-off between the accuracy and computational cost by
biasing and thus reducing the size of the language model.
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