
Proceedings of the 1st International Workshop on Language Technology Platforms (IWLTP 2020), pages 73–80
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

73

A Workflow Manager for Complex NLP and Content Curation Pipelines

Julián Moreno-Schneider, Peter Bourgonje, Florian Kintzel, Georg Rehm
Speech and Language Technology Lab, DFKI GmbH

Alt-Moabit 91c, 10557 Berlin, Germany
{julian.moreno schneider, peter.bourgonje, florian.kintzel, georg.rehm}@dfki.de

Abstract
We present a workflow manager for the flexible creation and customisation of NLP processing pipelines. The workflow manager
addresses challenges in interoperability across various different NLP tasks and hardware-based resource usage. Based on the four key
principles of generality, flexibility, scalability and efficiency, we present the first version of the workflow manager by providing details on
its custom definition language, explaining the communication components and the general system architecture and setup. We currently
implement the system, which is grounded and motivated by real-world industry use cases in several innovation and transfer projects.

Keywords: LR Infrastructures and Architectures, Tools, Systems, Applications, Linked Data

1. Introduction
The last decades have seen a significant increase of digi-
tal data. To allow humans to understand and interact with
this data, Natural Language Processing (NLP) tools tar-
geted at specific tasks, such as Named Entity Recognition,
Text Summarisation or Question Answering, are under con-
stant development and improvement to be used together
with other components in complex application scenarios.
While several NLP tasks can be considered far from being
solved and others increasingly maturing, one of the next
challenges is the combination of different task-specific ser-
vices based on modern micro-service architectures and ser-
vice deployment paradigms.
Chaining tools together by combining their output requires
not much more than simple interoperability regarding the
annotation format used by the semantic enrichment services
and individual NLP services. However, the notion of flexi-
ble workflows stretches, beyond annotation formats, to the
flexible and efficient orchestration of NLP services. While
a multitude of components and services is available, the
next step, i. e., the management and integration into an in-
frastructural system, is not straightforward and proves chal-
lenging. This is problematic both for technology develop-
ers and users, as the whole is greater than the sum of its
parts. Developers can add value to their tools by allow-
ing the combination with other components. For users, the
benefits of combining annotations obtained from NER with
those obtained by coreference resolution, for example, are
obvious. There have been several attempts, both commer-
cial and open source, to address interoperability and ser-
vice orchestration for scenarios that include the processing
of document collections, achieving comparatively good re-
sults for specific use cases, tasks and domains (see Sec-
tion 2 for an overview).
Recently, new opportunities have been generated by
the popularity of containerisation technologies (such as
Docker1), that enable the deployment of services and tools
independently from the environment in which they were
developed. While integration benefits from this approach
by enabling easy ingestion of services, the methodology

1https://www.docker.com

comes with several challenges that need to be addressed,
including, crucially, container management. This is not just
about keeping services alive on different nodes, which can
be done using tools such as Kubernetes2 or Openshift3. The
key challenge remains allowing the organisation and inter-
connectivity of services in terms of their functionality, en-
suring that they work together in an efficient and coordi-
nated way.
The work presented in this paper is carried out under the
umbrella of the QURATOR project4, in which a consor-
tium of ten partners (ranging from research to industry)
works on challenges encountered by the industry partners in
their own specific sectors. The central use case addressed
in the project is that of content curation in the areas of,
among others, journalism, museum exhibitions and pub-
lic archives (Rehm et al., 2020b; Bourgonje et al., 2016).
In QURATOR, we develop a platform that allows users to
curate large amounts of heterogeneous multimedia content
(including text, image, audio, video). The content is col-
lected, converted, aggregated, summarised and eventually
presented in a way that allows the user to produce, for ex-
ample, an investigative journalism article on a contempo-
rary subject, content for the catalogue of a museum exhibi-
tion, or a comprehensive description of the life of a public
figure, based on the contents of publicly available archive
data on this person. To achieve this, we work with vari-
ous combinations of different state-of-the-art NLP tools for
NER, Sentiment Analysis, Text Summarisation, and several
others, which we develop further and integrate into our plat-
form. The interoperability and customisation of workflows,
i. e., distributed processing pipelines, are a central technical
challenge in the development of our platform.
The key contribution of this paper is the presentation of a
novel workflow management system aimed at the sector-
specific content curation processes mentioned above. Tech-
nically, the approach focuses on the management of con-
tainerised services and tools. The system design is opti-
mised and aligned with regard to four different dimensions

2https://kubernetes.io
3https://www.openshift.com
4https://qurator.ai

https://www.docker.com
https://kubernetes.io
https://www.openshift.com
https://qurator.ai


74

or requirements: (i) generality, to work with a diverse range
of containerised services and tools, independent of the (pro-
gramming) language or framework they are written in; (ii)
flexibility, to allow services or tools – which may be run-
ning on different machines – to connect with one another
in any order (to the extent that this makes sense, semanti-
cally); (iii) scalability, to allow the inclusion of additional
services and tools; and (iv) efficiency, by avoiding unneces-
sary overhead in data storage as well as processing time.
The rest of the paper is structured as follows. Section 2
describes approaches similar to ours that support the speci-
fication of workflows for processing document collections.
Section 3 provides an overview of the proposed system and
lists requirements regarding the services to be included in
workflows. Section 4 presents the workflow specification
language. Section 5 outlines the general architecture and
the following subsections provide more detail on individ-
ual components. Finally, Section 6 concludes the article
and sketches directions for future work.

2. Related Work
The orchestration and operationalisation of the processing
of large amounts of content through a series of tools has
been studied and tested in the field of NLP (and others)
from many different angles for decades. There is a sizable
amount of tools, systems, frameworks and initiatives that
address the issue but their off-the-shelf applicability to con-
crete use cases and heterogeneous sets of services is still an
enormous challenges.
One of the most well known industry-driven workflow def-
inition languages is Business Process Model and Notation
(BPMN, and its re-definition BPMN V2.0) (OMG, 2011).
Many tools support BPMN, some of them open source (Co-
midor, Processmaker, Activiti, Bonita BPM or Camunda),
others commercial (Signavio Workflow Accelerator, Co-
mindware, Flokzu or Bizagi). There are also other business
process management systems, not all of which are based on
BPMN, such as WorkflowGen5, ezFlow6, Pipefy7, Avaza8

or Proces.io9. Their main disadvantage with regard to our
use case is that they primarily aim at modelling actual busi-
ness processes at companies, including support to repre-
sent human-centric tasks (i. e., foreseen human interaction
tasks). This focus on support deviates from our use case,
in which a human user interacts with the content, but not
necessarily with other humans.
Another class of relevant software are frameworks for con-
tainer management, focusing on parallelisation manage-
ment, scalability and clustering. Examples are Kubernetes,
Openshift, Rancher10 and Openstack11. We use Kubernetes
for cluster management. However, because this does not
cover (NLP) task orchestration or address interoperability,
with our workflow manager we go beyond the typical Ku-
bernetes use case.

5https://www.workflowgen.com
6http://www.ezflow.it
7https://www.pipefy.com
8https://www.avaza.com
9http://proces.io

10https://rancher.com
11https://www.openstack.org

On the other hand, there are numerous frameworks and
tool kits that focus more on workflow management and
the flexible definition of processing pipelines (and less on
the technical, hardware related implementations like Ku-
bernetes, Openshift and Rancher). Examples are Apache
Kafka12, a distributed streaming platform; Apache Com-
mons13; Apache NIFI14; Apache Airflow15; Kylo16; and
Apache Taverna17. With our workflow manager, we at-
tempt to cover these workflow-focused features, but, cru-
cially, combine them with the more technical details for
cluster management and scalability.
Specifically targeted at NLP, some popular systems are
GATE (Cunningham et al., 2011) and UIMA (Ferrucci and
Lally, 2004), and, more recently (but covering a narrower
range of tasks), SpaCy18. While the data representation for-
mat is based on a standard format for some of these (GATE
for example supports exporting data in XML), we attempt
to extend beyond this and use the NLP Interchange Format
(NIF) (Hellmann et al., 2013). Using NIF ensures interop-
erability for different NLP tasks while at the same time ad-
dressing storage and scalability needs. Since NIF is based
on RDF triples, the resulting annotations can be included
in a triple store to allow for efficient storage and querying.
In addition, the above-mentioned systems are designed to
run on single systems. Our workflow manager is designed
to combine output from different micro-services that ad-
dress different NLP services, potentially running on differ-
ent machines. In addition to the above, CLARIN (Hinrichs
and Krauwer, 2014) provides an infrastructure for natural
language research data and tools. The focus, however, is
on sharing resources and not on building NLP pipelines or
workflows. A more exhaustive and complete overview of
related work can be found in (Rehm et al., 2020a).

3. System Overview
The objective of the QURATOR project is to facilitate the
execution of complex tasks in the area of content curation.
The human experts performing these tasks typically have
limited technical skills and are expected to analyse, aggre-
gate, summarise and re-arrange the information contained
in the content collections they work with. The Curation
Workflow Manager aims to support these users, by allow-
ing them to flexibly and intuitively define just the workflow
they need. Ultimately, the aim is to make this as intuitive
as using a single call to a single system. The single system
will be the Workflow Manager, and the single call will be
the request to process the document collection using a spe-
cific workflow. The workflow includes all the needed ser-
vices (i. e., which services, such as NER, summarisation,
topic modeling, clustering, etc. to include, and which pa-
rameters, such as language or domain, to set). The order
of the services, and which can be parallelised, can be spec-
ified, as well as which data needs to be stored internally

12https://kafka.apache.org
13http://commons.apache.org/sandbox/commons-pipeline/
14https://nifi.apache.org
15https://airflow.apache.org
16https://kylo.io
17https://taverna.incubator.apache.org
18https://spacy.io

https://www.workflowgen.com
http://www.ezflow.it
https://www.pipefy.com
https://www.avaza.com
http://proces.io
https://rancher.com
https://www.openstack.org
https://kafka.apache.org
http://commons.apache.org/sandbox/commons-pipeline/
https://nifi.apache.org
https://airflow.apache.org
https://kylo.io
https://taverna.incubator.apache.org
https://spacy.io


75

(for immediate processing) or externally. Afterwards, the
processed content collection is meant to be presented in a
GUI, featuring the relevant data visualisation components,
given the original document collection and the result of the
individual semantic enrichment processes that have run.
While from a user’s perspective, this high level description
may sound similar to comparable systems like GATE (Sec-
tion 2), the following description provides an idea of the
intended deployment scale and ambition of the workflow
manager. Though developed in the context of the QURA-
TOR project, we plan to implement the workflow manager
also in the technical platform architecture developed in the
project European Language Grid.19. The main objective of
the project ELG is to create the primary platform for Lan-
guage Technology in Europe (Rehm et al., 2020a). Release
1 alpha of the European Language Grid platform was made
available in March 2020 and provides access to more than
150 services including NER, concept identification, depen-
dency parsing, ASR and TTS.

3.1. Service Requirements
Since we want to allow for the inclusion of as many dif-
ferent services as possible in a workflow, yet at the same
time have to ensure that they work together seamlessly, we
specified a few core dimensions along which to classify ser-
vices, to establish whether or not they can be included. First
(i), we check whether a service is dockerised or not. Then
(ii), we check the execution procedure, i. e., is it a fully
automated service, or is human intervention or interaction
included, or even at the very core (such as, for example, in
annotation editors). Furthermore, we check (iii) where the
service is located, i. e., is it included in the Docker cluster or
is it a service hosted externally? Finally (iv), we check how
the service is communicating, i. e., is it accessible through a
REST API or a command-line interface? If a given service
is (i) dockerised (or otherwise containerised), (ii) does not
need human intervention, (iii) is stored inside our Docker
cluster and (iv) has a REST API interface through which
it can be accessed, we conclude that the service can be in-
cluded in our workflow.20

4. Curation Workflow Definition Language
To facilitate the definition of workflows for users with lim-
ited technical knowledge (i. e., little to no programming ex-
perience), we opted for the widely used JSON format to
specify workflows, considering that the specification of ac-
tual workflows will be carried out using a corresponding
graphical user interface.
We specified a JSON-based Curation Workflow Definition
Language (CWDL). It currently supports the inclusion of
services with REST API access (Richardson et al., 2013)
(i. e., services must be accessible through HTTP calls), and
allows users to specify whether these services should be ex-
ecuted in a synchronous or asynchronous way. The execu-
tion in a sequential or parallel fashion can also be specified.

19https://www.european-language-grid.eu
20As part of future work we will investigate if and how these

core dimensions can be included in the metadata scheme that gov-
erns all metadata entries for all services in order to automate this
process as much as possible (Labropoulou et al., 2020).

A workflow relies on three main components: con-
trollers, tasks and templates. The controllers element re-
lates to a service to be included. This element commu-
nicates basic identity information (controllerName,
serviceId, controllerId), queue information
(nameInput{Normal|Priority}) and connection
information (connection) to the micro-services it is
calling. The connection element contains information
needed to communicate with the service (via REST API),
including method, endpoint url, parameters,
headers and body. Listing 1 shows an example.
The next element, task, sends messages to and from a con-
troller through the messaging control system. The taskId
and controllerId fields contain identifying informa-
tion on the two. Listing 2 illustrates this using an example.

1 {
2 "controllerName": "NER Controller",
3 "serviceId": "NER",
4 "controllerId": "NERController",
5 "queues": {
6 "nameInputNormal": "NER_input_normal",
7 "nameInputPriority": "NER_input_prio"
8 },
9 "connection": {

10 "connection_type": "restapi",
11 "method": "POST",
12 "endpoint_url": "http://<host>/path/",
13 "parameters": [
14 {"name": "language","type": "parameter",
15 "default_value": "en","required": true},
16 {"name": "models","type": "parameter",
17 "default_value": "model_1;model_2","

required": true},
18 ...],
19 "body": {
20 "content": "documentContentNIF"
21 },
22 "headers": [
23 {"name": "Accept","type": "header",
24 "default_value": "text/turtle","

required": true},
25 {"name": "Content-Type","type": "header"

,
26 "default_value": "text/turtle","

required": true}
27 ]
28 }
29 }

Listing 1: Example of a Controller definition that connects
to an external REST API service.

1 {
2 "taskName": "NER Task",
3 "taskId": "NERTask",
4 "controllerId": "NER",
5 "component_type": "rabbitmqrestapi"
6 }

Listing 2: Example of a Task definition.



76

The third element, template, specifies which micro-services
are included in the workflow. Basic identification informa-
tion is specified in workflowTemplateId. The differ-
ent micro-services included in the template are contained
in tasks. Inside this element, the following information
is specified:

1. ParallelTask executes multiple tasks in parallel.

2. SequentialTask executes tasks sequentially.

3. split splits the input information to every output.

4. waitcombiner waits until all connected inputs
have finished to combine their results and proceed.

Listing 3 shows an example of the template element.

1 {
2 "workflowTemplateName": "GLK",
3 "workflowTemplateId": "ML_GLK",
4 "workflowTemplateDescription": "...",
5 "tasks": [
6 {
7 "order": 1,
8 "taskId": "ParallelTask",
9 "features":{

10 "input": {"component_type": "split"},
11 "output": {"component_type": "

waitcombiner"},
12 "tasks":[
13 {"order": 1, "taskId": "NERTask"},
14 {"order": 2, "taskId": "GEOTask"},
15 ...]
16 }
17 },
18 ...]
19 }

Listing 3: Example of a workflow definition.

We plan to improve this basic scheme and will make it com-
pliant with BPMN V2.0 in its next iteration.

5. Curation Workflow Manager
Architecture

In Section 4, the description of the JSON-based workflow
definition language outlines how to instruct the workflow
manager to perform complex tasks. In this section, we out-
line how these task definitions are translated into processes
and procedures, by explaining the workflow manager ar-
chitecture. Our previous work includes a generic workflow
manager for curation technologies (Bourgonje et al., 2016;
Rehm et al., 2020b), and two indicative descriptions of an
initial prototype of a workflow manager that we concep-
tualised based on use cases in the legal domain (Moreno-
Schneider and Rehm, 2018a; Moreno-Schneider and Rehm,
2018b). Figure 1 illustrates this architecture, its individual
components are described in the following subsections.

5.1. Workflow Execution Engine
The core component of the workflow manager is the Work-
flow Execution Engine. This component manages work-
flows, from their definition to the management of its exe-
cution to the final results that are produced. In the CWM
a workflow is composed of the three components described
in Section 4, and a workflow execution. More specifically:

• A controller is a component whose main purpose is to
communicate with a service (see Section 5.2).

• A task can be anything that has to do with taking input
in a certain format, and producing output. This can
be enriching text though NLP components, convert-
ing data to a required format for specific other tasks,
combining information from different upstream tasks,
or deciding which task to perform next, depending on
parameters that are either set in the configuration, or
that are the outcome of upstream processing.

• A template is an abstract definition of a workflow com-
posed of a combination of tasks. It is, in the literal
sense of the word, a preset for a collection of tasks
that together form a logical processing pipeline. In
the object-oriented programming paradigm, it would
be the equivalent of a class, i. e., the definition of an
object (and the objects would be tasks).

• A workflow execution is an instance of a workflow
template, i. e., a complete workflow created with spe-
cific task objects. The workflow execution would
be equivalent to an instantiated object in the object-
oriented analogy.

5.2. Controllers
Every service is required to be accessible through a REST
API and must allow both sending and receiving of task-
specific messages. Because the services are independently
developed, and their behaviour may change with new ver-
sions, the way to communicate with them may change as
well. We, therefore, introduce the concept of a proxy el-
ement between the messaging control system (for which
we use RabbitMQ, see Section 5.3) and the service. This
proxy element is the controller. We attempt to maximise
flexibility by updating the controller whenever the service
changes, so that the rest of the communication chain can
remain untouched.
In the current implementation, the controller connects to
RabbitMQ and waits for receiving messages. Whenever a
message is received, the controller processes its contents
and generates a HTTP request for the corresponding ser-
vice. Depending on whether or not the service in question
executes in a synchronous or asynchronous way, the con-
troller waits for the response, or checks back in to collect it
later, and subsequently communicates the result.

5.3. Communication Module
The communication module, based on the message con-
trol system RabbitMQ, allows the exchange of information
between the different workflow components, or with com-
ponents external to the workflow. As mentioned above,



77

Figure 1: Architecture of the Curation Workflow Manager (CWM)

our system requires individual services to be accessible
via REST API, and supports both synchronous and asyn-
chronous execution of services.
This communication entails both information relating to
tasks to be performed, as well as the result or output of
the tasks themselves. We use RabbitMQ, because it al-
lows larger message contents than some of its competitors
(Apache Kafka, for example). RabbitMQ handles the com-
munication between the workflow execution engine and the
services (through controllers). Both the workflow execu-
tion engine and the controllers send messages to and re-
ceive messages from RabbitMQ during the execution of a
workflow. The workflow execution engine sends a message
to every service (through its proxy element, the controller),
to execute a processing step. After finishing the process-
ing, the service sends a new message with the result (again,
through the controller) to the workflow execution engine.
The CWM is designed to cover complex curation tasks,
which can potentially include large files. Since we want
to avoid such larger files to use and thereby block resources
for other processes, we implemented a priority feature in
RabbitMQ queues. We reserve high priority processes
for smaller documents and/or processes that take place in
(semi-)real-time, while larger documents or more complex
tasks can use normal/low priority for offline processing.

5.4. Information Exchange Format
Since interoperability is a key feature of the CWM, we
must settle on a shared annotation format which all (or at
least most21) micro-services can work with and further aug-
ment in case of pipeline processing. Instead of defining
our own format for this, we use the NLP Interchange For-
mat (NIF) (Hellmann et al., 2013). NIF includes an ontol-
ogy that defines the way in which documents are annotated,

21This is, first and foremost, relevant if tasks are relying on
output of upstream tasks, or their output is input to downstream
tasks.

with strong roots in the Linked Data paradigm. This allows
for easy referencing of external knowledge bases (such as
Wikidata) in the annotations on a document. NIF can be se-
rialised in XML-like (RDF-XML), JSON-like (JSON-LD)
or N3/turtle (RDF triple) formats. This serialised format is
what is communicated as input or output for specific ser-
vices. An example NIF (turtle) document with annotated
named entities is shown in Listing 4 in the Appendix.

5.5. Access Control
Access control for the various API endpoints is defined by
the corresponding module, which specifies which opera-
tions are allowed for the endpoints of the different com-
ponents, i. e., how a workflow is modified.
This module defines 12 methods that allow a user to (i)
initialize and stop the CWM, (ii) view, create, modify and
delete elements necessary to define workflows (i. e., tasks,
controllers, templates and workflow executions, (iii) exe-
cute a specific workflow, and (iv) obtain the result of a
workflow. An overview is provided in Figure 2.
In addition to the above mentioned functionalities, this
module also handles security by allowing only users in-
cluded in a pre-defined list to access the functionalities
listed in Figure 2. We are currently working on more de-
tailed user management by implementing user profiles, al-
lowing certain users to access certain procedures only. This
improvement will be included in a future version of the
workflow manager.

6. Conclusions and Future Work
We present an approach of connecting services and tools
developed on different platforms and environments, in or-
der to make them work together by means of a Curation
Workflow Manager. The tool is built around the key prin-
ciples of generality, flexibility, scalability and efficiency. It
allows the combination of different tools, i. e., container-
ised micro-services, in the wider area of NLP, Information



78

Figure 2: REST APIs

Retrieval, Question Answering, and Knowledge Manage-
ment (triple stores) and uses a shared annotation format
(NIF) throughout, addressing, respectively, the generality
and flexibility principles. Our main motivation for devel-
oping the workflow manager, which comes with its own
JSON-based definition language, was to address – under
the umbrella of a larger Curation Technology platform –
interoperability challenges and hardware-based resource-
sharing and -handling issues in one go, addressing, respec-
tively, the scalability and efficiency principles.
The CWM is meant to process large documents, but is,
as of now, restricted to text documents. As part of fu-
ture work, we will also include the processing of multi-
media files (images, audio, video). The curation workflow
manager’s design will be revised and extended accordingly.
Furthermore, we plan to evaluate the workflow manager in
a real-world use case provided by one of the partners in
the QURATOR project. Additionally, we plan to integrate
the CWM in the ELG platform in the medium to long term
(Rehm et al., 2020a; Labropoulou et al., 2020; Rehm et al.,
2020c). We currently work on extensions to the workflow
definition language; its next iteration will be compliant with
the standardised Business Process Model and Notation, in-

creasing the sustainability and adaptability of our approach.
Finally, we are currently considering the development of a
visual editor (i. e., a GUI) to define and modify workflows,
inspired by the GUI offered by Camunda22.
The source code of the Curation Workflow Manager is
available on Gitlab.23

Acknowledgements
The work presented in this paper has received funding from
the German Federal Ministry of Education and Research
(BMBF) through the project QURATOR (Wachstumskern
no. 03WKDA1A) as well as from the European Union’s
Horizon 2020 research and innovation programme under
grant agreements no. 825627 (European Language Grid)
and no. 780602 (Lynx).

7. Bibliographical References
Bourgonje, P., Moreno-Schneider, J., Nehring, J., Rehm,

G., Sasaki, F., and Srivastava, A. (2016). Towards a
Platform for Curation Technologies: Enriching Text Col-
lections with a Semantic-Web Layer. In Harald Sack,
et al., editors, The Semantic Web, number 9989 in Lec-
ture Notes in Computer Science, pages 65–68. Springer,
June. ESWC 2016 Satellite Events. Heraklion, Crete,
Greece, May 29 – June 2, 2016 Revised Selected Papers.

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.,
Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts,
A., Damljanovic, D., Heitz, T., Greenwood, M. A., Sag-
gion, H., Petrak, J., Li, Y., and Peters, W. (2011). Text
Processing with GATE (Version 6).

Ferrucci, D. and Lally, A. (2004). UIMA: An Architec-
tural Approach to Unstructured Information Processing
in the Corporate Research Environment. Natural Lan-
guage Engineering, 10(3-4):327–348, sep.

Hellmann, S., Lehmann, J., Auer, S., and Brümmer, M.
(2013). Integrating NLP using Linked Data. In 12th In-
ternational Semantic Web Conference. 21-25 October.

Hinrichs, E. and Krauwer, S. (2014). The CLARIN Re-
search Infrastructure: Resources and Tools for eHu-
manities Scholars. In Proceedings of the Ninth Inter-
national Conference on Language Resources and Eval-
uation (LREC’14), pages 1525–1531, Reykjavik, Ice-
land, May. European Language Resources Association
(ELRA).

Labropoulou, P., Gkirtzou, K., Gavriilidou, M., Deligian-
nis, M., Galanis, D., Piperidis, S., Rehm, G., Berger,
M., Mapelli, V., Rigault, M., Arranz, V., Choukri, K.,
Backfried, G., Pérez, J. M. G., and Garcia-Silva, A.
(2020). Making Metadata Fit for Next Generation Lan-
guage Technology Platforms: The Metadata Schema of
the European Language Grid. In Nicoletta Calzolari,
et al., editors, Proceedings of the 12th Language Re-
sources and Evaluation Conference (LREC 2020), Mar-
seille, France, May. European Language Resources As-
sociation (ELRA). Accepted for publication.

22https://camunda.com/products/modeler/
23https://gitlab.com/qurator-platform/dfki/

curationworkflowmanager

https://camunda.com/products/modeler/
https://gitlab.com/qurator-platform/dfki/curationworkflowmanager
https://gitlab.com/qurator-platform/dfki/curationworkflowmanager


79

Moreno-Schneider, J. and Rehm, G. (2018a). Curation
Technologies for the Construction and Utilisation of Le-
gal Knowledge Graphs. In Georg Rehm, et al., editors,
Proceedings of the LREC 2018 Workshop on Language
Resources and Technologies for the Legal Knowledge
Graph, pages 23–29, Miyazaki, Japan, May. 12 May
2018.

Moreno-Schneider, J. and Rehm, G. (2018b). Towards a
Workflow Manager for Curation Technologies in the Le-
gal Domain. In Georg Rehm, et al., editors, Proceedings
of the LREC 2018 Workshop on Language Resources and
Technologies for the Legal Knowledge Graph, pages 30–
35, Miyazaki, Japan, May. 12 May 2018.

OMG. (2011). Business Process Model and Notation
(BPMN), Version 2.0, January.

Rehm, G., Berger, M., Elsholz, E., Hegele, S., Kintzel, F.,
Marheinecke, K., Piperidis, S., Deligiannis, M., Gala-
nis, D., Gkirtzou, K., Labropoulou, P., Bontcheva, K.,
Jones, D., Roberts, I., Hajic, J., Hamrlová, J., Kacena,
L., Choukri, K., Arranz, V., Vasiljevs, A., Anvari, O.,
Lagzdins, A., Melnika, J., Backfried, G., Dikici, E.,
Janosik, M., Prinz, K., Prinz, C., Stampler, S., Thomas-
Aniola, D., Pérez, J. M. G., Silva, A. G., Berrı́o, C.,
Germann, U., Renals, S., and Klejch, O. (2020a). Eu-
ropean Language Grid: An Overview. In Nicoletta Cal-
zolari, et al., editors, Proceedings of the 12th Language
Resources and Evaluation Conference (LREC 2020). Eu-
ropean Language Resources Association (ELRA), May.
Accepted for publication.

Rehm, G., Bourgonje, P., Hegele, S., Kintzel, F., Schneider,
J. M., Ostendorff, M., Zaczynska, K., Berger, A., Grill,
S., Räuchle, S., Rauenbusch, J., Rutenburg, L., Schmidt,
A., Wild, M., Hoffmann, H., Fink, J., Schulz, S., Seva, J.,
Quantz, J., Böttger, J., Matthey, J., Fricke, R., Thomsen,
J., Paschke, A., Qundus, J. A., Hoppe, T., Karam, N.,
Weichhardt, F., Fillies, C., Neudecker, C., Gerber, M.,
Labusch, K., Rezanezhad, V., Schaefer, R., Zellhöfer, D.,
Siewert, D., Bunk, P., Pintscher, L., Aleynikova, E., and
Heine, F. (2020b). QURATOR: Innovative Technolo-
gies for Content and Data Curation. In Adrian Paschke,
et al., editors, Proceedings of QURATOR 2020 – The
conference for intelligent content solutions, Berin, Ger-
many, February. CEUR Workshop Proceedings, Volume
2535. 20/21 January 2020.

Rehm, G., Galanis, D., Labropoulou, P., Piperidis, S., Welß,
M., Usbeck, R., Köhler, J., Deligiannis, M., Gkirtzou, K.,
Fischer, J., Chiarcos, C., Feldhus, N., Moreno-Schneider,
J., Kintzel, F., Montiel, E., Doncel, V. R., McCrae, J. P.,
Laqua, D., Theile, I. P., Dittmar, C., Bontcheva, K.,
Roberts, I., Vasiljevs, A., and Lagzdins, A. (2020c). To-
wards an Interoperable Ecosystem of AI and LT Plat-
forms: A Roadmap for the Implementation of Different
Levels of Interoperability. In Georg Rehm, et al., editors,
Proceedings of the 1st International Workshop on Lan-
guage Technology Platforms (IWLTP 2020, co-located
with LREC 2020), Marseille, France, 5. 16 May 2020.
Accepted for publication.

Richardson, L., Amundsen, M., and Ruby, S. (2013).
RESTful Web APIs. O’Reilly Media, Inc.



80

Appendix

<http://dkt.dfki.de/documents/#char=0,25>
a nif:RFC5147String, nif:String, nif:Context ;
nif:beginIndex "0"ˆˆxsd:nonNegativeInteger ;
nif:endIndex "25"ˆˆxsd:nonNegativeInteger ;
nif:isString "Monteux was born in Paris"ˆˆxsd:string .

<http://dkt.dfki.de/documents/#char=20,25>
a nif:RFC5147String, nif:String ;
nif:anchorOf "Paris"ˆˆxsd:string ;
nif:beginIndex "20"ˆˆxsd:nonNegativeInteger ;
nif:endIndex "25"ˆˆxsd:nonNegativeInteger ;
nif:entity <http://dkt.dfki.de/ontologies/nif#LOC> ;
nif:referenceContext <http://dkt.dfki.de/documents/#char=0,25> ;
itsrdf:taIdentRef <http://www.geonames.org/2988507> .

<http://dkt.dfki.de/documents/#char=0,7>
a nif:RFC5147String, nif:String ;
nif:anchorOf "Monteux"ˆˆxsd:string ;
nif:beginIndex "0"ˆˆxsd:nonNegativeInteger ;
nif:endIndex "7"ˆˆxsd:nonNegativeInteger ;
nif:entity <http://dkt.dfki.de/ontologies/nif#PER> ;
nif:referenceContext <http://dkt.dfki.de/documents/#char=0,25> ;
itsrdf:taIdentRef <http://d-nb.info/gnd/122700198> .

Listing 4: An example NIF document.


	Introduction
	Related Work
	System Overview
	Service Requirements

	Curation Workflow Definition Language
	Curation Workflow Manager Architecture
	Workflow Execution Engine
	Controllers
	Communication Module
	Information Exchange Format
	Access Control

	Conclusions and Future Work
	Bibliographical References

