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Abstract

Intent Detection systems in the real world
are exposed to complexities of imbalanced
datasets containing varying perception of in-
tent, unintended correlations and domain-
specific aberrations. To facilitate benchmark-
ing which can reflect near real-world scenar-
i0s, we introduce 3 new datasets created from
live chatbots in diverse domains. Unlike
most existing datasets that are crowdsourced,
our datasets contain real user queries received
by the chatbots and facilitates penalising un-
wanted correlations grasped during the train-
ing process. We evaluate 4 NLU platforms
and a BERT based classifier and find that per-
formance saturates at inadequate levels on test
sets because all systems latch on to unintended
patterns in training data.

1 Introduction

Over the last few years, task-oriented dialogue sys-
tems have gained increasing traction for applica-
tions like personal assistants, automated customer
support agents, etc. This has led to the availability
of several commercialised and/or open conversa-
tional bot building platforms. Most popular sys-
tems today involve intent detection as a vital part
of their Natural Language Understanding (NLU)
pipeline. Recent advances in transfer learning
(Howard and Ruder, 2018; Peters et al., 2018; De-
vlin et al., 2019) has enabled systems that perform
quite well on existing benchmarking datasets (Lar-
son et al., 2019; Casanueva et al., 2020).
Definitions of intent often vary across users,
tasks and domains. Perception of intent could range
from a generic abstraction such as “Ordering a
product” to extreme granularity such as “Enquiring
for a discount on a specific product if ordered us-
ing a specific card”. Additionally, factors such as
imbalanced data distribution in the training set, as-
sumptions during training data generation, diverse
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background of domain experts involved in defining
the classes make this task more challenging. Dur-
ing inference, these systems may be deployed to
users with diverse cultural backgrounds who might
frame their queries differently even when commu-
nicating in the same language. Furthermore, during
inference, apart from correctly identifying in-scope
queries, the system is expected to accurately reject
out-of-scope (Larson et al., 2019) queries, adding
on to the challenge.

Most existing datasets for intent detection are
generated using crowdsourcing services. To accu-
rately benchmark in real-world settings, we release
3 new single-domain datasets, each spanning mul-
tiple coarse and fine grain intents, with the test sets
being drawn entirely from actual user queries on
the live systems at scale instead of being crowd-
sourced. On these datasets, we find that the perfor-
mance of existing systems saturates at unsatisfac-
tory levels because they end up learning spurious
patterns from the training dataset instead of gener-
alising to the perceived meanings of intents.

We evaluate 4 NLU platforms - Dialogflow!,
LUIS?, Rasa NLU?, Haptik*> and a BERT (De-
vlin et al., 2019) based classifier on all 3 datasets
and highlight gaps in language understanding. We
further probe into queries where all the current
systems fail and question the efficacy of the cur-
rent approach of learning. Additionally, we repeat
all our experiments on the subset of training data
and show a performance drop in all the systems
despite retaining relevant and sufficient utterances
in the training subset. We’ve made our datasets
and code freely accessible on GitHub to promote

"https://cloud.google.com/dialogflow

Zhttps://www.luis.ai/

3https://github.com/RasaHQ/rasa/

*https://haptik.ai

3 Access requests for signup on Haptik are processed via
contact form at https://haptik.ai/contact-us/
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Example Intents

Example Queries

Dataset Train Test
Type Label In-scope Out-of-Scope
What are the If I order now do
Generic OFFERS available offers Any other offers . .
SOF - . i get 20% discount
Give me some discount . .
Mattress What is the in lockdown period
Specific 100_NIGHT- 100-night offer Free 100 days
PeCIliC  TRIAL OFFER e trial
Trial offer on
. I need try
customisation
Sir I want to fast I need Beginners Role of
Curekart Generic RECOMMEND gain weight. hair multivitamin  electrolytes powder
_PRODUCT i’m beginner Which is the Is it help for
in gym best whey protein sperm count
qu biceps and ' Cani get Can diabetic
tricep muscle rivamal 120 ml . .
patient have it
growth supplements at my home
Connect with chat with customer S
agent service agent Application is not
Power Generic CHAT WITH. M tragnsaction PowerPlay11 responding during
playll AN_AGENT y . . y team joining
is incorrect rummy issue
My.51fgn up Suddenly balance Why my current
bonus is incorrect gone

basketball teams

Did not receive
my amount

Why it is showing

being shown??
wrong balance

Table 1: Few examples of Intents and Queries in Train and Test set in HINT3 dataset

transparency and reproducibility®.

2 Prior Work

Despite intent detection being an important compo-
nent of most dialogue systems, very few datasets
have been collected from real users. Web Apps,
Ask Ubuntu and Chatbot datasets from (Braun
et al., 2017) contain a limited number of intents
(<10), oversimplifying the task. More recent
datasets like HWU64 from (Liu et al., 2019) and
CLINC150 from (Larson et al., 2019) span a large
number of intents in multiple domains but are gen-
erated using crowd sourcing services hence are
limited in diversity in user expressions which arise
from but not limited to domain specific presump-
tions, context from how and where the bot is made
available, paraphrases emerging from cultural and
ethnic diversity of user base, conversational slang,
etc. Our work has some similarity with CLINC150,
in that they also highlight the problem of out-of-
scope intent detection and with BANKING77 from
(Casanueva et al., 2020) that focuses on a single
domain. However, all three - HWU64, CLINC150,

Shttps://github.com/hellohaptik/HINT3
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Dataset #Intent #Queries
Train Test
Full Subset in-scope oos
SOFMattress 21 328 180 231 166
Curekart 28 600 413 452 539
Powerplayll 59 471 261 275 708

Table 2: Statistics of the 3 datasets in HINT?3

BANKING?77 offer relatively large and well bal-
anced training set which might not be always feasi-
ble to collect for every new domain. For all datasets
mentioned so far, recent works have reported a
reasonably high performance (>90% average) for
in-scope queries. Despite this, gaps in language un-
derstanding become apparent when such systems
are deployed. Datasets introduced in this paper
and further analysis of results attempts to recognise
critical gaps in language understanding and calls
for further research into more robust methods.

3 Datasets

We introduce HINT3, a collection of datasets
shown in Table 2 - SOFMattress, Curekart and
Powerplay11 each containing diverse set of intents
in a single domain - mattress products retail, fitness
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Figure 1: Matthew’s Correlation Coefficient and Accuracy across all datasets and platforms

supplements retail and online gaming respectively.
Table 1 shows few example intents of varying gran-
ularity in HINT3 dataset, along with examples of
training queries created by domain experts and
in-scope, out-of-scope queries received from real
users.

3.1 Training Data Collection

Training data is prepared by a team of domain ex-
perts trying to emulate real users after in-depth re-
search of historical user queries. The experts do not
create an explicit set of out of scope queries primar-
ily because the universe of such queries is infinitely
big. Training datasets show class imbalance, oc-
currence of domain specific words, acronyms’. All
training data queries are in English.

Dataset Variants

In addition to Full training sets, we create Sub-
set versions for each training set. For each class,
after retaining the first query we iterate over the

" github.com/hellohaptik/HINT3/tree/master/data_exploration

rest, discarding a query if it has an entailment score
(Bowman et al., 2015) greater than 0.6 in both di-
rections with any of the queries retained so far i.e.
the subset version has the following property

E(zq,2p) < 0.6 A E(zp,z,) < 0.6;
a#bac [1’ |Xl|]7b € [17 ‘XZ” VI

where [ is the set of all intents, )A(l is the set
of queries retained for class i, E(h,p) is the en-
tailment scoring function with h as hypothesis and
p as premise. We use ELMo model trained on
SNLI (Peters et al., 2018; Parikh et al., 2016) 8
for E(h,p). These are intended to evaluate perfor-
mance with only semantically different sentences
in the training set as ideally systems should already
understand semantically similar queries to the ones
present in the training set.

8https://demo.allennlp.org/textual-entailment
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SOFMattress Curekart Powerplayl1

Full Subset Full Subset Full Subset
Dialogflow 73.1 653 750 71.2 59.6 556
RASA 692 562 84.0 805 490 385
LUIS 593 493 725 71.6 480 440
Haptik 722 640 803 79.8 66.5 59.2
BERT 735  57.1 83.6 823 585 530

Table 3: Inscope Accuracy at low threshold=0.1 for Full and Subset data variants

3.2 Test Data Collection and Annotation

Our test sets contain the first message received by
live systems from real users over a period of 15
days. Inter-annotator agreement was 75.8%, 80.0%
and 73.4% for SOFMattress, Curekart and Power-
play11 respectively and conflicts were resolved by
domain experts. One major reason for low inter-
annotator agreement was unclear criteria for defin-
ing an intent which sometimes lead to overlapping
intents of different levels of granularity, even after
we had made sure to manually merge any conflict-
ing or highly similar intents in the training data.

Directly coming from real users our test set
queries also contain messaging slangs, acronyms,
spelling mistakes, grammatical mistakes and usage
of code-mixed languages’. Queries in non-Latin
script or code-mixed languages were marked as
out of scope (labelled as NO_NODES_DETECTED).
Since live chat systems don’t cater all the queries
related to a brand, our test set contains relevant out-
of-scope queries received from users about that do-
main. Any identifiable information of users, brands
was replaced with made-up values in both train and
test sets.

4 Benchmark Evaluation

We evaluated the performance of our datasets on
platforms like Dialogflow, LUIS, RASA and Hap-
tik in addition to evaluating performance on BERT.
All layers of BERT were fine-tuned with a learning
rate of 4e-5 for up to 50 epochs with a warmup
period of 0.1 and early stopping.

4.1 Out-Of-Scope (OOS) prediction

We use thresholds on the model’s probability es-
timate for the task of predicting whether a query
is OOS. We show performance on thresholds rang-
ing from 0.1 to 0.9 at an interval of 0.1 to show
the maximum performance a model can achieve
irrespective of how we choose the threshold.
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4.2 Metrics

We consider Accuracy and Matthew’s Correlation
Coefficient” as overall performance metrics for the
systems. We use OOS recall (Larson et al., 2019) to
evaluate performance on OOS queries and accuracy
of in-scope queries to evaluate performance on in-
scope queries.

5 Results

Figure 1 presents results for all systems, for both
Full and Subset variations of the dataset. Best Ac-
curacy on all the datasets is in the early 70s. Best
MCC for the datasets varies from 0.4 to 0.6, sug-
gesting the systems are far from perfectly under-
standing natural language.

In Table 3, we consider in-scope accuracy at a
very low threshold of 0.1, to see if false positives
on OOS queries would not have mattered, what’s
the maximum in-scope accuracy that current sys-
tems are able to achieve. Our results show that even
with such a low threshold, the maximum in-scope
accuracy which systems are able to achieve on Full
Training set is pretty low, unlike the 90+ in-scope
accuracies of these systems which have been re-
ported on other public datasets like CLINC150 in
(Larson et al., 2019). And, the in-scope accuracy
is even worse for the Subset of the training data.

Table 5 shows percentage drop in in-scope accu-
racy on subset data across all systems as compared
to in-scope accuracy on full data. The drop varies
from 0.6% to 22.3% across datasets and platforms.
In an ideal world, this drop should be close to 0
across all datasets, as if the system understands the
meaning of queries in training data, its performance
should not get affected at all by removing queries
in training data which are semantically similar to
the ones already present.

Analyzing few example queries which failed on
all platforms in Table 4 suggests that these models

*https://scikit-learn.org/stable/modules/model_evaluation



Test query True label Top predicted label

Sample training queries for True label Sample training queries for predicted label

Ergo 7272 inches price? MATTRESS_COST

L,H,D,R: ERGO_FEATURES

o Price of mattress o Features of Ergo mattress

o Custom size cost © Tell me about SOF Ergo mattress

L,H,D: COD

100 NIGHT_TRIAL_OFFER R: EMI

Trail option are there

« Trial details
« How to enroll for trial

© Can I get COD option?
o Can it deliver by COD

L: DISTRIBUTORS

I require 75 inch 57 inch. Is it available? SIZE_CUSTOMIZATION

H,D,R: WHAT_SIZE_TO_ORDER

® Want to know the custom size chart
© Show me all available sizes

o Will T get an option to Customise the size
o How can I order a custom sized mattress

20 % discount available on emi OFFERS L,H,D,R: EMI

© You guys provide EMI option?
® No cost EMI is available?

© Want to know the discount
o Tell me about the latest offers

How will u deliver with this LockDown in place ?  NO_NODES_DETECTED

L,H,D,R: CHECK_PINCODE

@ Do you deliver to my pincode

Covid19 how can you deliver NO_NODES_DETECTED

L,H,D,R: CHECK_PINCODE

© Will you be able to deliver here

Table 4: Few examples of test queries in SOFMattress which failed on all platforms, L: LUIS, H: Haptik, D:
Dialogflow, R: Rasa. NO_NODES_DETECTED is the out-of-scope label.

SOF Power
Mattress Curekart playll
Dialogflow 10.6 5.0 6.7
RASA 18.7 4.1 10.5
LUIS 16.8 1.2 8.3
Haptik 11.3 0.6 10.9
BERT 22.3 1.5 9.4

Table 5: Percentage drop in Inscope Accuracy at low
threshold=0.1 in Subset data as compared to Full
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Figure 2: Out-of-Scope (OOS) Recall at the cost of In-
scope Accuracy for SOFMattress Full dataset

aren’t actually “understanding” language or captur-
ing “meaning”, instead capturing spurious patterns
in training data, as was also pointed in (Bender and
Koller, 2020). Predicting based on these spurious
patterns, which models latch on to during training,
leads to models having high confidence even on
OOS queries. Figure 2 shows this behaviour on
SOFMattress Full dataset, as significant percentage
of OOS queries have high confidence scores on all
systems, except LUIS, for which it is at the cost of
in-scope accuracy.

6 Conclusion

This paper analyzed intent detection on 3 new
datasets consisting of both in-scope and out-of-
scope queries received on 3 live chat bots over
a period of 15 days. Our findings indicate that

there’s a significant gap in performance on crowd-
sourced datasets vs in a real world setup. NLU
systems don’t seem to be actually “understanding”
language or capturing “meaning”. We believe our
analysis and dataset will lead to developing better,
more robust dialogue systems.
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