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Abstract

Non-negative Matrix Factorization (NMF) has
been used for text analytics with promising
results. Instability of results arising due
to stochastic variations during initialization
makes a case for use of ensemble technology.
However, our extensive empirical investiga-
tion indicates otherwise. In this paper, we es-
tablish that ensemble summary for single doc-
ument using NMF is no better than the best
base model summary.

1 Introduction

Non-negative Matrix factorization (NMF) has
demonstrated promise in text analytic tasks like
topic modeling (Suh et al., 2017; Qiang et al.,
2018; Belford et al., 2018), document summariza-
tion (Lee et al., 2009; Khurana and Bhatnagar,
2019) and document clustering (Shahnaz et al.,
2006; Shinnou and Sasaki, 2007). The method
finds favour due to the presence of non-negative el-
ements in resultant factor matrices, which enhance
intuitive understanding of the underlying latent se-
mantic structure of the text (Lee and Seung, 1999).

Recent applications of ensemble methods for
NMF based topic modeling has shown consider-
able promise (Suh et al., 2017; Qiang et al., 2018;
Belford et al., 2018). These observations drive
our motivation for exploring NMF ensembles for
document summarization task.

1.1 NMF for Text Summarization

Consider a (pre-processed) document D consisting
of n sentences (S1, S2, . . . , Sn) and m terms ( t1,
t2, . . . , tm) represented by a Boolean term-sentence
matrix Am×n. NMF decomposition of A results
into two non-negative factor matrices W and H ,
where W is m× r term-topic (feature) matrix and
H is r×n topic-sentence (co-efficient) matrix, with
r � min{m,n}.

Columns in W correspond to document topics
represented as τ1, τ2 . . . τr in the latent semantic
space, and columns in H represent sentences in
D. Element wij in W signifies the contribution of
term ti in topic τj , and element hij in H denotes
the strength of topic τi in sentence Sj . Deft ma-
nipulation of the elements of two factor matrices
yields distinctive sentence scores (Lee et al., 2009;
Khurana and Bhatnagar, 2019). Top scoring sen-
tences are selected to generate summary of desired
length.
Instability of NMF for Text Summarization:
Even though NMF based automatic text summa-
rization is unsupervised and carries advantages of
language, domain and collection independence, yet
it has been used sporadically for summarization.
The reason can be linked to stochastic variations in
factor matrices due to random initialization.

Repeated NMF factorization of the input term-
sentence matrix results into different sentence
scores, generating different summaries. This am-
bivalence renders the resulting NMF summaries
dubitable. In authors’ opinion, this has retarded
development in this line of research.

Lee et al. (2009) suggested a simplistic fix to this
problem by using static initialization for W and H .
Experiment using DUC20021 data-set with varying
initial seed values for W and H shows that the best
initialization value is document specific (Fig. 1).
Hence, fixed initialization of factor matrices is not
a prudent idea.

Another fix for the problem is to use NNDSVD
(Non-negative Double Singular Value Decompo-
sition (Boutsidis and Gallopoulos, 2008)) based
initialization for NMF factor matrices. Our earlier
work (Khurana and Bhatnagar, 2019) establishes
that this initialization method improves the sum-

1 Well studied data-set for single document summariza-
tion available at https://duc.nist.gov consisting of 533 unique
documents.
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Figure 1: Number of documents with highest ROUGE-
L recall score for different initial seed values of NMF
factor matrices.

mary quality over fixed initialization for several
benchmark data-sets.

1.2 NMF Ensembles

Random initialization has been exploited by clus-
tering and topic modeling researchers to create en-
sembles (Greene et al., 2008; Belford et al., 2018;
Qiang et al., 2018). Ensembling is a machine learn-
ing technique, which combines (multiple) varying
base models to construct a consensus model, which
is expected to perform better than individual base
models.

Effectiveness of NMF ensembles in text analyt-
ics, specifically in topic modeling (Belford et al.,
2018; Qiang et al., 2018), motivated the current
research. We initiated the study with the aim to
leverage stochastic variations in NMF factors and
resulting diverse base summaries, to combine into
stable ensemble summary.

Extrapolating earlier studies, we expected that
NMF ensemble summary, smoothed over multi-
farious summaries obtained by randomly initial-
ized NMF factors, will accomplish higher ROUGE
scores. However, our investigations establish that
NMF ensembles are not effective. Rather, despite
heavy overhead of creating multiple base models
and combining them, NMF ensemble often perform
worse than the best base model for single document
extractive summarization.

2 NMF Ensembles for Text
Summarization

Ensemble methods are employed in supervised,
semi-supervised and unsupervised learning settings.
In all scenarios, they comprise two phases.

In the first phase, diverse base models are gen-
erated. Diversity in models is recognized to be the
key factor for improvement (Kuncheva and Had-
jitodorov, 2004), which is commonly sourced from
variations in base algorithm, algorithmic parame-
ters or data itself.

In second phase, multiple base models are com-
bined using a consensus (aka integration) function.
Wide variety of choices for creating diversity and
combining base models gives rise to numerous pos-
sibilities for creating ensembles (Zhou, 2012).

2.1 Generation of diverse base models

Repeated application of NMF on the term-sentence
matrix leads to generation of multiple base models.
In the present context, we achieve diversity using
two methods.
(i) Repeated factorization2 of A using NMF with
random initial seed values for W and H , and
(ii) Repeated factorization by varying the number
of latent topics into which the document is decom-
posed, as suggested in (Greene et al., 2008). This
strategy implicitly embeds variations that arise out
of random initialization.

In practice, variation in choice of NMF solvers
and initialization methods is also a source of di-
versity. We however, refrain from following this
direction because of weak scientific ground.

2.2 Combining NMF base models

We examine six combining methods, in increasing
order of complexities, to generate consensus sum-
maries. First three are simple aggregation methods,
where sentence scores are combined directly. Next
two methods are based on rank manipulation of the
scored sentences. Finally, we use Stacking, which
is a sophisticated combining method (Zhou, 2012;
Belford et al., 2018).
i. Average: We calculate the consensus score of
each sentence in the document by averaging sen-
tence scores over all base models, and use it for
summary sentence selection.
ii. Median: Since average is sensitive to outliers,
we calculate median score of each sentence across
all base models and use it for summary sentence
selection.
iii. Quartile: We obtain consensus score by con-
sidering third quartile of the sentence scores across
all base models, and use it for summary sentence

2We calculate r according to the formula proposed in
(Aliguliyev, 2009).
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selection.
iv. Voting: We rank sentences based on their
scores. Consensus rank of a sentence is the most
frequent rank (majority) of the sentence amongst
base models. Top ranking sentences are selected
for summary.
v. Ranking: We count the number of times a sen-
tence appears among the top k scoring sentences
(k is the desired number of sentences). Finally,
sentences are ranked based on the frequency of
appearing among top-k ranked sentences. Top scor-
ing sentences are included in summary.
vi. Stacking: Stacking is a well established com-
bining method, which combines base level models
to create a meta-training set (Zhou, 2012). Subse-
quently, ensemble model is trained on this meta-
training set. We stack topic-term (W T ) matrices
(base level models) as meta-training set (Ŵ ) for
producing the stacked ensemble (Belford et al.,
2018).

Ŵ matrix is factorized using NMF with
NNDSVD initialization to obtain ensembled topic-
term matrix, which along withA is used for scoring
sentences using term-oriented sentence selection
method, NMF-TR, proposed in (Khurana and Bhat-
nagar, 2019). Finally, top-k scoring sentences are
included in summary.

3 Performance Evaluation

In this section, we present extensive experimen-
tation3 carried out to investigate the performance
of NMF ensembles for extractive summarization.
First, we evaluate the performance based on com-
bining methods described in Sec. 2 and the sizes
of ensemble. Next, we study the effect of diversity
in base models on ensemble performance. Finally,
we test the statistical significance of our results.
All experiments are performed on DUC20014 data-
set consisting of 308 documents and DUC20021

data-set. We report macro averaged ROUGE re-
call scores (R-1: ROUGE-1, R-2: ROUGE-2, R-L:
ROUGE-L) (Lin, 2004).

In interest of brevity, all results are reported
as performance gain (+) or loss (-) over NMF-
TR scores as baseline method. Table 1 shows
ROUGE scores of this baseline for DUC2001 and
DUC2002 data-sets reported in (Khurana and Bhat-
nagar, 2019).

3Code is available https://github.com/alkakhurana/NMF-
Ensembles

4Available at https://duc.nist.gov

R-1 R-2 R-L
DUC2001 44.7 15.9 39.3
DUC2002 49.0 21.5 44.1

Table 1: Macro-averaged ROUGE recall performance
of NMF-TR method (Khurana and Bhatnagar, 2019).

3.1 Examining Combining Methods

Primary objective of this experiment is to examine
the comparative performance of model integration
methods. However, size of an ensemble is a crucial
factor that determines the quantum of performance
gain. Oversized ensembles have obvious compu-
tational and memory overheads, while undersized
ensembles run the risk of little performance gains
and reduced stability. Ergo, we evaluate the per-
formance of each combining method on ensem-
bles of varying sizes. We compute macro-averaged
ROUGE recall scores, each score averaged over ten
executions to combat random variations. Table 2
shows the performance differential for six combin-
ing methods for ten different sizes for DUC2002
data-set. A cursory glance is sufficient to conclude
that there are more negs than pos’. Degradation
in performance is most unexpected. Macro-level
analyses in the bottom row and rightmost column
consolidate the surprise.

The bottom row ‘Total’ shows the number of
times the ensemble improves summary quality
across all combining methods. For ensemble size
100, there is ≈50% chance (9/18) of improving the
summary quality across all methods. The rightmost
column ‘Total’ shows the number of times a com-
bining method improves summary across all sizes
for each integration method. It suggests that simple
combining methods improve marginally even for
large size ensemble.

To confirm the trend, we repeated the same ex-
periment with DUC2001 data-set (Table 3). Ap-
parently there is better chance of improvement for
this data-set using NMF ensembles, but the gain is
meagre (less than 0.5 in each case) and does not
justify the computational overhead.

Consolidating observations from Table 2 & 3,
none of the the combining methods yield noticeably
better quality summaries than the baseline method.
Further, increasing the size of ensemble also does
not hold promise.

Since Table 2 & 3 exhibit similar trends, we
choose to perform remaining experiments on
DUC2002 data-set as it clearly demonstrates in-
firmity of NMF ensembles.
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DUC2002
` = 2 ` = 4 ` = 6 ` = 8 ` = 10 ` = 20 ` = 30 ` = 40 ` = 50 ` = 100 Total

Average R-1 -0.572 -0.268 -0.225 -0.098 -0.118 -0.060 +0.040 +0.108 +0.064 +0.151 4
R-2 -0.727 -0.429 -0.447 -0.293 -0.278 -0.220 -0.123 -0.084 -0.128 -0.027 0
R-L -0.557 -0.279 -0.292 -0.164 -0.195 -0.132 -0.039 +0.022 -0.030 +0.069 2

Median R-1 - -0.165 -0.048 -0.050 -0.125 +0.047 +0.170 +0.166 +0.159 +0.219 5
R-2 - -0.362 -0.248 -0.287 -0.279 -0.123 -0.003 -0.053 -0.043 +0.024 1
R-L - -0.209 -0.098 -0.138 -0.185 -0.021 +0.093 +0.063 +0.069 +0.124 4

Quartile R-1 - -0.367 -0.355 -0.145 -0.212 -0.093 +0.029 -0.044 +0.041 +0.154 3
R-2 - -0.550 -0.606 -0.406 -0.401 -0.292 -0.212 -0.257 -0.187 -0.057 0
R-L - -0.392 -0.408 -0.227 -0.294 -0.167 -0.073 -0.135 -0.054 +0.066 1

Voting R-1 - -0.561 -0.470 -0.295 -0.333 -0.103 -0.125 -0.029 +0.068 +0.138 2
R-2 - -1.002 -0.898 -0.669 -0.625 -0.409 -0.328 -0.238 -0.121 -0.102 0
R-L - -0.579 -0.501 -0.345 -0.403 -0.193 -0.214 -0.110 -0.006 +0.046 1

Ranking R-1 - -3.078 -2.815 -2.806 -2.829 -2.564 -2.319 -2.192 -2.112 -1.913 0
R-2 - -3.485 -3.271 -3.213 -3.247 -3.027 -2.729 -2.625 -2.567 -2.402 0
R-L - -2.735 -2.486 -2.508 -2.551 -2.356 -2.093 -1.992 -1.890 -1.742 0

Stacking R-1 -0.152 -0.093 -0.076 -0.063 -0.136 -0.202 -0.181 -0.084 -0.208 -0.184 0
R-2 -0.416 -0.307 -0.285 -0.226 -0.331 -0.322 -0.352 -0.295 -0.383 -0.385 0
R-L -0.208 -0.095 -0.113 -0.078 -0.157 -0.212 -0.205 -0.122 -0.248 -0.196 0

Total 0 0 0 0 0 1 4 4 5 9

Table 2: Performance differential in macro-averaged ROUGE recall scores w.r.t NMF-TR for different ensemble
sizes and combining methods. ` is the size of ensemble. ‘-’ indicates that the integration method is not meaningful.

DUC2001
` = 2 ` = 4 ` = 6 ` = 8 ` = 10 ` = 20 ` = 30 ` = 40 ` = 50 ` = 100 Total

Average R-1 -0.328 -0.158 -0.011 +0.066 +0.054 +0.052 +0.177 +0.105 +0.070 +0.135 7
R-2 -0.076 +0.152 +0.337 +0.324 +0.294 +0.257 +0.338 +0.313 +0.295 +0.341 9
R-L -0.118 +0.003 +0.154 +0.208 +0.163 +0.158 +0.255 +0.187 +0.151 +0.191 9

Median R-1 - -0.121 +0.037 +0.104 +0.068 +0.043 +0.047 +0.115 +0.180 +0.210 8
R-2 - +0.145 +0.301 +0.302 +0.301 +0.252 +0.224 +0.288 +0.340 +0.315 9
R-L - -0.002 +0.188 +0.188 +0.140 +0.112 +0.108 +0.196 +0.230 +0.232 8

Quartile R-1 - -0.391 +0.062 -0.168 -0.087 -0.101 -0.001 +0.005 -0.004 +0.073 3
R-2 - -0.014 +0.274 +0.205 +0.199 +0.223 +0.226 +0.266 +0.255 +0.273 8
R-L - -0.205 +0.243 +0.003 +0.033 +0.055 +0.100 +0.124 +0.120 +0.150 8

Voting R-1 - -0.464 -0.225 -0.093 +0.008 -0.011 +0.007 +0.046 -0.026 +0.009 4
R-2 - -0.290 +0.005 +0.210 +0.268 +0.290 +0.360 +0.379 +0.328 +0.428 8
R-L - -0.192 +0.022 +0.130 +0.189 +0.152 +0.159 +0.202 +0.123 +0.184 8

Ranking R-1 - -2.299 -2.295 -2.180 -2.158 -1.768 -1.474 -1.607 -1.391 -1.052 0
R-2 - -1.659 -1.680 -1.495 -1.497 -1.164 -0.912 -1.032 -0.895 -0.662 0
R-L - -1.619 -1.599 -1.508 -1.535 -1.152 -0.849 -0.945 -0.812 -0.522 0

Stacking R-1 -0.009 +0.015 -0.032 -0.021 +0.085 +0.092 +0.032 +0.161 +0.042 -0.034 6
R-2 +0.216 +0.250 +0.228 +0.201 +0.333 +0.271 +0.300 +0.344 +0.311 +0.242 10
R-L +0.178 +0.164 +0.115 +0.163 +0.252 +0.217 +0.211 +0.279 +0.211 +0.127 10

Total 2 6 12 12 14 13 14 15 13 14

Table 3: Performance differential in macro-averaged ROUGE recall scores w.r.t NMF-TR for different ensemble
sizes and combining methods. ` is the size of ensemble. ‘-’ indicates that the integration method is not meaningful.

3.2 Diversity in Base Models

Since summary scores are sensitive to the number
of latent topics into which document is decom-
posed, varying the number of latent topics while
decomposing the term-sentence matrix is a poten-
tial source of diversity in NMF base models. We
explore two different ways to accomplish this.

Selecting latent topics from range: We create
100 base models with number of latent topics ran-
domly chosen from the range [r, 2r], where r is
determined using method proposed by (Aliguliyev,
2009). We expect that random initialization and
variation in the number of topics would inject di-
versity in base models. We do not test this method
with stacking because it requires stacked matrices
to have same number of columns. Results for this
experiment (Table 4) belie our expectation. Thus
varying the number of topics does not improve the

Avg Med Quart Vote Rank
R-1 -0.005 +0.170 +0.041 +0.017 -1.745
R-2 -0.095 -0.035 -0.064 -0.126 -2.227
R-L +0.002 +0.129 0.000 -0.053 -1.622

Table 4: Performance differential for random variation
in number of latent topics in the range [r, 2r] for ensem-
ble size 100.

quality of consensus summary.

Varying latent topics over range: Suspecting that
repetition in the number of latent topics in previ-
ous experiment curb diversity in the ensemble, we
attempt to create diversity by generating base mod-
els with all values in the range [r, 2r]. Hence, the
size of ensemble for this experiment is document
specific. Here too, it is not possible to create a
stacking ensemble because of different number of
latent topics in each base model. Results for this
diversity creation method are presented in Table 5.
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Thus systematically varying the number of topics

Avg Med Quart Vote Rank
R-1 -0.265 -0.540 +0.029 -0.397 -2.515
R-2 -0.363 -0.597 -0.268 -0.725 -2.935
R-L -0.271 -0.566 +0.022 -0.503 -2.262

Table 5: Performance gain/loss when the number of la-
tent topics are in generated from the range [r, 2r].

also fails to infuse diversity and shows no promise.

3.3 Comparison with best summary
With no success in injecting diversity in base mod-
els, we proceed to perform deeper analysis to di-
agnose the cause of degradation. We wanted to
answer the question ‘How many base models are
responsible for pulling down the score of consensus
summary?’.

To answer this, we evaluated all base summaries
and noted their ROUGE scores. The score of the
best base summary was compared against that of
ensemble summary and translated to win (if ensem-
ble summary score is higher or equal), and loss
otherwise. This exercise was done for all integra-
tion methods and ensemble size 30 and 100.

Results shown in Table 6 are almost startling.
E.g. 23/510 for ensemble size 30 means that out of
533 total documents, for 23 documents the ensem-
ble summary was atleast as good as the best base
summary. For 510 documents, ensemble summary
score was worse than that of the base summary.
Thus NMF ensemble summaries fail miserably to
improve quality over the best base summary.

size = 30
Avg Med Quart Vote Rank Stk

R-1 23/510 23/510 28/505 22/511 42/491 27/506
R-2 28/505 25/508 26/507 24/509 52/481 28/505
R-L 23/510 21/512 22/511 18/515 41/492 20/513

size = 100
Avg Med Quart Vote Rank Stk

R-1 11/522 10/523 11/522 6/527 20/513 12/521
R-2 16/517 17/516 18/515 11/522 26/507 16/517
R-L 11/522 11/522 12/521 7/526 18/515 13/520

Table 6: Wins/losses for ensemble summary compared
with best base model summary for DUC2002 corpus.

3.4 Statistical Significance of Combining
methods

We investigate the statistical significance of our
results for all combining methods. We employ
bootstrap approach recommended in (Dror et al.,
2018), and test the null hypothesis
H0: NMF ensemble method performs no worse
than the baseline NMF-TR, against the alternative
hypothesis,

H1: NMF ensemble method performs worse than
NMF-TR.
For each combining method, we generate one mil-
lion bootstrap samples from the ROUGE scores
of 533 ensemble summaries. We compute the dif-
ference in performance w.r.t baseline and estimate
p-value as the ratio of number of times ensemble
method beats NMF-TR by twice the margin on the
bootstrap samples, to the total number of samples.
For p-value > 0.05, we reject the null hypothesis.
Table 7 shows p-values obtained for each ROUGE
metric and combining method. According to the
computed p-values (Table 7), we fail to accept null
hypothesis for each combining method and each
ROUGE metric. Therefore, NMF ensemble meth-

Avg Med Quart Vote Rank Stk
R-1 0.37 0.13 0.31 0.23 0.99 0.82
R-2 0.59 0.45 0.66 0.44 1 0.90
R-L 0.45 0.19 0.39 0.34 0.99 0.84

Table 7: Probability values for bootstrap sampling
based test of ensemble performance w.r.t baseline.

ods are not statistically significantly better than the
baseline method.

4 Discussion and Conclusion

Extensive empirical investigation shows that lever-
aging stochastic variations due to random initial-
ization of NMF factor matrices for extractive doc-
ument summarization is not straight-forward. We
experimented with different NMF solvers available
in (Pedregosa et al., 2011) and found no change in
results. In absence of any concrete explanation for
degraded performance, we forward two plausible
reasons.

First, apparently simple combining methods fail
to tease apart the differences in term-topic and
topic-sentence strengths in the latent space. Pos-
sible future investigation in this direction include
projection of these matrices in higher dimension,
and drawing from the cluster ensemble research to
design more sophisticated combining methods.

Second reason is related to the maxim of sen-
tence ranking and selection for extractive docu-
ment summarization. Combining scores from base
models alters sentence ranking, and probably less
important sentence get pulled up in the summary.
This is most likely to happen with the lowest ranked
sentence in the summary. A single bad sentence
in the summary can lower down the score substan-
tially. Achieving stable ranks in ensemble technol-
ogy could be another direction of research.
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