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Abstract

A growing body of work shows that models
exploit annotation artifacts to achieve state-of-
the-art performance on standard crowdsourced
benchmarks—datasets collected from crowd-
workers to create an evaluation task—while
still failing on out-of-domain examples for the
same task. Recent work has explored the
use of counterfactually-augmented data—data
built by minimally editing a set of seed ex-
amples to yield counterfactual labels—to aug-
ment training data associated with these bench-
marks and build more robust classifiers that
generalize better. However, Khashabi et al.
(2020) find that this type of augmentation
yields little benefit on reading comprehension
tasks when controlling for dataset size and cost
of collection. We build upon this work by us-
ing English natural language inference data to
test model generalization and robustness and
find that models trained on a counterfactually-
augmented SNLI dataset do not generalize bet-
ter than unaugmented datasets of similar size
and that counterfactual augmentation can hurt
performance, yielding models that are less ro-
bust to challenge examples. Counterfactual
augmentation of natural language understand-
ing data through standard crowdsourcing tech-
niques does not appear to be an effective way
of collecting training data and further innova-
tion is required to make this general line of
work viable.

1 Introduction

While standard crowdsourced benchmarks have
helped create significant progress within natural
language processing (NLP), a growing body of
evidence shows the existence of exploitable anno-
tation artifacts in these datasets (Gururangan et al.,
2018; Poliak et al., 2018; Tsuchiya, 2018) and that
models can use artifacts to achieve state-of-the-art
performance on these benchmarks (McCoy et al.,
2019; Naik et al., 2018). The existence of these

artifacts makes it difficult to predict out-of-domain
generalization and creates uncertainty around the
abilities these tasks are designed to test.

Recent work has explored using
counterfactually-augmented datasets to ad-
dress annotation artifacts with the intent to build
more robust classifiers (Kaushik et al., 2020;
Khashabi et al., 2020). These datasets are collected
by first sampling a set of seed examples and then
creating new examples by minimally editing the
seed examples to yield counterfactual labels. This
type of data collection has been found to mitigate
the presence of artifacts in SNLI (Bowman et al.,
2015) and is presented as a way to “elucidate the
difference that makes a difference” (Kaushik et al.,
2020). Further, Khashabi et al. (2020) present
this as an efficient method to collect training data
yielding models that are “more robust to minor
variations and generalize better” (Khashabi et al.,
2020). However, they also find that unaugmented
datasets yield better performance than datasets
with 50-50 original-to-augmented data when
controlling for training set size and annotation
cost.

In our work, we further study whether train-
ing with counterfactually-augmented data collected
through standard crowdsourcing methods yields
models with better generalization and robustness
by focusing on the domain of natural language
inference (NLI): the task of inferring whether a
hypothesis is true given a true premise. We train
and compare RoBERTa (Liu et al., 2019) trained
on three different datasets: (1) the counterfactually-
augmented natural language inference (CNLI)
training set of 8.3k seed and augmented SNLI ex-
amples from Kaushik et al. (2020), (2) a subsam-
pled set of 8.3k unaugmented SNLI examples to
control for size, and (3) the 1.7k CNLI seed ex-
amples originally sampled from SNLI. We then
compare model performances on MNLI (Williams
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et al., 2018)—a dataset for the same task with exam-
ples out-of-domain to SNLI—and two diagnostic
sets (Naik et al., 2018; Wang et al., 2019a).

We find that RoBERTa trained on CNLI yields
similar performance on out-of-domain MNLI ex-
amples when compared to the unaugmented sub-
sampled SNLI training set and that including
counterfactually-augmented examples to the CNLI
seed set improves generalization. Further, we find
that the improvement over seed examples corre-
spond to an increase in n-grams from the addition
of augmented examples, roughly doubling the num-
ber of 4-grams, and may be a result of improved
lexical diversity from a larger training set. While
we see similar trends in most of our diagnostic
evaluations, we also find evidence that including
augmented examples can yield worse performance
than only training with seed examples.

While there is evidence of the benefits of using
this type of data for model evaluation (Gardner
et al., 2020), we find that using counterfactually-
augmented data for training yields less robust
models. We argue that further innovation is re-
quired to effectively crowdsource counterfactually-
augmented natural language understanding (NLU)
data for training more robust models with better
generalization.

2 Related Work

Recent works show that several NLI benchmark
datasets contain exploitable annotation artifacts.
Several studies (Poliak et al., 2018; Gururangan
et al., 2018; Tsuchiya, 2018) show that models
trained on hypothesis-only examples manage to
perform as much as 35 points higher than chance.
Gururangan et al. (2018) also find negation words
such as no or never are strongly associated with
contradiction predictions. Other works (Naik et al.,
2018; McCoy et al., 2019) find that models can ex-
ploit premise-hypothesis word overlap to achieve
state-of-the-art performance on benchmarks by us-
ing associations of high overlap with entailment
predictions and low overlap with neutral predic-
tions.

Nie et al. (2020) use an adversarial human-and-
model-in-the-loop procedure to address these con-
cerns in Adversarial NLI (ANLI). Using a model
in the loop makes ANLI inherently adversarial to-
wards the model used, and we instead focus on
naturally collected human-in-the-loop augmented
data.

Kaushik et al. (2020) crowdsource
counterfactually-augmented NLI examples
that reduce the presence of hypothesis-only bias
in SNLI by providing a set of seed examples to
crowdworkers and prompting them to minimally
edit either the hypothesis or premise to yield
a counterfactual label. Khashabi et al. (2020)
present this type of data collection as an efficient
method to build training sets yielding robust
models that generalize better by crowdsourcing
counterfactually-augmented BoolQ examples.
However, they also find that augmented datasets
yield similar to worse performance when the cost
of augmenting an example is no cheaper than
collecting a new one and the datasets are controlled
for size. We differ from Kaushik et al. (2020)
by focusing on performance on out-of-domain
examples and from Khashabi et al. (2020) by
focusing on the task of NLI instead of reading
comprehension.

Gardner et al. (2020) use contrast sets written
manually by NLP researchers to evaluate models
on various annotated tasks. They show that most
datasets require 1-3 minutes per augmented exam-
ple, taking 17-50 hours to create 1,000 examples.
We differ by using crowdsourced counterfactually-
augmented data and focusing on their use for train-
ing instead of evaluation.

3 Experimental Setup

We perform two experiments to study the effects of
counterfactually-augmented NLI training data. All
experiments use RoBERTa trained on SNLI, CNLI,
or CNLI seed examples originally sampled from
SNLI and compare performances on various tasks.
We first compare MNLI performances to evalu-
ate the impact on model generalization to out-of-
domain data. We then use the diagnostic examples
from Naik et al. (2018) and the GLUE diagnostic
set (Wang et al., 2019a) to study model robustness
to challenge examples.

Training Data In SNLI, Bowman et al. (2015)
prompt crowdworkers with a scene description
premise to collect three hypothesis sentences corre-
sponding to entailment, neutral, and contradiction
labels, yielding 570k English premise-hypothesis
pairs. Kaushik et al. (2020) collect CNLI examples
by prompting crowdworkers to minimally edit seed
examples sampled from SNLI to yield counterfac-
tual labels.

For our training data, we use a subsampled set
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of 8.3k examples of SNLI, the CNLI training set
of 8.3k examples, and the 1.7k CNLI seed exam-
ples sampled from SNLI that is also included in
the CNLI training set. We subsample SNLI to con-
trol for the fact that CNLI only consists of 8.3k
examples. We subsample five sets of 8.3k SNLI
examples and report results across these five.

Out-of-Domain Set We treat MNLI as our out-
of-domain NLI evaluation data. In collecting
MNLI examples, Williams et al. (2018) follow a
similar data collection framework while expanding
the diversity of their premises by sourcing them
from ten sources of freely available text, yielding
433k English premise-hypothesis pairs. The data
set includes 393k training examples from five of
the ten sources, 20k validation examples, and 20k
test examples. The validation and test examples
are split in half between matched and mismatched
examples, where matched examples come from the
same five sources as training examples and mis-
matched examples come from the remaining five
sources. We report validation accuracy for the com-
bined MNLI validation set.

Diagnostic Sets Naik et al. (2018) provide NLI
diagnostic sets of automatically generated chal-
lenge examples based on MNLI. These sets are
split into six categories named Antonymy, Numer-
ical Reasoning, Word Overlap, Negation, Length
Mismatch, and Spelling Error. As part of GLUE,
Wang et al. (2019a) provide NLI diagnostic sets
of challenge examples aimed to evaluate reasoning
abilities related to four broad categories: Lexical
Semantics, Predicate-Argument Structure, Logic,
and Knowledge. We use these sets to test model
robustness to challenge examples. We refer the
reader to Naik et al. (2018) and Wang et al. (2019a)
for additional details on each diagnostic set.

McCoy et al. (2019) provide similar adversarial
examples, but we find them too difficult for our
models, with performance consistently below 3%,
so we do not report performance in detail.

Implementation Our code1 builds on jiant
v2 alpha (Wang et al., 2019b). All experiments
use roberta-base. For each round of training,
we perform 20 runs and randomly search the hyper-
parameter space of learning rate {1e-5, 2e-5, 3e-5},
batch size {32, 64}, and random seed. Given the
small training set size and stability benefits from

1https://github.com/nyu-mll/
CNLI-generalization
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Figure 1: Combined MNLI matched and mismatched
validation accuracy trained on subsampled SNLI,
CNLI, and CNLI seed examples. The orange line and
label indicate the median score.

longer training found in Mosbach et al. (2020), we
train each run for 20 epochs using early stopping
based on the respective validation sets.

4 Results

Generalization to MNLI From the median
scores in Figure 1, we see that models trained
on CNLI perform no better than models trained
on a comparably large sample of unaugmented
SNLI examples. This is in line with findings
from Khashabi et al. (2020), where training with
their minimally perturbed BoolQ dataset of seed
and augmented examples yields similar or worse
performance on out-of-domain tasks compared to
the original BoolQ training set. Additionally, the
improvement of CNLI over the 1.7k seed exam-
ples shows that counterfactual examples are some-
what helpful when they are strictly additive, as in
Khashabi et al. (2020).

Robustness to Diagnostic Sets Figure 2
presents performances on the diagnostic sets from
Naik et al. (2018) and Wang et al. (2019a). For
the GLUE diagnostic sets, we follow the authors
and use R3 (Gorodkin, 2004) as our evaluation
metric. The distributions of classification accuracy
again show that CNLI yields similar performance
compared to unaugmented datasets of similar size
on most of the categories.

However, we find that training on CNLI yields
worse performance than using either unaugmented
SNLI or CNLI seed examples for Negation exam-
ples. These challenge examples append the phrase

“and false is not true” to every hypothesis in the
MNLI validation set. This construction introduces
the strong negation word “no” to target the associa-
tion between negation words and the contradiction
label without changing the truth condition of the

https://github.com/nyu-mll/CNLI-generalization
https://github.com/nyu-mll/CNLI-generalization
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Figure 2: Performance on diagnostic sets using (a) accuracy for Naik et al. (2018) examples and (b) R3 score on
GLUE diagnostic examples trained on subsampled SNLI, CNLI, and CNLI seed examples. Labels and orange
lines indicate median scores.

n SNLI 8.3k CNLI 8.3k CNLI Seed 1.7k

1 6.2k 4.8k 3.5k
2 30.4k 21.6k 13.0k
3 52.3k 36.3k 19.9k
4 60.2k 42.5k 21.5k

Table 1: Number of unique n-gram types observed in
each training set.

sentence. We speculate that the augmented data
may have amplified this association already present
among the seed examples. Not only does this show
that CNLI can yield models that are less robust
to certain challenge examples, but it also provides
evidence that adding substantial numbers of coun-
terfactual examples to a dataset can hurt robustness.

Lexical Diversity Given the minimal edits con-
straint in CNLI, we study the lexical diversity of
the training sets to see the effectiveness of this con-
straint and whether the general improvement of
CNLI over seed examples is a result of greater di-
versity from a larger training set. Table 1 provides
the number of n-grams present in each training set
with n varying from one to four. We see that includ-
ing minimally edited examples to CNLI increases

the number of n-grams present, roughly doubling
the number of 4-grams, which corresponds to the
general improvement over seed examples.

We also observe that CNLI contains roughly
70% of 2-, 3-, and 4-grams compared to similarly
large unaugmented training sets. This seems nat-
ural given the minimal edits constraint when col-
lecting counterfactually-augmented examples and
highlights the fact that this type of data augmenta-
tion results in less diversity per example.

5 Conclusion

We follow a similar setup to Khashabi et al.
(2020) and use English NLI data to test whether
counterfactually-augmented training data yields
models that generalize better to out-of-domain data
and are more robust to challenge examples. We first
find that adding counterfactually-augmented data
improves generalization, but provides no advantage
over adding similar amounts of unaugmented data.
Further, we find that the improvement over seed ex-
amples corresponds to an increase in n-gram diver-
sity. We also find that including counterfactually-
augmented data can make models less robust to
challenge examples. Assuming that crowdwork-
ers take a similar amount of time to make targeted
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edits to examples and to write new examples (Bow-
man et al., 2020), there is then no obvious value in
crowdsourcing augmentations under current proto-
cols for use as training data.

Despite these findings, we argue that there is
still value in naturally collected counterfactually-
augmented NLU data. Gardner et al. (2020) show
that collecting this type of data can be used as a
method to address systematic gaps in testing data.
As performances on benchmarks become saturated,
we still view this style of augmenting test sets as
a viable method to provide longer-lasting bench-
marks in addition to standard test set creation.

The success of Gardner et al. (2020) in using
expert-designed counterfactual augmentation to tar-
get specific phenomena for evaluation suggests that
it may be possible to target heuristics in training
data with expert guidance during the crowdsourc-
ing process. Further, understanding how to identify
heuristics to target and the types of useful augmen-
tations to collect, assuming such a thing is possible,
are important directions we leave to future work.
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