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Abstract

BERT model (Devlin et al., 2019) has
achieved significant progress in several Nat-
ural Language Processing (NLP) tasks by
leveraging the multi-head self-attention mech-
anism (Vaswani et al., 2017) in its archi-
tecture. However, it still has several re-
search challenges which are not tackled well
for domain specific corpus found in indus-
tries. In this paper, we have highlighted these
problems through detailed experiments involv-
ing analysis of the attention scores and dy-
namic word embeddings with the BERT-Base-
Uncased model. Our experiments have lead
to interesting findings that showed: 1) Largest
substring from the left that is found in the
vocabulary (in-vocab) is always chosen at ev-
ery sub-word unit that can lead to subopti-
mal tokenization choices, 2) Semantic mean-
ing of a vocabulary word deteriorates when
found as a substring in an Out-Of-Vocabulary
(OOV) word, and 3) Minor misspellings in
words are inadequately handled. We believe
that if these challenges are tackled, it will sig-
nificantly help the domain adaptation aspect of
BERT.

1 Introduction

BERT is one of the prominent models used for a
variety of NLP tasks. With the Masked Language
Model (MLM) method, it has been successful at
leveraging bidirectionality while training the lan-
guage model. The BERT-Base-Uncased model has
12 encoder layers, with each layer consisting of
12 self-attention heads. The word representations
are context-dependent 768 dimensional dynamic
embeddings. In order to leverage the learnings
of such pre-trained networks, fine tuning is com-
monly done while building NLP applications in in-
dustries.The BERT-Base-Uncased vocabulary has
a size of 30522 with only 994 unused slots (in com-
parison, BERT-Base-Cased has only 101 unused

slots). While the unused slots in the vocabulary
can be used to include domain specific words, the
representations of these will have to be fine tuned
with domain specific corpus before they can be uti-
lized. Hence, it is essential that the tokenization
algorithm performs well to handle domain specific
OOV words.

BERT relies on the WordPiece algorithm (Schus-
ter and Nakajima, 2012) to create the vocabulary,
that chooses those sub-word units for the vocabu-
lary towards maximising the language model likeli-
hood. However, the tokenization using this vocabu-
lary is not done semantically. This leads to a poor
tokenization that induces a semantic information
loss in terms of dealing with OOV words for do-
main centric downstream tasks. While the largest
substring tokenization problem can be alleviated
to a large extent by integrating recent algorithms
like BPE-Dropout (Provilkov et al., 2019) or Sen-
tencePiece (Kudo and Richardson, 2018), that use
frequency and/or language model based tokeniza-
tion, the remaining aforementioned challenges still
persist. In the following section, we discuss these
challenges with respect to two categories: Tok-
enization and Sub-word representations.

2 Experiments

The experiments we performed are using the pre-
trained BERT-Base-Uncased model without any
domain specific fine tuning as the examples were
chosen with the purpose of highlighting the chal-
lenges with BERT across various domains. The
12th encoder layer dynamic embeddings were used
for all the analysis tasks. In case a word was OOV,
the average of its sub-word units embeddings was
considered as its embedding. Otherwise, the em-
bedding for the word was considered as it is. In
all cases, we ignore the [CLS] and [SEP] embed-
dings while computing the embedding of a par-
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Input Tokenized
deconstructed [CLS], deco, ##nst, ##ru, ##cted, [SEP]

deactivated [CLS], dea, ##ct, ##ivated, [SEP]
unequal [CLS], une, ##qual, [SEP]

ccabbage [CLS], cc, ##ab, ##bag, ##e, [SEP]
cababge [CLS], cab, ##ab, ##ge, [SEP]
cabbagee [CLS], cabbage, ##e, [SEP]’]

unsaturated [CLS], un, ##sat, ##ura, ##ted, [SEP]
saturated [CLS], saturated, [SEP]

pork has saturated fat [CLS], pork, has, saturated, fat, [SEP]
pork has ##sat ##ura ##ted fat [CLS], pork, has, ##sat, ##ura, ##ted, fat, [SEP]

Table 1: BERT tokenized representations.

Cosine similarity Countbeg Countmid Countend
0.0-0.1 0 1 0
0.1-0.2 6 1 1
0.2-0.3 39 44 19
0.3-0.4 160 232 113
0.4-0.5 368 562 232
0.5-0.6 264 442 213
0.6-0.7 96 145 179
0.7-0.8 15 60 145
0.8-0.9 0 0 23
0.9-1.0 0 0 1

Avg. similarity: 0.474 0.49 0.552

Table 2: Cosine similarity score count for words vs misspelled versions in the TOEFL-Spell corpus when the error
occurs at the beginning, middle or end of the word.

ticular word. The ## counterpart of a word is ##
prefixed to the word. For example, the ## counter-
part of the word active is ##active. We also made a
subtle change to the tokenizer to leave untouched
any word beginning with ##.

2.1 Tokenization problems

BERT always picks the largest substring from the
left that is in-vocab at every sub-word unit for the
tokenized output. While this performs reasonably
well for words where the root (or stem) are suffixed,
prefixed words are vulnerable to a poor tokeniza-
tion.

Taking deconstructed, deactivated and unequal
as examples, even though the vocabulary had the
prefixes de and un as well as the words constructed,
activated and equal, the tokenizer chose the sub-
strings deco, dea and une (see Table 1). In com-
parison since SentencePiece is a likelihood based
tokenization algorithm, it has managed to gener-
ate better tokenizations (deconstructed: de, con,
struct, ed; deactivated: de, activated; unequal:

unequal). We believe that if the BERT tokenizer
correctly separates the prefixes while the model is
being trained, it can help the model to learn better
representations for the prefix as well as the sub-
word units since the attention mechanism would
understand the influence of the different categories
of prefixes. Further it can be seen in Section 2.2
how a poor tokenization can lead to weaker seman-
tic representations for the word.

Domain specific corpus often contain a large
amount of jargons that can be misspelled frequently.
Taking the in-vocab word cabbage as an example,
ccabbage, cababge and cabbagee were chosen as
the misspelled versions. The cosine similarities
of cabbage with ccabbage, cababge and cabbagee
were 0.33, 0.44 and 0.63 respectively. To verify
that the low cosine similarity scores in the mis-
spelled versions were not due to lack of surround-
ing context, we checked the cosine similarity score
between cabbage and onion (in-vocab) and found
it to be 0.88.

To analyze the extent of this problem and the im-
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Cosine similarity CountL=4 CountL=5 CountL=6 Count’L=4 Count’L=5 Count’L=6
0.0-0.1 0 0 0 0 0 0
0.1-0.2 6 8 13 0 0 1
0.2-0.3 25 86 134 4 0 2
0.3-0.4 198 404 556 5 2 2
0.4-0.5 573 975 1159 21 17 7
0.5-0.6 622 933 1133 8 3 14
0.6-0.7 176 340 398 172 54 23
0.7-0.8 4 17 32 127 58 28
0.8-0.9 0 0 1 51 23 8
0.9-1.0 0 0 0 0 0 0

Avg. similarity: 0.496 0.487 0.484 0.665 0.669 0.652

Table 3: Cosine similarity score count for word vs OOV ## counterpart (CountL=4, 5, 6) and word vs in-vocab ##
counterpart (Count’L=4, 5, 6).

Figure 1: Inward Attention visualization for fat in Encoder layer 1 - Attention head 3.

pact of the position of the error in the word on the
tokenization, we chose the TOEFL-Spell corpus
that contains over 6000 common spelling errors.1

We took the intersection of the common words
between the TOEFL-Spell corpus and the BERT
vocabulary words. The corpus was segregated de-
pending on whether the spelling error occurred in
the word within the starting 33% of the letters, in
the middle or at the end. As we can see in Table 2,
since the BERT tokenizer has the largest substring
problem, the penalty of a spelling error earlier in
the word is more harmful as it leads to subsequent
sub-word tokenization choices to be suboptimal.

2.2 Semantic meaning deterioration from
sub-word representations

For a model to handle OOV words well, it should
learn strong representations of a words constituents.
While OOV words that begin with an in-vocab root
(or stem) will retain its semantic meaning when
tokenized, they become vulnerable in other cases as
the root (or stem) will be broken down into smaller
constituent sub-word units.

1https://github.com/
EducationalTestingService/TOEFL-Spell

To see how BERT handles this, we created two
sets of words from the vocabulary of length 4,5
and 6 that were consisting of: 1) Words whose ##
counterparts were OOV and 2) Words whose ##
counterparts were in-vocab. We chose these par-
ticular words since a word with length less than 4
would be commonly be found as a sub-word across
many words, while a word with length larger that
6 would be rarer to be found as a sub-word. The
cosine similarity between a word and its ## counter-
part was computed (see Table 3). This problem is
not a concern when the ## counterpart is in-vocab
as the average cosine similarity was around 0.66,
which can be improved if supplied with a context
in a sentence. However, when the ## counterpart
is not part of the vocab, the average cosine simi-
larity drops to a low value of 0.48, which makes it
difficult for the network to recover from.

To further analyze this problem, we compared
the embeddings of the words unsaturated (OOV
but un and saturated are in-vocab) with saturated.
The cosine similarity between unsaturated and sat-
urated was only 0.30. In comparison, the cosine
similarity between un saturated and saturated is
0.81. To verify that this low similarity was being

https://github.com/EducationalTestingService/TOEFL-Spell
https://github.com/EducationalTestingService/TOEFL-Spell
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Layer Influence [CLS] pork has fat [SEP]
1 Outward -0.00905915 0.06523646 0.06099863 0.18786138 0.03023722

Inward -0.01837084 0.04225173 0.01648326 0.18937206 0.01520266
2 Outward -0.0004705 0.00843187 -0.00484527 0.02482779 0.01454217

Inward 0.17178166 -0.01259612 -0.03369101 0.01195145 0.01798595
3 Outward 0.00184171 0.01289389 0.12865019 0.08927301 0.00345621

Inward 0.03889459 0.01265209 -0.01004721 0.15340301 -0.00876677
4 Outward -0.00047312 -0.00136977 0.03939556 0.03750715 -0.00168958

Inward 0.04355699 0.00727928 0.04730521 0.04906496 0.01223874
5 Outward 0.0048245 -0.00982189 -0.02644702 0.02499489 -0.00251921

Inward 0.00937152 -0.00695391 -0.01893955 0.05315585 0.16019171
6 Outward -0.00265443 -0.01301921 0.0342003 0.01597476 -0.00048893

Inward -0.00409265 0.01658719 0.01285958 0.02900258 0.05893058
7 Outward -0.00125295 0.00154607 -0.01132394 0.01854416 0.00031497

Inward 0.00937736 -0.04564465 0.04480758 0.01291878 0.11453587
8 Outward -0.00527599 -0.01248677 0.00545111 0.00576302 -0.00044466

Inward 0.00128797 0.00911033 0.06117178 -0.02267864 0.06066525
9 Outward -0.01058492 0.00061043 0.03902156 0.03468442 0.00406067

Inward 0.0006195 0.01115873 0.03967107 -0.00104411 0.02020252
10 Outward 0.01764568 0.00554455 0.02936521 0.03989781 0.01815606

Inward 0.03199076 0.03799912 0.01782591 -0.00910724 0.02136517
11 Outward 0.02042433 0.0195443 0.01784758 0.02018948 0.00963123

Inward -0.03223545 0.08976553 0.04230637 0.04836676 -0.10472655
12 Outward 0.02328578 0.00367201 0.00402358 0.03388398 0.00260962

Inward 0.01822337 0.0257406 0.02513322 0.03337914 -0.0509001

Table 4: Difference in inward and outward attention scores between saturated and ##sat ##ura ##ted.

Word Nearest neighbours
saturated bacon, nutrition, cereal, obesity, flour, tobacco, humidity,

mustard, cigarettes, vitamin
##sat ##ura ##ted destruction, egypt, erosion, malaria, morphology, concussion, organ,

topography, aroused, sample

Table 5: Top 10 cosine similar nearest neighbours in the vocabulary for saturated and ##sat ##ura ##ted as found
in the sentences.

caused by the poor representation learning of the
constituents of saturated, we compared the average
embedding of ##sat, ##ura, ##ted (since unsat-
urated was tokenized into sub-word units) with
saturated and found their cosine similarity to be
only 0.35.

Further, to rule out the possibility that it was be-
ing caused due to lack of surrounding context, we
compared the average embedding of ##sat, ##ura,
##ted with saturated as found in the following sen-
tences: pork has saturated fat and pork has ##sat
##ura ##ted fat.

The cosine similarity even in this case was found
to be only 0.57. For the above sentences, we
wanted to see the impact of this problem by an-

alyzing the attention scores in each encoder layer.
The multi-head (12 heads) attention score matrix
across the 12 encoder layers is of size 12 x 12 x 6
x 6 for the first sentence and 12 x 12 x 8 x 8 for the
second sentence. Within each layer, we averaged
the attention scores across the 12 heads. This re-
sulted in 12 x 6 x 6 and 12 x 8 x 8 sized attention
scores matrices for the two sentences respectively.
We wanted to observe the inward influence of other
words on saturated as well as outward influence
of saturated towards the other words in both sen-
tences. For the first sentence, the attention score
matrix was hence reduced to a size of 12 x 5 x 5.
In the second sentence, we averaged the inward
and output influence for ##sat ##ura ##ted, leading
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to a reduced matrix of size 12 x 5 x 5. The two
matrices were then subtracted to see the difference
in the inward and outward influences for the word
saturated (see Table 4).

Since the difference was taken, a positive value
means saturated as found in the first sentence had a
larger inwards or outwards attention influence com-
pared to the second sentence. Clark et al. (2019)
previously showed that a large number of attention
heads in the early layers of BERT put >50% of
their attention on previous and next tokens. As we
can see in Table 4, the values in bold show a sig-
nificant difference in attention scores, especially in
the case for the neighbouring words of saturated,
which we believe has caused the loss of semantic
meaning between saturated and when tokenized to
##sat, ##ura, ##ted. The inward attention visual-
ization for fat in Encoder layer 1 - Attention head
3 generated using BertViz (Vig, 2019) can be seen
in Figure 1. Further, we checked the top 10 cosine
similar neighbours in the BERT-Base-Uncased vo-
cabulary (using their dynamic embeddings) for the
embeddings of saturated and ##sat ##ura ##ted
from the above sentences. We found that while
saturated as found in the first sentence had seman-
tically similar neighbours, its occurrence in the
second sentence had neighbours which had a com-
pletely irrelevant semantic meaning (see Table 5).
This confirmed that such a challenge can lead to
cascading problems in the network.

3 Conclusion

In this paper we highlighted various challenges
in the BERT model which if solved could signif-
icantly boost the models accuracy, especially in
domain specific applications. These are mainly due
to BERT lacking a semantic tokenization algorithm
and its semantic information loss from sub-word
representations in OOV scenarios.
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