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Abstract

It is unfair to expect neural data-to-text to pro-
duce high quality output when there are gaps
between system input data and information
contained in the training text. Thomson et al.
(2020) identify and narrow information gaps
in Rotowire, a popular data-to-text dataset. In
this paper, we describe a study which finds
that a state-of-the-art neural data-to-text sys-
tem produces higher quality output, according
to the information extraction (IE) based met-
rics, when additional input data is carefully se-
lected from this newly available source. It re-
mains to be shown, however, whether IE met-
rics used in this study correlate well with hu-
mans in judging text quality.

1

The ecological validity (de Vries et al., 2020) of
data-to-text tasks requires that tasks resemble, as
closely as possible, real-world problems. Only if
this is the case can neural data-to-text solutions
be operationally deployed with confidence. In the
context of data-to-text, one of the issues with eco-
logical validity is that most real-world tasks involve
sizeable input data, with longer and more complex
texts than are found in ‘toy-sized’ datasets. We
must be able to see a path to a machine learning task
which closely resembles a real-world scenario and
allows us to investigate important research ques-
tions. We should aim to improve both the dataset
and the task continuously. Generating summaries
of basketball games from tabled data with the Ro-
towire dataset, as introduced by Wiseman et al.
(2017a) for the English language, moves us closer
to an ecologically valid data-to-text task.

The original Rotowire dataset has been found to
contain gaps between the information in the input
data, and the information content of the training
text. This makes the task unfair for evaluating neu-
ral data-to-text systems that are required to generate
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high quality output text, with hardly any factual er-
rors. The SportSett:Basketball dataset (Thomson
et al., 2020) addresses these data issues by fixing in-
formation gaps in the input data, whilst maintaining
the original human-authored texts. Given that there
is now at least an order of magnitude more data per
game, we should consider which subset of data to
train the system on, and what if any pre-processing
should be preformed.

We added some of this newly available data to
an existing state-of-the-art neural data-to-text sys-
tem (Rebuffel et al., 2020) and found improvement
across a range of metrics. We used this system
since, at the time of writing, it is one of the most
recent, best performing and easiest to configure.
We also discuss here which types of data could be
added in the future, as well as some difficulties that
may be encountered in doing so.

2 Related Work

Many systems have been designed and evaluated
using the Rotowire dataset (Wiseman et al., 2017a;
Puduppully et al., 2019a,b; Wang, 2019; Gong
et al., 2019; Iso et al., 2019; Rebuffel et al., 2020).
Most of these works focus on adjusting the archi-
tecture of the system whilst using similar input
data. Gong et al. (2019) is a notable exception,
as their architecture change allows box score and
other data from previous games in their input. This
was, however, still data from the original Rotowire
dataset.

Some works have attempted to better align data
to text in other datasets, with techniques such as
semantic control (DusSek et al., 2019). For Ro-
towire, this has been investigated by Wang (2019),
which aims to prevent generation of sentences not
grounded in the data. With this approach, some
of the most common sentence types from the hu-
man narrative, such as the subsequent opponents
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of each team, are not generated. This difference
is crucial when determining ecological validity of
the task. The aim is to replicate the human author
in the act of writing a summary of the basketball
game, including its full narrative structure.

3 Information Gaps in Data-to-Text

Shown in Figure 1 is an example textual summary
from the Rotowire dataset. An example partial box
score is shown in Table 1. There are numerous
cases where information conveyed by the text is
not present in the same form in the box score or
other game data. These information gaps should
be investigated in order to improve the machine
learning task.

We performed a machine-assisted corpus analy-
sis, using the spaCy syntactic parser (Honnibal,
2015) to group sentences which only differ by
entity. We do this using an abstraction process
where we replace named entities with special to-
kens comprised of their part-of-speech and entity
label. Some manual rules are added to the parser to
handle domain specific syntax. By this process the
sentence (SO1 from Figure 1) ‘The Atlanta Hawks
(41-9) beat the Washington Wizards (31-19) 105-96
on Wednesday.’, is transformed to ‘PROPN-ORG
(X-Y) beat the PROPN-ORG (X-Y) X-Y on NOUN-
DATE. .

We then count and read these abstract sentence
types to find statements common to the narrative,
but with attribute types not present in the data. For
example, sentences with the same abstract form as
S1 occur 26 times in the training corpus, with more
than 800 further sentences of a similar form (using
defeat instead of beat, or also including the loca-
tion/stadium). It is the most common type of thing
to say in the opening sentence of these summaries
(which teams played, when, and where). There are,
however, important attributes in these sentences
which are not provided by the original Rotowire
data. When generating game summaries, systems
will often hallucinate these attributes as they deem
it probable that such language is included in the
summary, but the attribute is not available to the
copy attention mechanism. In the case of our above
example, the day of the week is not available in the
data. The stadium in which the game was played,
as well as the city and/or state within which the
stadium stands, are also not available despite being
common in variants of this opening sentence.
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3.1 Missing Game Information

In SO2 and S11 from Figure 1 we notice that the
games being discussed are not the game being sum-
marised, they are previous or subsequent games
for these teams. This is common in the training
corpus as well. Handling data for previous games
is complex (see subsection 3.2). However, data
for the subsequent game can be easily obtained
provided that a yearly partition scheme like that
proposed by Thomson et al. (2020) is used. If such
a partition scheme is not used, we cannot guarantee
that a previous or subsequent game was not used
to condition the system during training.

We also see in S09, a mention of the confer-
ence/division structure of the league. These are
known sets, which can change over time but are
fixed within a season. In the NBA there are 2 con-
ferences, each with 3 divisions of 5 teams.

The hierarchical encoder of Rebuffel et al. (2020)
takes as input a set of entities, where each entity
is a set of 24 tuples', and each tuple describes
an attribute of that entity. An example entity
would be a PLAYER, which might have attributes
such as ‘NAME—Kyrie_Irving’, ‘POINTS—30,
‘TEAM—=Celtics’, and ‘REB—S8’. If there are not
24 attributes of the entity then it is padded with
‘NULL—NULL’ tuples.

To model attributes of the current and subse-
quent games, we include in our input data an ad-
ditional entity of type GAME, as well as two ad-
ditional entities of type NEXT-GAME. These en-
tities were chosen because our machine-assisted
corpus analysis highlighted that sentences about
the game date and location, as well as those for
upcoming games for each team, were common in
the human-authored texts, but not supported by the
original Rotowire data. The newly available data
from SportSett allowed us to fill these gaps. In
the two NEXT-GAME entities (one each for the
two teams which are the focus of the current game
summary), we include attributes for season, month,
day of the week, stadium, capacity, and finally both
team names plus their respective division and con-
ference names. For the GAME entity, we include
the same attributes as for NEXT-GAME, plus the
attendance for the game (which was obviously not
available for NEXT-GAME as those events have
yet to take place).

'This is configurable in the encoder of Rebuffel et al.
(2020), although we did not change it.



SO1: The Atlanta Hawks (41-9) beat the Washington Wizards (31-19) 105-96 on Wednesday.

S02: The Hawks bounced back after losing their first game of 2015, a 115-100 loss at the hands of
the New Orleans Pelicans on Monday.

S03: Jeff Teague was Atlanta’s top scorer against the Wizards, recording 26 points on 9-of-13
shooting from the field. Kyle Korver was kept in check with just six points in a team-high 37
minutes.

S04: He helped get his teammates involved as he dished out six assists.

S05: Al Horford has put up at least 20 points and 10 rebounds in three of his last five games.

S06: The Wizards have now lost four straight, which is their longest losing streak of the season.

S07: They have lost by single-digits in all four games, and are now 0-3 against Atlanta this season.

S08: John Wall led Washington with 24 points and nine assists. Bradley Beal was coming off an
18-point, 11-rebound effort against Charlotte on Monday.

S09: He proceeded to post 23 points in 39 minutes in this matchup of two of the Eastern Confer-
ence’s top three teams.

S10: Washington did a great job slowing down Korver, but it wasn’t enough to get them the win.

S11: Washington will take their losing streak to Charlotte on Thursday, while the Hawks will
welcome the Golden State Warriors to town Friday.

Figure 1: Example human-authored basketball summary for WAS@ATL on February 4th 2015. Summary is
presented as an ordered list of sentences for ease of reference.

Player ‘ MP FG FGA FG% 3P 3PA 3P% FT FTA FT% REB AST STL BLK TOV PTS
Kyle Korver 37 1 7 143 1 6 167 3 3 1.000 5 6 0 0 1 6
Al Horfor 34 10 24 417 0 0 — 1 1 1.000 13 2 1 1 1 21
Paul Millsap 33 4 7 571 2 3 .667 1 2 .500 7 1 3 1 1 11
DeMarre Carroll | 33 4 10 400 3 7 429 3 4 750 2 0 1 0 1 14
Jeff Teague 31 9 13 692 2 4 500 6 8 750 2 8 2 0 4 26

Table 1: Example partial box score for WAS@ATL on February 4th 2015, showing Atlanta starters. Full box
scores show approx 24 players, Rotowire also includes team totals, as well as points totals for each original game

period (although not overtime)

3.2 Data of Varying Forms

In subsection 3.1 we described adding data which
easily fit our chosen encoder. It is worth noting,
however, that there is much more data available
in the SportSett database, and it can be presented
to our neural system in different formats. One ar-
gument is that we should take all the atomic data,
along with, perhaps, its structure, then create an en-
coder which accepts data in that form. The atomic
entities are players, which are grouped into teams,
divisions, conferences and leagues. The atomic
events are plays, the act of one or more players
acquiring countable statistics. See Thomson et al.
(2020) Section 2.1 for a more detailed analysis of
entities and dimensions in this dataset. The NLG
system would then be tasked with learning both the
language, as well as the underlying mathematics
for the statistics.

Whilst we could include all atomic events as

training data, this would greatly increase the size
of each input sample. We could alternatively in-

37

clude carefully selected aggregated forms of data,
although creating rules to determine what should
be included may be time consuming, and likely do-
main specific. There would also be many combina-
tions of these derived attributes. The key question
is should all possible attributes which are to be re-
alised be available to copy attention, or, should all
attributes be transformable from the atomic data?
An approach combining these different types of
input data could also be used.

Examples of aggregated forms of data could be
anything from the percentage of shots which were
successful for a player/team, to the average points
a player has scored over an arbitrary span of games.
One common inclusion in summaries is the aggre-
gated statistic ‘double-double’?, where players are
said to have recorded double-digits in exactly two
of points, rebounds, assists, blocks and steals. Men-
tions of previous games in the summary frequently

*https://en.wikipedia.org/wiki/
Double-double
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use phrases in the form ‘X of his/their last Y’. This
can be seen in SO5 of Figure 1 where we learn that
Al Holford has scored greater than 20 points, and
recorded more than 10 rebounds in exactly 3 of his
last 5 games. There would be an impractical quan-
tity of combinations for ‘X out of Y’ based state-
ments, even if Y had a maximum of 5-10. Other
similar aggregations, such as ‘scored a combined
60 points over his last 3 games.” compound this
problem.

It is unclear whether models could learn such
mathematical operations since even very large and
powerful models, such as GPT-3 (Brown et al.,
2020), currently only demonstrate simple addition
and subtraction. This important and difficult aspect
of defining the problem requires further research,
but is essential if we are to create a machine learn-
ing task which is ecologically valid. The original
Rotowire dataset contains a mix of countable statis-
tics (at the game level only) and derived statistics
such as percentages.

4 Evaluation by Information Extraction

The information extraction (IE) metrics of Relation
Generation (RG), Content Selection (CS), and Con-
tent Ordering (CO), have been used extensively to
compare systems operating on the Rotowire based
datasets. These metrics are also key to the system
design philosophy of Wiseman et al. (2017a) which
aims to

“lexploit] the fact that post-hoc informa-
tion extraction is significantly easier than
generation itself.”

All of these metrics are based on IE models which
learn to link statements in the text to tuples in
the data. These models are trained on a cor-
pus which has been automatically annotated using
rules. Names or numbers in the text are linked
to the possible data tuples which could represent
them. During evaluation, tuples are predicted for
the test text summaries, with a name, value and
a type, e.g. ‘Atlanta—96—TEAM-PTS’. These
predicted tuples can be compared with the tuples
in the data in order to determine whether facts
predicted from the text match those in the data.
For example, if the fact extracted from the text is
‘Atlanta—96—TEAM-PTS’, but in the data we see
‘Atlanta—105—TEAM-PTS’, then based on the
match of both name and type, we can determine
that the number is wrong.
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The CS metrics use these tuples to measure how
many of the tuples from the predicted text exist in
the gold standard text. The CO metric measures the
order of these tuples. For more details see (Wise-
man et al., 2017b) (we have purposefully cited the
arXiv version of this paper as it includes an addi-
tional appendix detailing the procedure).

4.1 Extended IE Metrics

We extend the IE based metrics using the data now
available in Thomson et al. (2020). Details can be
found on GitHub’. We make two modifications:

» Extend the annotation logic such that it can
detect the additional entities and attributes we
added in subsection 3.1. For example, days
of the week for both the current game and the
subsequent game for each team.

Use a season-based partition scheme so that
the IE model is not being used to evaluate data
upon which it was previously conditioned. We
use the 2014, 2015 and 2016 seasons to train,
2017 to validate, and 2018 to test. This is the
same problem in the partition scheme which
was identified for the text generation system
by Thomson et al. (2020).

5 Experimental Setup
5.1 NLG System Setup

We created two datasets:

D1: Where we emulated as closely as
possible the data format and content used
by Rebuffel et al. (2020) except using
season-based partitions.

D2: Keeping all data from DI, but
adding a new entity for the GAME, and
two for the NEXT-GAME as detailed in
subsection 3.1.

We then trained models using the system of Re-
buffel et al. (2020) on each dataset, with 10 differ-
ent random seeds, to determine whether adding the
additional information improved the results. We
also tested whether changing the early-stop strat-
egy impacted the results, taking a snapshot from
training using each of the best BLEU (Papineni
et al., 2002), RG, CS-PREC (precision), CS-REC
(recall), and CO.

*https://github.com/nlgcat/adding_data
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Dataset | Stopping Metric BLEU RG CS-PREC CS-REC CO
D1 BLEU 17.18 £0.386 | 0.70 £0.021 | 0.39 £0.015 | 0.38 £0.009 | 0.19 £+ 0.006
D2 BLEU 17.39 £1.189 | 0.75£0.034 | 0.43 £0.033 | 0.40 £ 0.019 | 0.21 £+ 0.015
D1 RG 16.97 £0.435 | 0.71 £0.016 | 0.38 £0.015 | 0.38 £0.009 | 0.18 4 0.008
D2 RG 17.00 £1.207 | 0.77 £0.029 | 0.42 £ 0.028 | 0.40 £ 0.013 | 0.21 £ 0.009
D1 CS-PREC 17.08 £0.358 | 0.71 £0.018 | 0.39 £0.012 | 0.38 £0.009 | 0.19 &+ 0.007
D2 CS-PREC 17.30 £1.301 | 0.76 £0.026 | 0.44 £0.034 | 0.41 £0.015 | 0.21 £ 0.015
D1 CS-REC 17.124+0.314 | 0.71 £0.017 | 0.39 £0.011 | 0.38 £0.007 | 0.19 £ 0.005
D2 CS-REC 17.27£1.191 | 0.77£0.026 | 0.43 £0.029 | 0.41 £ 0.015 | 0.21 £ 0.013
D1 CO 17.09 £0.540 | 0.70 £0.022 | 0.39 £0.012 | 0.38 £0.010 | 0.19 £+ 0.003
D2 Cco 17.34 £1.348 | 0.76 £0.025 | 0.44 +0.034 | 0.41 £0.014 | 0.22 £ 0.011

Gold N/A — 0.92 — — —

Table 2: Experiment results; Comparing D1 to D2 within every cell pair is statistically significant (p < 0.005) with
the exception of entries in the BLEU column. Note that BLEU, CS, and CO all inherently achieve 100% on gold

standard texts.

To summarise, we used two datasets, with 10
random seed each, all with 4 different early-stop
strategies for 80 models total (2*¥10*4). We then
calculated BLEU, RG, CS-PREC, CS-REC, and
CO for each model.

5.2 Automated Metric Setup

We trained IE models following the general pro-
cedure proposed by (Wiseman et al., 2017b). We
trained with different random seeds and learning
rates, then chose the best 3 LSTM and the best 3
Convolutional models to ensemble. We then used
the model ensemble, as well as BLEU-4 (Papineni
et al., 2002), to evaluate the NLG system itself.

6 Results

Table 2 shows the results of our evaluation. We
find a statistically significant difference (p < 0.005)
for all information extraction based metrics (RG,
CS-PREC, CS-REC, and CO) when we add the ad-
ditional information as described in subsection 3.1.
Information extraction based metrics increased in
all cases when adding data, regardless of early-
stopping method. Whilst BLEU scores also ap-
peared to increase, we did not find the changes in
them to be statistically significant. This is not sur-
prising given that BLEU is known to not correlate
for NLG (Reiter and Belz, 2009; Reiter, 2018), and
even in machine translation it only correlates when
differences are large (Mathur et al., 2020).

7 Conclusion and Future Work

Our results show that identifying data which should
be included, then modelling it within the system
architecture, increased all information extraction
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based metrics. Existing metrics have only been
evaluated in limited ways for this domain. Im-
proved metrics could help us evaluate systems, as
well as find and categorise information gaps.

The subset of data selected for input, the form
it takes (atomic versus aggregated), as well as the
inclusion of system components/techniques (copy
attention mechanism, hierarchical encoder, sepa-
rate document plan, fact grounding, etc.), are all
variables which could affect system performance.
We plan in future work to perform ablation studies
to determine which such variables, and in which
combination, produce the best results. As part of
this, we aim to create a unified code-base which
will allow for components to be selected and con-
figured in combination, for as many different data
forms as possible.

Beyond this, we hope to move away from end-to-
end system designs. This is similar in spirit to the
idea proposed in Puduppully et al. (2019a), where
a single model is not attempting to learn every-
thing, the document plan is learned separately. We
would extend such ideas to the data itself, if we can
use both the known ontology from the structured
data, as well as relationships and other information
extracted with NLU or other tools, then this addi-
tional information could be input to systems which
realize the language, meaning they are not left to
solve both data analytic and language problems
with a single model.

If we can define our data operations in terms of
standard data models, such as relational models,
then we will be closer to a general approach for
filling the information gap in data-to-text.
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