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Abstract

While classic NLG systems typically made use
of hierarchically structured content plans that
included discourse relations as central com-
ponents, more recent neural approaches have
mostly mapped simple, flat inputs to texts
without representing discourse relations ex-
plicitly. In this paper, we investigate whether
it is beneficial to include discourse relations
in the input to neural data-to-text generators
for texts where discourse relations play an im-
portant role. To do so, we reimplement the
sentence planning and realization components
of a classic NLG system, Methodius, using
LSTM sequence-to-sequence (seq2seq) mod-
els. We find that although seq2seq models can
learn to generate fluent and grammatical texts
remarkably well with sufficiently representa-
tive Methodius training data, they cannot learn
to correctly express Methodius’s SIMILARITY
and CONTRAST comparisons unless the corre-
sponding RST relations are included in the in-
puts. Additionally, we experiment with using
self-training and reverse model reranking to
better handle train/test data mismatches, and
find that while these methods help reduce con-
tent errors, it remains essential to include dis-
course relations in the input to obtain optimal
performance.

1 Introduction

Traditional approaches to the task of natural lan-
guage generation (NLG) have employed a pipeline
of modules, moving from an initial abstract mean-
ing representation (MR) to human-readable natu-
ral language (Reiter and Dale, 2000). In the last
decade, the success of neural methods in other do-
mains of natural language processing (NLP) has
led to the development of neural ‘end-to-end’ (e2e)

∗The first two authors are listed in random order (equal
contribution), then the other authors are listed in alphabetical
order by last name.
E-mail: stevensguille.1@buckeyemail.osu.edu

architectures in NLG (Dušek et al., 2020), where a
direct mapping from MRs to text is learned. Since
target texts for training neural models are typi-
cally crowd-sourced, the neural approach promises
to make it easier to scale up the development of
NLG systems in comparison to classic approaches,
which generally require domain- or application-
specific rules to be developed, even if the modules
themselves are reusable.

Accompanying the increase in crowd-sourced
corpora has been a comparative simplification of
both MRs and tasks. In particular, classic NLG
systems typically made use of hierarchically struc-
tured content plans that included discourse rela-
tions as central components, where the discourse re-
lations — often based on Rhetorical Structure The-
ory (RST) (Mann and Thompson, 1988; Taboada
and Mann, 2006) — group together and connect
elementary propositions or messages (Hovy, 1993;
Stede and Umbach, 1998; Isard, 2016). By con-
trast, more recent neural approaches — in partic-
ular, those developed for the E2E and WebNLG
shared task challenges — have mostly mapped sim-
ple, flat inputs to texts without representing dis-
course relations explicitly.

The absence of discourse relations in work on
neural NLG to date is somewhat understandable
given that neural systems have primarily tackled
texts that merely describe entities, rather than com-
paring them, situating them in time, discussing
causal or other contingency relations among them,
or constructing persuasive arguments about them,
where discourse relations are crucial for coher-
ence (Prasad et al., 2008). Recently, Balakrishnan
et al. (2019a) have argued that discourse relations
should be reintroduced into neural generation in
order to enable the correct expression of these rela-
tions to be more reliably controlled. However, they
do note that only 6% of the crowd-sourced E2E
Challenge texts contain discourse connectives ex-
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pressing CONTRAST, and though they introduce
a conversational weather dataset that uses both
CONTRAST and JUSTIFY relations with greater fre-
quency, it is fair to say that the use of hierarchical
MRs that incorporate discourse relations remains
far from common practice.

In this paper, we investigate whether it is ben-
eficial to include discourse relations in the input
to neural data-to-text generators for texts where
discourse relations play an important role. To do
so, we reimplement the sentence planning and re-
alization components of a classic NLG system,
Methodius (Isard, 2016), using LSTM sequence-
to-sequence (seq2seq) models, since Methodius
makes similarity or contrast comparisons in most of
its outputs. Specifically, rather than crowd-source
output texts for Methodius’s content plans, we run
the existing system to obtain target texts for train-
ing seq2seq models, and experiment with input
MRs (derived from the content plans) that contain
discourse relations as well as ones that leave them
out.1

In our experiments, we observe that the seq2seq
models learn to generate fluent and grammatical
texts remarkably well. As such, we focus our eval-
uation on the correct and coherent expression of
discourse relations. Since the Methodius texts are
somewhat formulaic following delexicalization and
entity anonymization, it is possible to write ac-
curate automatic correctness checks for these re-
lations. Using these automatic checks, we find
that even with sufficiently representative Method-
ius training data, LSTM seq2seq models cannot
learn to correctly express Methodius’s similarity
and contrast comparisons unless the corresponding
RST relations are included in the inputs. This is
an at least somewhat surprising result, since these
relations are easily inferred from the input facts
being compared.

The major conclusion of our experiments is that
explicitly encoding discourse information using
RST relations boosts coherence by enabling rhetor-
ical structure to be reliably lexicalized. Several
techniques for improving the models are also con-
sidered, especially for situations where the training
data exhibits mismatches with the test data (as can
happen in practice). One technique involves out-
putting a beam of possible text outputs and rerank-
ing them by checking the correspondence between

1The data and code for this paper can be ac-
cessed by the following link: https://github.com/
Methodius-Project/Neural-Methodius.

the input meaning representation and the meaning
representation produced by using a reversed model
to map texts to meaning representations. The other
technique is self-training (Li and White, 2020), i.e.,
using an initial model to generate additional train-
ing data. This method drastically increases the
amount of training data available for what is oth-
erwise quite a small corpus. The upshot of these
techniques is moderate improvement in the perfor-
mance of both models with respect to the evaluation
metrics just mentioned. But the conclusion remains
that the model trained on explicit RST information
continues to outperform the model without explicit
RST structure in the input.

2 Methodius

The Methodius system (Isard, 2016) was devel-
oped for multilingual text generation, based on the
M-PIRO project (Isard et al., 2003; Isard, 2007)
which focused on museum exhibit descriptions.
Methodius consists of several components. The
content module selects content from a database and
creates a content plan, which is a tree where the
nodes are labeled with rhetorical relations or facts,
following the structures proposed in RST. Fig. 1
shows a content plan. The content plan is rewritten
into a sequence of logical forms, one per sentence,
by the sentence planner. The logical forms are then
realized as a text by means of a Combinatory Cat-
egorial Grammar (CCG) using OpenCCG (White,
2006).

The Methodius system is designed to respond to
the behaviour of the its intended users. Sequences
of exhibits, dubbed ‘chains’, are constructed while
the user moves through the museum. The chains
control dependencies between exhibit descriptions,
limit redundancy, and provide discourse continuity.

While RST defines a number of rhetorical rela-
tions, Methodius incorporates only four of them:
ELABORATION, JOINT, SIMILARITY and CON-
TRAST. ELABORATION connects the main fact
about a focal entity with other, peripheral facts
about that entity. JOINT connects two facts of equal
status. SIMILARITY and CONTRAST each connect
two facts of equal status, but they do opposite jobs:
SIMILARITY is used to express the similarity of
two entities in terms of a commonly shared feature,
while CONTRAST is used to show that the values
of a shared feature of the given entities differ. For
instance, unlike the previous coins you saw, which
are located in the Athens Numismatic Museum, this

https://github.com/Methodius-Project/Neural-Methodius
https://github.com/Methodius-Project/Neural-Methodius
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[__content_plan
[__rst_elaboration
[__fact_type [__arg1 entity0 ] [__arg2 marriage_cauldron ] ]
[__rst_joint [__fact_creation_period [__arg1 entity0 ] [__arg2 "classical period" ] ]

[__fact_creation_time [__arg1 entity0 ] [__arg2 "between 420 and 410 B.C." ] ] ] ]
[__rst_similarity
[__fact_painting_technique_used compare_additive [__arg1 entity1 ]

[__arg2 "red figure technique" ] ]
[__fact_painting_technique_used [__arg1 entity0 ] [__arg2 "red figure technique" ] ] ]
[__optional_type [__arg1 entity1 ] [__arg2 vessel ] ] ]

Figure 1: Content plan corresponding to the text (1a)

tetradrachm is located in the National Museum of
Athens – here unlike signals CONTRAST. In the fol-
lowing example, like signals SIMILARITY: like the
previous coins you saw, this tetradrachm is located
in the National Museum of Athens.

In the experiments discussed below we focus on
SIMILARITY and CONTRAST because the Method-
ius corpus lexicalizes them. Due to the dynamic
generation of the exhibit descriptions, SIMILAR-
ITY and CONTRAST link information in the current
exhibit to previously mentioned exhibits and their
properties—as such, correctly generating such ex-
pressions is vital to maintaining the coherence of
the exhibit chain.

3 Data Preprocessing

3.1 Delexicalization
The textual output of Methodius is pseudo-English
with some expressions replaced by canned text,
the morpho-syntactic descriptions of which are not
present in either the content plan or in the logical
form. Instead the canned text is retrieved from the
Methodius system’s database by looking up the ref-
erence given in the content plan. Such canned texts
might occur infrequently in a relatively small cor-
pus. To avoid data sparsity, we substitute canned
texts by their labels, cf. (1b), (1a). Note that the
textual output of Methodius doesn’t contain non-
terminal symbols the sort used in Balakrishnan
et al.’s approach. We use only special terminal
symbols, which appear both in content plans (deco-
rating terminal nodes in the tree) and in texts (repre-
senting the corresponding chunks of canned texts).

3.2 Anonymization and Augmentation
We anonymize exhibits by replacing them with
entity0, entity1, etc in both the content plans and
corresponding text. In each text, there is a single
focal exhibit. The focal exhibit is compared to one
or many exhibits and this is expressed in text using
singular and plural forms respectively (e.g. the

other vessel, which originates from region1 VS the
other coins, which were created in city0). We use
two substitution forms: entity1 (for singular) and
entityplural.

Content plans are augmented with relevant infor-
mation concerning the types of exhibits that occur
in a content plan. The type predicate relates an
exhibit to the NP it corresponds to in the text. This
information is encoded within the Methodius log-
ical form and thus is available for the Methodius
system when it comes to generating text. How-
ever, since we anonymize exhibits and we ignore
the logical forms, we need to explicitly provide
the type information of each exhibit. Methodius
sometimes produces content plans in which the
first FACT TYPE is missing arg2. This missing
position corresponds to the focal exhibit in the text.
The modified corpus regiments the input by ensur-
ing every FACT TYPE includes arg2. For every
exhibit in the the Methodius content plan not ex-
plicitly typed we add a new OPTIONAL TYPE branch
to the tree which includes the type of the exhibit.

(1) a. This is a marriage cauldron and it was
created during the classical period in be-
tween 420 and 410 B.C. Like the other
vessel you recently saw, this marriage
cauldron was decorated with the red fig-
ure technique.

b. this is a marriage cauldron and it
was created during historical-period0
in exhibit0-creation-time . like the
other vessel you recently saw , this
marriage cauldron was decorated with
painting-technique0 .

4 Data

Since one of our objectives is to compare the perfor-
mance of neural networks on data with and without
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Data CONTRAST SIMILARITY Neither

train 840 2911 553
valid 79 292 51
standard test 166 495 138
challenge test 77 80 80

Table 1: Distribution of RST types in content plans in
train and test data

Data Average Words Average Tokens

train 52 95
valid 52 96
standard test 40 73
challenge test 29 52

Table 2: Average numbers of tokens in content plans
and average numbers of words in corresponding texts
in train and test data

rhetorical relations, we call one of datasets RST
and the other FACT. The model names follow the
same convention. The distributions of RST types
in content plans is shown in Table 1, where the
first and second numbers correspond to the number
of content plans including CONTRAST and SIMI-
LARITY, respectively, while the third corresponds
to the number of content plans which include nei-
ther of these RST types. The average lengths for
input (number of tokens) and output (number of
words) are shown in Table 2. The output of Method-
ius is limited with respect to both the homogene-
ity and lengths of the texts–Methodius only infre-
quently produces very short or long texts, e.g. one
or six sentences respectively. One of the test sets,
which is described below, is explicitly constructed
to determine whether the model’s knowledge of
discourse structure is limited by the length of the
texts it sees.

4.1 Training Set

In the training set, there are around 4300 examples
harvested by using the Methodius system. The
higher number of inputs with SIMILARITY (2911)
is due to the Methodius system. This proportion
of SIMILARITY persists into every split except the
challenge test set, where the number of inputs of
distinct RST types is more homogeneous.

4.2 Test sets

We have two splits of data for our experiments.
One we dub the ‘challenge split’, the other the
‘standard split’. The major difference between them

is their average lengths. The average length of the
challenge split items are roughly half the length of
the training set items, while the average length of
the standard split is roughly seventy five percent of
the training set items.

Standard In the standard split, the average
length of items in the training and validation sets
is roughly the same; the distribution of lengths is
similar in the training, valid, and test sets but the
training set still includes slightly longer sequences
on average. The proportion of items with distinct
RST types is roughly the same between the train,
valid, and standard test sets. This test set doesn’t
identify possible effects of item length on correct
discourse structure production.

Challenge The challenge test set consists of
items on average half the length of the the aver-
age lengths of items in the train and valid sets. Due
to the lower frequency of short items produced by
Methodius, the number of items in the challenge
set is reduced. The distribution of items with CON-
TRAST and SIMILARITY is homogeneous.With re-
spect to distinguishing RST types, the challenge
test set is no more difficult than the standard test
set; the item length is shorter but no less structured.
Moreover, the set of lexemes–including delexical-
ized expressions– which occur in the test set are
present in the training set. However, there are pat-
terns in the test set which are uncommon or unseen
in the training set, e.g. one content plan in the chal-
lenge set begins with CONTRAST but no such items
are found in training. This distinguishes possible ef-
fects of length, e.g. ‘RST type X occurs in the third
sentence’, from effect of RST tree structure in the
input for correct discourse structure production, i.e.
‘RST type X must correspond to lexeme/structure
Y’. These challenge test-specific content plans help
to determine how well a model learns to associate
certain strings with either CONTRAST or SIMILAR-
ITY. If the model stumbles on shorter texts then its
knowledge of RST structure might be (erroneously)
conditioned on item length.

5 Evaluation Methods

5.1 Metrics on Special Terminals

Since the data we generate after preprocessing con-
tains certain expressions which we dub ‘special ter-
minals’, these expressions can be tracked between
the target and the hypothesis. By obtaining metrics
based on the correspondence between these special
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terminals, we get a picture how close the hypothe-
sis is to the target. This measure enjoys some useful
properties. Firstly, it’s cheap—it is defined solely
in terms of expressions which occur both in the in-
put (content plan) and in the output (text). Second,
the special terminals stand for important parts of
the text—those ones that are explicitly provided as
values to features in the content plan (since they
are terminals). Hence, having information about
their presence gives us a good hint of the quality of
a text.

In addition to standard evaluation metrics scores
such as BLEU4, we report the following metrics
for each test item:2

• Repetitions: A special terminal is present in
the hypothesis n times but in the target text it
occurs m times, where m < n. We calculate
n−m for every such special terminal and sum
up.

• Omissions: How many times special terminals
occurring in the target text are not generated
at all in the hypothesis.

• Hallucinations: Number of occurrences of
those special terminals in the hypothesis that
have no occurrence in the target.

5.2 Discourse adverbials for Contrast and
Similarity

We also provide a count for the number of items
in which (within tables in Appendix A): (a) Target
and Hypothesis both contain unlike; (b) Target and
Hypothesis both contain like; (c) Target contains
unlike but Hypothesis generates like; (d) Target
contains like but Hypothesis generates unlike (Like
vs. Unlike); (e) Target contains neither like nor like
and the same holds of Hypothesis (No rel in both);
(f) the rest of the cases.

6 Self-training

With most NLG applications, large amounts of par-
allel data are not readily available. This is true
even in the case of Methodius, because there are
a finite number of exhibits and facts and thus the
number of meaningful combinations which can be
constructed from them is limited. In order to re-
duce annotated data needs, Kedzie and McKeown
(2019), Qader et al. (2019) and He et al. (2020) pro-
pose self-training methods for NLG. Li and White

2The term ‘hypothesis’ is used for the output of the model,
following the terminology used in Fairseq.

(2020) explore self-training for the more challeng-
ing case of generating from compositional input
representations. Self-training involves the construc-
tion of unlabeled data. The process of self-training
is the following. First, the model is trained on
the initial parallel data, i.e. the data used in the
models without self-training. Subsequently, an ad-
ditional set of unlabeled inputs is provided: such
data might exist but be unlabeled but if no such
data exists it can be generated (e.g., handcrafted
using some heuristics). The unlabelled inputs are,
in the present context, content plans without cor-
responding output text. Next the existing model is
used to generate the labels for the unlabeled data.
This procedure results in a new set of parallel data.
Because its labels don’t come from the data—since
they’re outputs of the model—this cannot be con-
sidered parallel data in the full sense. We dub the
resulting data ‘pseudo-labelled.’ We train a new
model on this data. Then we reuse the genuine par-
allel data for fine tuning this model. This process
can be repeated to generate various models. (1)
describes the process in brief:

Algorithm 1: Vanilla Self-Training

1 Train a model on L;
2 repeat
3 Pseudo-label the unlabeled data in U ;
4 Train a model on the pseudo-parallel

data;
5 Fine-tune the model on L;
6 until convergence or maximum iteration;

7 Reranking with reverse models

In the syntax-semantics interface, the parsing task
is usually to build a correct semantic (or syntactic)
representation of a sentence. One can consider this
task with respect to neural networks—which oper-
ate on sequences—straightforwardly by reversing
the order of the parallel data: the source sequence
(meaning) becomes the target, and the target se-
quence (text) becomes the source. Following the
terminology of Li and White (2020), we call such
models reverse models, while models that gener-
ate text from meaning representations are forward
models.3

3While this is an arbitrary choice of terminology, in the
context of NLG it seems to be appropriate to call the forward
model the one that generates text out of meaning representa-
tion.
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We can rerank the output of a forward model
with the help of its corresponding reverse model.
Given several outputs of a beam search of the for-
ward model, we select the one that makes the best
meaning representation if it is given to a reverse
model as an input. Here, best means the one that
has lowest perplexity with respect to forced decod-
ing. One can combine self-training and reranking:
Train forward and reverse models on the paral-
lel data and then train forward and reverse mod-
els on the pseudo-parallel data. Afterwards fine-
tune them again on the initial parallel data. Subse-
quently, use the reverse models to rerank the output
of the forward models.

Algorithm 2: Reverse Model Reranking

1 Train forward and reverse models on L;
2 repeat
3 Pseudo-label the unlabeled data in U

with reverse model reranking;
4 Train forward and reverse models on the

pseudo-parallel data;
5 Fine-tune both models on L;
6 until convergence or maximum iteration;

8 Experiments and Results

We ran self-training experiments with two sets of
unlabeled data. One of them consists of the con-
tent plans generated by Methodius. The other one,
dubbed ‘heuristic,’ is developed from the existing
labeled data. The heuristic data is produced by the
following method: for every content plan produced
by Methodius, extract the set of subtrees of the
content plan which respect some soft constraints
on structure. We avoid extracting trees that start
with an optional type. The subtrees are randomly
selected but their distribution is required to closely
follow the distribution of distinct RST types in the
training data.

Since the size of the Methodius data set is lim-
ited, the heuristic data set provides useful cheap
supplementary content for training (compared to
the cost of eliciting text corresponding to content
plans through e.g. Turkers). We are thus interested
whether having genuine Methodius content plans,
which are not straightforward to generate in large
amounts, could be completed by a heuristic data
set generated from the labeled training data set.

The FACT models were trained on the FACT
versions of the data set, which is obtained by simply

deleting the RST structure from the RST data set.4

We refer to the models (for sake of clarity) by
the names in Table 3.

Model Name Self-training data size Generated by

RST-SM 947 Methodius
FACT-SM 934 Methodius

RST-LG 81970 heuristic
FACT-LG 76531 heuristic

Table 3: Models trained on training set of size 4304

There are only 947 content plans for self-
training, while the training set size is 4304. The
limited number of content plans for self-trainining
is due to the homogeneity of the Methodius out-
put, the intention to sync the length of training and
test sets, and the finite number of exhibits in the
Methodius data base. These content plans, which
are harvested from Methodius, are on average just
half the length of the content plans in the training
set. Their shortness ensures the system is exposed
to items of multiple lengths. Because of their re-
duced length and their production by the Method-
ius system, variation in the content of the short
sequences is limited. The unique unlabelled data
size differs between RST and FACT data sets, be-
cause the data for FACT is produced by pruning
the RST data, the deletion of structure reduces the
heterogeneity of data, resulting in fewer unique
sequences for the FACT-LG input.

We trained the following models:

• LBL: A standard LSTM seq2seq model with
attention on the labeled data, which is also the
base model for the other methods.

• ST-VAN: A model trained with vanilla self-
training.

• ST-RMR: A model self-trained with reverse
model reranking for pseudo-labeling.

Models were trained over several iterations,
though for exposition the results reported below
concern just the best model iterations.5

BLEU4 is calculated on both the standard and
challenge test sets. BLEU4, though limited in the
conclusions it supports, seems informative enough
to allow one to distinguish between RST and FACT

4Deleting RST structure results in the deletion of the tree
structure too.

5In addition to LSTM models, we trained a baseline trans-
former on the labeled data but the results were unsatisfactory.
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models; we report it in Appendix D. BLEU4 is on
average 5 or more points higher for RST models
than FACT models across the test sets.

8.1 Repetitions, Hallucinations and
Omissions

We count the sum of repetitions, hallucinations and
omissions per test set and report the average per
item, simply dividing the sum by the number of
test set samples.

Fig. 2 and Fig. 3 show the results, chiefly the uni-
form improvement of the self-training and rerank-
ing models over the baseline LSTM models.

RST-SM with self-training is the best model.
RST-SM with both self-training and reverse model
reranking produced some of the best results too.

RST-SM and RST-LG show similar performance
when it comes to repetitions, hallucinations, and
omissions on the standard test set. RST-SM outper-
forms RST-LG on the challenge set. RST models
uniformly outperform FACT models.

We observed the models sometimes produced
stuttering, i.e. multiple repetition. Even one of the
best models with respect to the standard test set—
RST-SM-ST-VAN (see Fig. 2)—produced two ex-
amples of stuttering (out of 799) with 57 and 59
repetitions respectively. Just these two outputs
nearly doubled the average error rate of RST-SM-
ST-VAN. The other models reported here did not
produce such extreme stuttering. But despite stut-
tering, RST-SM-ST-VAN is still the best model
with respect to the metrics considered here. In
Appendix C, model performance is reported by
simply counting the total number of test examples
in which a model generates neither repetitions, nor
omissions, nor hallucinations.

The following error from FACT-LG-ST-RMR
shows multiple hallucination of the exhibit item’s
creation time.

T this is an imperial portrait and it portrays
roman-emperor0 . like the coin you recently
saw , this imperial portrait was created during
historical-period0 .

H this is an imperial portrait and it portrays
roman-emperor0 . like the coin , this imperial
portrait was created during historical-period0
. it was created in entity0-creation-time and it
was created in entity0-creation-time .

Further errors are shown in Appendix E.

8.2 Rhetorical Relation Generation
When the FACT-LBL model makes mistakes, such
mistakes frequently correspond to the substitution
of one lexeme marking a rhetorical relation for
another marking a distinct (sometimes opposite) re-
lation. The following hypothesis replaces the CON-
TRAST in the target with a SIMILARITY, misiden-
tifying the origin of some previous exhibit in the
chain.

T unlike the other exhibits you recently saw ,
which originate from region0 , this coin was
originally from city0 .

H like the other exhibits you recently saw , this
coin originates from city0 .

In the following hypothesis the erroneous substi-
tution of SIMILARITY by CONTRAST leads to an
outright contradiction:

T like the other exhibits you recently saw , this
marriage cauldron is currently in museum0 .

H unlike the other exhibits you recently saw ,
which are located in museum0 , this marriage
cauldron is located in museum0 .

Less frequently the insertion of SIMILARITY or
CONTRAST compares the topic of an exhibit to
itself:

T this is a statue and it was created during
historical-period0 in entity0-creation-time .

H this is a statue and it was created during
historical-period0 in entity0-creation-time .
like the statue , this statue was created dur-
ing historical-period0 .

The details of the number of errors and successes
in generating discourse connectives are reported in
Appendix A.

Fig. 4 and Fig. 5 show Fisher’s Exact Test statis-
tics for best performing RST (SM and LG) and
FACT (SM and LG) models.

8.2.1 Standard Test
The best performances are shown by RST-SM and
RST-LG. Even RST-LBL produces only 12 mis-
takes out of 799 test items. Production of rhetorical
connectives corresponding to CONTRAST and SIM-
ILARITY is uniformly correct. After fine tuning
and reranking, the errors reduced to 0 and 2 re-
spectively. With respect to the FACT models, LBL
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makes mistakes, but improves upon self-training
and reranking. Nonetheless RST models outper-
form the FACT models. While the best FACT
model performs well with respect to producing the
correct discourse connective/structure, this model
produces serious content errors that render some
outputs (discussed in Section 8.1) incoherent.

8.2.2 Challenge Test
On the challenge test, no model achieved perfect ac-
curacy. The best performances are by RST-SM and
RST-LG. Their performance is similar. It is worth
noting that in the case of FACT-SM, reranking
with self-training gave results comparable to RST-
SM (there is no significance difference in terms
of Fisher’s test with significance at 5%). This is
not the case for FACT-LG and RST-LG models.
RST-LG-ST-RMR outperforms the best FACT-LG
model (see Fig. 5).

From these experiments, we see that on the stan-
dard test set, RST-Large and RST-Small models
performed best in terms of producing the correct
discourse connective for SIMILARITY (respectively
CONTRAST). While errors occurred—sometimes
matching the results of the corresponding FACT
models—RST models correctly distinguish be-
tween producing the lexeme for SIMILARITY ver-
sus CONTRAST, while FACT models sometimes
confuse SIMILARITY with CONTRAST.

On the challenge data every model made errors.
The RST models outperformed the corresponding
FACT models, significantly in the case of RST-LG
over RST-LG, as seen in Fig. 5.

Though the RST models yielded less dramatic
improvements on comparisons in the challenge
set, it is worth emphasizing that the RST models
produce significantly fewer repetitions, omissions
and hallucination compared to the FACT models
(Figs. 6 and 7, Appendix C), further supporting
the conclusion that the RST input produces better
output. This result is interesting, since the content
plans in the FACT models are shorter than those in
RST models, yet still prompt the former models to
produce more words than RST models do.

9 Related and Future Work

While traditional natural language generation sys-
tems, e.g. Methodius, often employ knowledge
graphs, the use of such structure in neural NLG
is underdeveloped. An exception in this respect is
WebNLG (Gardent et al., 2017), which is a multi-
lingual corpus for natural language generation. An
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Figure 2: Standard Set
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Figure 3: Challenge Set

entry of WebNLG is a set of RDF triples (represent-
ing subj, predicate, object) paired with the corre-
sponding text, which is the sequences of sentences
which serve as verbalization of those triples. But
it is noteworthy that the main focus in WebNLG is
micro-planning (sentence-level generation). Con-
sequently, WebNLG only makes use of a single,
implicit rhetorical relation, namely ELABORATION.
ELABORATION is frequent in the Methodius corpus.
But Methodius uses more interesting rhetorical rela-
tions, too, including CONTRAST and SIMILARITY,
thus the content (both in terms of meaning repre-
sentations and texts) is significantly different from
WebNLG.

For future work, there are number of direction
we intend to explore, including the following:

• Study whether large-scale pretrained models
likewise fail to generalize well without dis-



314

FACT-L
BL

FACT-S
M

-S
T-R

M
R

FACT-L
G-S

T-R
M

R

RST-L
BL

RST-S
M

-S
T-V

AN

RST-L
G-S

T-V
AN

0

20

40
To

ta
lN

um
be

ro
fE

rr
or

s

Figure 4: Standard Set: Errors in generating discourse
cue words for SIMILARITY and/or CONTRAST (unlike
and/or like), where towards errors counts if either there
is an incorrectly generated discourse cue word, or there
has been a cue word generated while the target has
none, or no cue word is generated but the reference con-
tains one. The dotted line links two models if there is
a significant difference between their performance in
terms of Fisher’s Exact Test statistics (we take the sig-
nificance threshold 5%).

course relations in the input.

• Experiment with more diverse outputs for
Methodius, e.g. crowd-sourcing further out-
puts to express the content plans.

• Study whether constrained decoding could be
used to reduce discourse structure errors.

10 Conclusions

The overall conclusion is that including RST re-
lations in the input content plans is necessary to
achieve optimum performance in correctly and co-
herently expressing discourse relations in the neu-
ral reimplementation of Methodius. This is some-
what surprising since the FACT-only inputs actu-
ally have all the information necessary to infer that
a SIMILARITY or CONTRAST relation should be
expressed, but the models nevertheless struggle
to learn the desired same/different generalization.
Moreover, the errors are often jarring–they produce
genuine incoherence in the text.

We see the best performance from the RST
model with small but clean self-training data (RST-
SM), as it comes from Methodius and thus follows
the same general patterns as the ones in the test
set. The large RST model (RST-LG) had similar

FACT-L
BL

FACT-S
M

-S
T-R

M
R

FACT-L
G-S

T-R
M

R

RST-L
BL

RST-S
M

-S
T-V

AN

RST-L
G-S

T-R
M

R
0

5

10

15

To
ta

lN
um

be
ro

fE
rr

or
s

Figure 5: Challenge Set: Errors in generating discourse
cue words for SIMILARITY and/or CONTRAST (unlike
and/or like), where an item produces an error if either
there is an incorrectly generated discourse cue word, or
there has been a cue word generated while the target
has none, or no cue word is generated but the reference
contains one. The dotted line links two models if there
is a significant difference between their performance in
terms of Fisher’s Exact Test statistics (with significance
threshold of 5%).

performance to the small one. FACT models, both
small and large, show significant self-training im-
provements when reranking with reverse models.
Because the RST baseline already performs rela-
tively well, such an improvement is not observable
with them. RST-SM with vanilla self-training al-
ready showed high performance. In the case of the
FACT models, we saw that reranking with reverse
models lowers repetitions, omissions and hallucina-
tions in total. It was also beneficial for the RST-LG
model.

Despite the highly regular nature of the rule-
based texts, even our best models do not get close
to zero content errors, highlighting the importance
of continued work on eliminating these errors, e.g.
using pretrained models (Kale, 2020; Kale and Ras-
togi, Forthcoming) or constrained decoding (Bal-
akrishnan et al., 2019b).

Acknowledgments

This research was supported by a collaborative
open science research agreement between Face-
book and The Ohio State University.



315

References
Anusha Balakrishnan, Vera Demberg, Chandra Khatri,

Abhinav Rastogi, Donia Scott, Marilyn Walker, and
Michael White. 2019a. Proceedings of the 1st work-
shop on discourse structure in neural nlg. In Pro-
ceedings of the 1st Workshop on Discourse Structure
in Neural NLG.

Anusha Balakrishnan, Jinfeng Rao, Kartikeya Upasani,
Michael White, and Rajen Subba. 2019b. Con-
strained decoding for neural NLG from composi-
tional representations in task-oriented dialogue. In
Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 831–
844, Florence, Italy. Association for Computational
Linguistics.
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