Schema-Guided Natural Language Generation

Yuheng Du*, Shereen Oraby”, Vittorio Perera*, Minmin Shen, Anjali Narayan-Chen,
Tagyoung Chung, Anu Venkatesh, Dilek Hakkani-Tur
Amazon Alexa Al
{yuhendu,orabys,pererv,shenm,naraanja,
tagyoung, anuvenk, hakkanit}@amazon.com

Abstract

Neural network based approaches to data-to-
text natural language generation (NLG) have
gained popularity in recent years, with the
goal of generating a natural language prompt
that accurately realizes an input meaning rep-
resentation. To facilitate the training of neu-
ral network models, researchers created large
datasets of paired utterances and their mean-
ing representations. However, the creation
of such datasets is an arduous task and they
mostly consist of simple meaning representa-
tions composed of slot and value tokens to be
realized. These representations do not include
any contextual information that an NLG sys-
tem can use when trying to generalize, such as
domain information and descriptions of slots
and values. In this paper, we present the
novel task of Schema-Guided Natural Lan-
guage Generation (SG-NLG). Here, the goal
is still to generate a natural language prompt,
but in SG-NLG, the input MRs are paired with
rich schemata providing contextual informa-
tion. To generate a dataset for SG-NLG we
re-purpose an existing dataset for another task:
dialog state tracking, which includes a large
and rich schema spanning multiple different
attributes, including information about the do-
main, user intent, and slot descriptions. We
train different state-of-the-art models for neu-
ral natural language generation on this dataset
and show that in many cases, including rich
schema information allows our models to pro-
duce higher quality outputs both in terms of se-
mantics and diversity. We also conduct exper-
iments comparing model performance on seen
versus unseen domains, and present a human
evaluation demonstrating high ratings for over-
all output quality.

1 Introduction

Much of the recent work on Neural Natural Lan-
guage Generation (NNLG) focuses on generating a

* Authors contributed equally and are listed alphabetically.

283

natural language string given some input content,
primarily in the form of a structured Meaning Rep-
resentation (MR) (Moryossef et al., 2019; Wise-
man et al., 2017; Gong et al., 2019; Dusek et al.,
2018; Liu et al., 2017; Colin et al., 2016; Wen et al.,
2016; Dusek and Jurcicek, 2016; Dusek and Jur-
cicek, 2015; Wen et al., 2015). Popular datasets
used for MR-to-text generation are confined to lim-
ited domains, e.g., restaurants or product informa-
tion, and usually consist of simple tuples of slots
and values describing the content to be realized,
failing to offer any information about domains or
slots that might be useful to generation models
(Novikova et al., 2017b; Gardent et al., 2017; Wen
et al., 2015). Table 1 shows examples of MRs from
popular datasets.

Dataset | MR Reference

E2E INFORM name[The The Punter offers

(Novikova| Punter], food[Indian], cheap Indian food.

et al., | priceRange[cheap]

2017b)

Laptop INFORM The satellite eurus

(Wen name/[satellite eu- 65 is a laptop de-

et al.,, | rus65], type[laptop], signed for home use

2016) memory[4gb], driver- with 4 gb of mem-
Range[medium], ory and a medium
isForBusiness[false] sized hard drive

Table 1: Sample MRs from popular NNLG datasets.

Only having simple and limited information
within these MRs has several shortcomings. Model
outputs are either very generic or generators have
to be trained for a narrow domain and cannot be
used for new domains. Thus, some recent work has
focused on different methods to improve natural-
ness (Zhu et al., 2019) and promote domain transfer
(Tran and Nguyen, 2018; Wen et al., 2016).

MRs are not unique to the problem of language
generation: tasks such as dialog state tracking
(Rastogi et al., 2019), policy learning (Chen et al.,
2018), and task completion (Li et al., 2017) also

Proceedings of The 13th International Conference on Natural Language Generation, pages 283-295,
Dublin, Ireland, 15-18 December, 2020. (©)2020 Association for Computational Linguistics

require the use of an MR to track context and state
information relevant to the task. MRs from these
more dialog-oriented tasks are often referred to as
a “schemata.”

While dialog state tracking schemata do not nec-
essarily include descriptions (and generally only
include names of intents, slots, and values like tra-
ditional MRs), recent work has suggested that the
use of descriptions may help with different lan-
guage tasks, such as zero-shot and transfer learning
(Bapna et al., 2017). The most recent Dialog Sys-
tem Technology Challenge (DSTCS) (Rastogi et al.,
2019) provides such descriptions and introduces
the idea of schema-guided dialog state tracking.

Table 2 shows a sample schema from DSTCS. It
is much richer and more contextually informative
than traditional MRs. Each turn is annotated with
information about the current speaker, (e.g., SYS-
TEM, USER), dialog act (e.g., REQUEST), slots
(e.g., CUISINE), values (e.g., Mexican and Italian),
as well as the surface string utterance. When com-
paring this schema in Table 2 to the MRs from Ta-
ble 1, we can see that the only part of the schema re-
flected in the MRs is the ACTIONS section, which
explicitly describes intents, slots, and values.

ACTIONS -

ACT: REQUEST

SLOT: CUISINE

VALUES: Mexican, Italian

SLOT DESCRIPTIONS -

CUISINE: “Cuisine of food served in the restaurant”

SLOT TYPE: CUISINE: is_categorical=true

INTENT - FindRestaurants

INTENT DESCRIPTION: “Find a restaurant of a particu-
lar cuisine in a city”

SERVICE - Restaurants_1

SERVICE DESCRIPTION: “A leading provider for restau-
rant search and reservations”

SPEAKER - System

UTTERANCE - “Is there a specific cuisine type you enjoy,
such as Mexican, Italian, or something else?”

Table 2: Sample schema from DSTC8. “Actions” describe a
traditional MR; blue fields are newly introduced in the schema.

To our knowledge, no previous work on NNLG
has attempted to generate natural language strings
from schemata using this richer and more informa-
tive data. In this paper, we propose the new task
of Schema-guided Natural Language Generation,
where we take a turn-level schema as input and
generate a natural language string describing the
required content, guided by the context informa-
tion provided in the schema. Following previous
work on schema-guided language tasks, we hypoth-

284

esize that descriptions in the schema will lead to
better generated outputs and the possibility of zero-
shot learning (Bapna et al., 2017). For example, to
realize the MR REQUEST(time), domain-specific
descriptions of common slots like time can help us
realize better outputs, such as “What time do you
want to reserve your dinner?” in the restaurant
domain, and “What time do you want to see your
movie?” for movies. Similarly, we note that for
dialog system developers, writing domain-specific
templates for all scenarios is clearly not scalable,
but providing a few domain-specific descriptions
for slots/intents is much more feasible.

We focus on system-side turns from the DSTCS8
dataset and, to allow our models to better general-
ize, we generate natural language templates, i.e.,
delexicalized surface forms, such as “Is there a
specific cuisine type you enjoy, such as $cuisinel,
Scuisine2, or something else?” from the exam-
ple schema in Table 2. We chose to focus on
the system-side turn as currently, when building
a dialog system, developers need to spend a large
amount of time hand-writing prompts for each pos-
sible situation. We believe that enabling a model
to automatically generate these prompts would
streamline the development process and make it
much faster.

Our contributions in this paper are three-fold: (1)
we introduce a novel task and repurpose a dataset
for schema-guided NLG, (2) we present our meth-
ods to include schema descriptions in state-of-the-
art NNLG models, and (3) we demonstrate how
using a schema frequently leads to better qual-
ity outputs than traditional MRs. We experiment
with three different NNLG models (Sequence-to-
Sequence, Conditional Variational AutoEncoders,
and GPT-2 as a Pretrained Language Model). We
show that the rich schema information frequently
helps improve model performance on similarity-to-
reference and semantic accuracy measures across
domains, and that it promotes more diverse out-
puts with larger vocabularies. We also present a
human evaluation demonstrating the high quality
of our outputs in terms of naturalness and semantic
correctness.

2 Data

To create a rich dataset for NNLG, we repur-
pose the dataset used for the Schema-Guided State

Tracking track of DSTCS (Rastogi et al., 2019).!
We preprocess the data to create our Schema-
Guided Natural Language (SG-NLG) dataset for
training and evaluating our NNLG models.?

Since we are focused on system turns, we first
drop all the user turns. The second step in the
preprocessing pipeline is to delexicalize each of
the system utterances. The original data is anno-
tated with the spans of the slots mentioned in each
turn. We replace these mentions with the slot type
plus an increasing index prefixed by the $ sign,
e.g., Scuisine_1. For example, the utterance
“Is there a specific cuisine type you enjoy, such as
Mexican, Italian, or something else?” becomes
“Is there a specific cuisine type you enjoy, such as
Scuisine_1, Scuisine_2 or something else?

The third step is to construct the MR cor-

responding to each system turn. We repre-
sent an MR as a triplet: one dialog act with
exactly one slot and one value. Therefore,

an MR that in the original DSTC8 dataset is
represented as REQUEST(cuisine = [Mexican,
Italian]) becomes REQUEST(cuisine=$cuisine_1),
REQUEST(cuisine=$cuisine_2) (see Table 3). Note
that the MR has been delexicalized in the same fash-
ion as the utterance. Similarly, for MRs that do not
have a value, e.g., REQUEST(city), we introduced
the null value resulting in REQUEST(city=null).
We also use the null value to replace the slot in
dialog acts that do not require one, e.g., BYE() be-
comes BYE(null=null) in order to ensure that each
MR is converted to a triplet.

Once we generate templates and MR pairs, we
add information about the service. In DSTCS, there
are multiple services within a single domain, e.g.,
services travel_I and travel 2 are both part of the
travel domain, but have distinct schema.> DSTC8
annotates each turn with the corresponding service,
so we reuse this information. Our schema also
includes user intent.* Since only user turns are
annotated with intent information, we use the im-
mediately preceding user turn’s intent annotation
if the system turn and the user turn share the same

'nttps://github.com/
google-research-datasets/
dstc8-schema-guided-dialogue

https://github.com/alexa/
schema-guided-nlg

3We show service examples in the appendix.

4At experimentation time, the DSTCS test set was not an-
notated with user intent. Since we needed user intents for our
task, we used DSTCS dev as our test set. We randomly split
the DSTCS train set into 90% training and 10% development.

service. If the service is not the same, we drop the
intent information, i.e., we use an empty string as
the intent (this only happens in 3.3% of cases).

Next, we add information extracted from the
schema file of the original data. This includes ser-
vice description, slot descriptions (one description
for each slot in the MR), and intent descriptions.
These descriptions are very short English sentences
(on average 9.8, 5.9 and 8.3 words for services,
slots and intents). Lastly, we add to each triplet
a sentence describing, in plain English, the mean-
ing of the MR. These description are not directly
available in DSTCS but are procedurally generated
by a set of rules.”> For example, the MR CON-
FIRM(city=$city_1) is “Please confirm that the
[city] is [$city_1].” The intuition behind these natu-
ral language MRs is to provide a more semantically
informative representation of the dialog acts, slots
and values.

Table 4 shows the SG-NLG dataset statistics. In
summary, SG-NLG is composed of nearly 4K MRs
and over 140K templates. On average, every MR
has 58 templates associated with it, but there is a
large variance. There is one MR associated with
over 1.7K templates (CONFIRM(restaurant_name,
city, time, party_size, date)) and many MRs with
only one template.

DSTCS8 (ORIGINAL)

ACTIONS -

ACT: REQUEST

SLOT: CUISINE

VALUES: Mexican, Italian

UTTERANCE - “Is there a specific cuisine type you enjoy,
such as Mexican, Italian, or something else?”

SG-NLG (PRE-PROCESSED)
MR=[REQUEST(cuisine=$cuisinel),

REQUEST (cuisine=$cuisine2)]
UTTERANCE - “Is there a specific cuisine type you enjoy,
such as $cuisinel, $cuisine2, or something else?”

Table 3: Data preprocessing and delexicalization.

Train Dev Test
Templates 110595 14863 20022
Meaning Representations 1903 1314 749
Services 26 26 17
Domains 16 16 16

Table 4: SG-NLG dataset statistics.

SWe have a single rule for each act type; 10 in total.

285

https://github.com/google-research-datasets/dstc8-schema-guided-dialogue
https://github.com/google-research-datasets/dstc8-schema-guided-dialogue
https://github.com/google-research-datasets/dstc8-schema-guided-dialogue
https://github.com/alexa/schema-guided-nlg
https://github.com/alexa/schema-guided-nlg

3 Models

3.1 Feature Encoding

We categorize the features from schemata into two
different types. The first type is symbolic features.
Symbolic features are encoded using a word embed-
ding layer. They typically consist of single tokens,
e.g., service names or dialog acts, and frequently
resemble variable names (e.g., restaurant and
restaurant _name). The second type of fea-
tures is natural language features. These features
are typically sentences, e.g., service/slot descrip-
tions or the natural language MR, that we encode
using BERT (Devlin et al., 2018) to derive a single
semantic embedding tensor.

To represent the full schema, we adopt a flat-
encoding strategy. The first part of each schema is
the MR, which we define as a sequence of dialog
act, slot, and value tuples. At each timestep, we
encode a three-part sequence: (1) a new act, slot,
and value tuple from the MR, (2) the embeddings
of all schema-level features (i.e., services, intents,
and their descriptions), and (3) the embedding of
the current slot description (see Figure 1). Finally,
we append the encoded natural language MR.

‘ DA, | Slot, |Value‘ |Service‘ Service Desc | Intent | Intent Desc | Slot, Desc ‘

| Intent Desc | Slot, Desc ‘

‘ DA, | Slot, |Value2 |Service‘ Service Desc | Intent
.

‘ DA | Slot, |Valne"|Service‘ Service Desc | Intent | Intent Desc | Slot, Desc ‘

Figure 1: Flat-encoding strategy.

3.2 Sequence-to-Sequence

Our first model is a Seq2Seq model with attention,
copy, and constrained decoding (see the full model
diagram in the appendix). We implement the atten-
tion from Luong et al. (2015):

a; = softmax(align(hy, st))

where align is a function that computes the align-
ment score of the hidden state of the encoder h;
and the decoder hidden state, s;. The goal of this
layer is to attend to the more salient input features.
The copy mechanism we add is based on pointer-
generator networks (See et al., 2017). At each
decoding step ¢ we compute a probability pge,:

Pgen = U(w}j;hz(+ wZSt + waT;xt + bptr)

where wy,, ws, and w, are a learnable weights ma-
trix; hj is a context vector computed by combining

286

the encoder hidden state and the attention weights,
s¢ 1s the decoder hidden state, x; the decoder input,
and by, is a bias term. The probability pge,, is then
used to determine the next word w generated:

P<w) = pgenpvocab(w) + (1 - pgen) Z ag

Thus pge, behaves like a switch to decide whether
to generate from the vocab or copy from the in-
put. The goal of the copy mechanism is to en-
able the generation of special symbols such as
Scuisine_1 that are specific to the service.

3.3 Conditional Variational Auto-Encoder

The Conditional Variational Auto-Encoder
(CVAE) (Hu et al., 2017) is an extension of the
VAE models, where an additional vector ¢ is
attached to the last hidden state of the encoder z as
the initial hidden state of the decoder. The vector
c is used to control the semantic meaning of the
output to align with the desired MR. We use the
encoded feature vector described in Section 3.1
as c¢. The model objective is the same as VAE,
which is the sum of reconstruction loss and
Kullback-Leibler divergence loss. At training time,
z is the encoded input sentence. At prediction
time, z is sampled from a Gaussian prior learned
at training time. We also adapt the attention
mechanism for CVAE by adding an additional
matrix W, to compute the alignment score,

align(hg, 1) = W (We * hy + 5¢))

where S; is the decoder hidden state.

For Seq2Seq/CVAE, we use constrained decod-
ing to prune out candidate outputs with slot repeti-
tions. We use a beam to keep track of slots that have
already been generated and set the probability of a
new candidate node to zero if slots are repeated.

3.4 Pretrained Language Model: GPT-2

We also experiment with a pretrained language
model, specifically GPT-2 (Radford et al., 2019).
Since GPT-2 is trained on purely natural language
strings, we first combine the symbolic and nat-
ural language features into flat natural language
strings, similar to previous work by Budzianowski
and Vuli¢ (2019). We fine-tune the GPT-2 model
using these natural language inputs with the target

®We use GPT-2 small from HuggingFace Trans-
formers (https://github.com/huggingface/
transformers)

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers

[Schema 1] ACTIONS (MR): INFORM(price-per-night= $price-per-nightl), NOTIFY-SUCCESS(null=null)

Slot Desc: price-per-night: “price per night for the stay”
Service: hotels-4
Intent: ReserveHotel

Service Desc: “Accommodation searching and booking portal”
Intent Desc: “Reserve rooms at a selected place for given dates.”

Natural Language MR: the [price per night] is [$price-per-nightl]. the request succeeded.

Ref $price-per-nightl a night

Seq2Seq | your reservation is booked and the total cost is $price-per-nightl .

CVAE your reservation has been made . the total cost is $price-per-night1 per night .
GPT2

your reservation was successful! the cost of the room is $price-per-night1 per night.

[Schema 2] ACTIONS (MR): OFFER(movie-name= $movie-namel), OFFER(movie-name= $movie-name2)
OFFER(movie-name= $movie-name3), INFORM(count=$countl)
Slot Desc: movie-name: “name of the movie”, count: “the number of items that satisfy the user’s request”

Service: media-2
Intent: FindMovies

Service Desc: “The widest selection and lowest prices for movie rentals”
Intent Desc: “Find movies to watch by genre and, optionally, director or actors”

Natural Language MR: there is [$movie-name2] for [movie name].
there is [$movie-name3] for [movie name]. there is [$movie-namel | for [movie name]. the [count] is [$countl].

Ref $countl movies $movie-namel $movie-name2 and $movie-name3

Seq2Seq | i found $countl movies . how about $movie-name2 ?

CVAE i found $countl movies you might like . how about $movie-namel , $movie-name2 or $movie-name3 ?

GPT2 sure. hey! i’ve got $countl movies. do you wish to watch any of these movies - $movie-namel, $movie-name2

or $movie-name3?

[Schema 3] ACTIONS (MR): REQUEST(transfer-amount=null), REQUEST(recipient-name=null)
Slot Desc: transfer-amount: “the amount of money to transfer”, recipient-name: “the name of the recipient [...]”

Service: banks-2
Intent: TransferMoney

Service Desc: “Service to manage your bank accounts and finances”
Intent Desc: “Transfer money to another user”

Natural Language MR: “what [transfer amount] do you want? what [recipient name] do you want?”

Ref amount? recipient?

Seq2Seq | what type of ride do you want to transfer ?

CVAE what is your destination ? how much do you want to send the money to ?
GPT2

sure, i can help you with that. how much would you like to transfer from? who would you like to send it to?

Table 5: Example model outputs. All models are correct for Schema 1. Seq2Seq model dropped two slots for Schema 2.

Schema 3 shows incorrect outputs for Seq2Seq and CVAE.

template.” At prediction time, given the schema to-
kens as input, we use our fine-tuned GPT-2 model
with a language model head to generate an output
sequence (until we hit an end-of-sequence token).
We adopt top-k sampling at each decoding step.

4 Evaluation

For each of our three models, we generate a sin-
gle output for each test instance. Table 5 shows
example model outputs.

4.1 Evaluation Metrics

We focus on three distinct metric types: similarity
to references, semantic accuracy, and diversity.
Similarity to references. As a measure of
how closely our outputs match the correspond-
ing test references, we use BLEU (n-gram preci-
sion with brevity penalty) (Papineni et al., 2002)
and METEOR (n-gram precision and recall, with
synonyms) (Lavie and Agarwal, 2007). We com-
pute corpus-level BLEU for the full set of outputs
and matching references. For METEOR, we com-

"We train with special beginning of sequence, end of se-
quence, and separator tokens such that each training instance
is: “[BOS] schema-tokens [SEP] target-tokens [EOS].”

287

pute per-output metrics and average across all in-
stances.® We include these metrics in our evalu-
ation primarily for completeness and supplement
them with a human evaluation, since it is widely
agreed that lexical overlap-based metrics are weak
measures of quality (Novikova et al., 2017a; Belz
and Reiter, 2006; Bangalore et al., 2000).

Semantic accuracy. We compute the slot error
rate (SER) for each model output as compared to
the corresponding MR by finding the total number
of deletions, repetitions, and hallucinations over the
total number of slots for that instance (the lower
the better).® It is important to note that we only
consider slots that have explicit values (e.g., MR:
INFORM date=$datel) for our automatic SER
computations. We are investigating methods to
compute SER over implicit slots (e.g., MR: RE-
QUEST party_size=null) as future work, since it is
non-trivial to compute due to the various ways an
implicit slot might be expressed in a generated tem-
plate (e.g., “How many people are in your party?”,

8We use NLTK for BLEU4/METEOR (Bird et al., 2009).

° Although Wen et al. (2015) compute SER using only
deletions and repetitions, we include hallucinations to capture
errors more accurately.

Similarity to Refs Semantics Diversity
BLEU METEOR| SER Slot Vocabl ~ Vocab2 Distinct]l Distinct2 Novelty
Corpus Avg Avg | Match (Gold: (Gold: (Gold: (Gold:
Rate 2.5k) 20k) 0.01) 0.1)
Seq2Seq | MR 0.4059 0.5254 0.1602 0.7530 | 253 614 0.0398 0.1093 0.5741
Schema 04174 0.5580 0.2062 0.7009 | 275 699 0.0445 0.1288 0.5674
CVAE MR 0.4282 0.5595 0.2469 0.6622 292 727 0.0406 0.1128 0.5434
Schema 0.4299 0.5852 0.2407 0.6983 | 327 924 0.0445 0.1401 0.6142
GPT2 MR 0.3551 0.5640 0.1929 0.8331 648 2491 0.0818 0.3471 0.5808
Schema 0.4030 0.6129 0.1810 0.8558 | 678 2659 0.0868 0.3767 0.5955

Table 6: Automatic evaluation metrics comparing traditional MR vs. rich schema. Higher is better for all metrics except SER.

or “What is the size of your group?”). We also
compute “slot match rate”, that is the ratio of gener-
ated outputs that contain exactly the same explicit
slots as the matching test MR.

Diversity. We measure diversity based on vo-
cabulary, distinct-N (the ratio between distinct n-
grams over total n-grams) (Li et al., 2016) and
novelty (the ratio of unique generated utterances in
test versus references in train).!°

4.2 Traditional MR vs. Rich Schema

Table 6 compares model performance when trained
using only the traditional MR versus using the full
schema (better result for each model in bold).

Model comparisons. To get a general sense of
model performance, we first compare results across
models. From the table, we see that Seq2Seq and
CVAE have higher BLEU compared to GPT?2 (for
both MR and Schema), but that GPT?2 has a higher
METEOR. This indicates that GPT?2 is more fre-
quently able to generate outputs that are semanti-
cally similar to references, but that might not be
exact lexical matches (e.g., substituting “film” for
“movie”) since GPT2 is a pretrained model. Simi-
larly, GPT2 has a significantly higher vocabulary
and diversity than both Seq2Seq and CVAE.

MR vs. Schema. Next, we compare the per-
formance of each model when trained using MR
versus Schema. For all models, we see an improve-
ment in similarity metrics (BLEU/METEOR) when
training on the full schema. Similarly, in terms of
diversity, we see increases in vocabulary for all
models, as well as increases in distinct-/V and nov-
elty (with the exception of Seq2Seq novelty, which
drops slightly).

In terms of semantic accuracy, we see an im-
provement in both SER and Slot Match Rate for
both CVAE and GPT2. For Seq2Seq, however, we
see that the model performs better on semantics

10To avoid inflating novelty metrics, we normalize our tem-

plate values. (e.g., “Table is reserved for $datel.” is normal-
ized to “Table is reserved for $date.” for any $dateN value).

288

when training on only the MR. To investigate, we
look at a breakdown of the kinds of errors made.
We find that Seq2Seq/CVAE only suffer from dele-
tions, but GPT?2 also produces repetitions and hallu-
cinations (a common problem with pretrained lan-
guage models); however, training using the schema
reduces the number of these mistakes enough to
result in an SER improvement for GPT2 (see the
appendix for details).

4.3 Seen vs. Unseen Services

Next, we are interested to see how our models per-
form on specific services in the SG-NLG dataset.
Recall that the original dataset consists of a set of
services that can be grouped into domains: e.g., ser-
vices restaurant_1 and restaurant_2 are
both under the restaurant domain. Based on
this, we segment our test set into three parts, by
service: seen, or services that have been seen in
training, partially-unseen, or services that are un-
seen in training but are part of domains that have
been seen, and fully-unseen where both the service
and domain are unseen.!!

MR vs. Schema. To better understand how the
models do on average across all services, we show

""We show distribution plots by service in the appendix.

SEQ2SEQ CVAE GPT2

BLEU SER| | BLEU SER| | BLEU SER|]
Seen
MR | 0.51 0.07 0.56 0.12 0.46 0.05
Sch | 0.57 0.12 0.61 0.09 0.51 0.04
Partially-Unseen
MR | 0.38 0.23 0.38 0.34 0.33 0.31
Sch | 0.38 0.28 0.33 0.37 0.38 0.29
Fully-Unseen
MR | 0.34 0.27 0.34 0.27 0.16 0.48
Sch | 0.36 0.27 0.45 0.27 0.22 0.58

Table 7: Average BLEU and SER by service splits.

SEQ2SEQ CVAE GPT2
Service % Test Refs BLEU SER| BLEU SER| BLEU SER|
events_1 19% 0.6168 0.0490 0.6126 0.0294 0.4682 0.0588
rentalcars.1 18% 0.7486 0.1500 0.6645 0.1125 0.6173 0.1000
buses_1 15% 0.3831 0.1542 0.5035 0.1000 0.4016 0.0167

(a) Seen services.

SEQ2SEQ CVAE GPT2
Service % Test Refs BLEU SER| BLEU SER| BLEU SER|
restaurants_2 24% 0.2466 0.2098 0.2126 0.3501 0.2297 0.0527
flights.3 18% 0.3193 0.4579 0.3481 0.5000 0.3008 0.7368
services_4 18% 0.5791 0.2197 0.3288 0.4013 0.5760 0.0851

(b) Partially-unseen services.

SEQ2SEQ CVAE GPT2
Service % Test Refs BLEU SER| BLEU SER| BLEU SER|
alarm_1 100% 0.3586 0.2667 0.4495 0.2667 0.2217 0.5833

(c) Fully-unseen services.

Table 8: Automatic evaluation metrics across seen, partially-unseen, and fully-unseen services when training with schema.

average BLEU/SER scores in Table 7.'> Once
again, we compare performance between training
on the MR vs. the schema. On average, we see that
for the seen and fully-unseen partitions, training
with the schema is better across almost all metrics
(sometimes showing no differences for SER for
fully unseen). For partially-unseen, we see that
CVAE performs better when training on only the
MR; however, when averaging across the full test
in Table 6, we see an improvement with schema.

We see naturally higher BLEU and lower SER
for seen vs. both partially-unseen and fully-unseen
across all models. Surprisingly, we see higher
schema BLEU for CVAE on fully-unseen as com-
pared to partially-unseen, but we note that there
is a very small fully-unseen sample size (only 10
test MRs). We also note that GPT2 has high SER
for the fully-unseen domain; upon inspection, we
see slot hallucination from GPT2 within alarm_1,
while Seq2Seq/CVAE never hallucinate.

Seen vs. Unseen. Table 8 shows model perfor-
mance in terms of BLEU and SER. We sort services
by how many references we have for them in test;
events_1 for example constitutes 19% of the test
references. To focus our discussion here, we show
only the top-3 services in terms of percentage of
test references.'> For fully-unseen we show the
only available service (alarm_1). We show the
best scores in bold and the worst scores in italic.

12Scores are weighted by the percentage of test references
per service in each split, e.g. events_1 in seen makes up
19% of the seen test references, thus its scores are weighted
by that factor.

3We show results for all services in the appendix.

For seen services (Figure 8a), we see the
highest BLEU scores for all models on the
rentalcars_1. We note that SER is consistently
low across all models, with the worst SER for the
top-3 services at 0.15 (the worst SER across all of
seen is 0.23 as shown in the appendix).

For partially-unseen services (Figure 8b), we see
the best SER on restaurants_2 (but compar-
atively lower BLEU scores). The services_4
domain shows the highest BLEU scores for
Seq2Seq and GPT2, with low SER. We note that
flights_3 has the worst SER for all models.
Upon investigation, we find slot description dis-
crepancies: e.g., slot origin_airport_name
has slot description “Number of the airport flying
out from”. This highlights how models may be
highly sensitive to nuances in the schema informa-
tion, warranting further analysis in the future.

4.4 Human Evaluation

To supplement our automatic metric evaluations
which show some the benefits of schema-based gen-
eration, we conduct an annotation study to evaluate
our schema-guided output quality. We randomly
sample 50 MRs from our test set, and collect 3
judgments per output for each model as well as a
reference (randomly shuffled).

We ask the annotators to give a binary rating for
each output across 3 dimensions: grammar, natu-
ralness, and semantics (as compared to the input
MR). We also get an “overall” rating for each tem-

'*We have a pool of 6 annotators that are highly-skilled at
evaluating language tasks and were not involved in any other
parts of the project.

289

plate on a 1 (poor) to 5 (excellent) Likert scale. !
Table 9 summarizes the results of the study. For
grammar, naturalness, and semantics, we show the
ratio of how frequently a given model or reference
output is marked as correct over all outputs for that
model. For the “overall” rating, we average the 3
ratings given by the annotators for each instance,
and present an average across all MRs (out of 5).

Grammar Naturalness Semantics Overall

(%) (%) (%) (out of 5)
Reference 0.95 0.67 0.91 3.97
Seq2Seq 0.82 0.58 0.37 2.72
CVAE 0.89 0.73 0.44 3.01
GPT2 0.80 0.61 0.70 3.61

Table 9: Average human evaluation scores for different
quality dimensions.

From the table, we see that the CVAE model has
the highest score in terms of both grammar and nat-
uralness. Moreover, CVAE also achieves a score
higher than the reference in terms of naturalness. A
possible explanation explanation for this behavior
is that the quality of the reference is subjective, and
not always an ideal “gold-standard”. In terms of
semantics, we see that GPT-2 has the highest rat-
ings of all models. Most interestingly, we see that
CVAE has a significantly lower semantic rating, al-
though it is the winner on grammar and naturalness,
indicating that while CVAE outputs may be fluent,
they frequently do not actually express the required
content (see Schema 3 in Table 5). This finding
is also consistent with our SER calculations from
Table 6, where we see that CVAE has the highest
SER.'®

In terms of overall score, we see that GPT-2
has the highest rating of all three models, and is
most frequently comparable to the ratings for the
references. This can be attributed to its higher se-
mantic accuracy, combined with good (even if not
the highest) ratings on grammar and naturalness.

5 Related Work

Most work on NNLG uses a simple MR that con-
sists of slots and value tokens that only describe

15To make annotation more intuitive, we automatically lexi-
calize slots with values from the schema (although this may
add noise), e.g., “The date is $datel” — “The date is [March
1st].” We use the same values for all templates for consistency.

16We compute Fleiss Kappa scores for each dimension, find-
ing near-perfect agreement for semantics (0.87), substantial
agreement for grammar (0.76), and moderate agreement for
naturalness (0.58) and overall (0.47).

information that should be realized, without includ-
ing contextual information to guide the generator
as we do; although some work has described how
this could be useful (Walker et al., 2018). WebNLG
(Colin et al., 2016) includes structured triples from
Wikipedia which may constitute slightly richer
MRs, but are not contextualized. Oraby et al.
(2019) generate rich MRs that contain syntactic
and stylistic information for generating descriptive
restaurant reviews, but do not add in any contextual
information that does not need to be included in the
output realization. Table-to-text generation using
ROTOWIRE (NBA players and stats) also includes
richer information, but it is also not contextualized
(Wiseman et al., 2017; Gong et al., 2019).

Other previous work has attempted to address
domain transfer in NLG. Dethlefs et al. (2017) use
an abstract meaning representation (AMR) as a way
to share common semantic information across do-
mains. Wen et al. (2016) use a “data counterfeiting”
method to generate synthetic data from existing do-
mains to train models on unseen domains, then
fine-tune on a small set of in-domain utterances.
Tran et al. (2018) also train models on a source
domain dataset, then fine-tune on a small sample
of target domain utterances for domain adaptation.
Rather than fine-tuning models for new domains,
our data-driven approach allows us to learn domain
information directly from the data schema.

6 Conclusions

In this paper, we present the novel task of Schema-
Guided NLG. We demonstrate how we are able
to generate templates (i.e., delexicalized system
prompts) across different domains using three state-
of-the-art models, informed by a rich schema of
information including intent descriptions, slot de-
scriptions and domain information. We present our
novel SG-NLG dataset, which we construct by re-
purposing a dataset from the dialog state tracking
community.

In our evaluation, we demonstrate how training
using our rich schema frequently improves the over-
all quality of generated prompts. This is true for dif-
ferent similarity metrics (up to 0.43 BLEU and 0.61
METEOR) that we recognize are weak measures of
quality but, more importantly, for semantic metrics
(as low as 0.18 average SER), and even for diver-
sity (up to 2.6K bigram vocabulary). Moreover,
this holds true on both seen and unseen domains
in many different settings. We conduct a human

290

evaluation as a more accurate quality assessment,
and show how our outputs are rated up to 3.61 out
of 5 overall (as compared to 3.97 for references).
We observe that different models have different
strengths: Seq2Seq and CVAE have higher BLEU
reference similarity scores, while GPT?2 is signif-
icantly more diverse and is scored highest overall
in human evaluation.

For future work, we are interested in exploring
how schema-guided NLG can be used in dialog sys-
tem contexts, where only outputs that have no slot
errors and high overall fluency should be selected
as responses. We are also interested in improving
both the semantic correctness and fluency of our
model outputs by introducing improved methods
for constrained decoding and language model in-
tegration. Additionally, we plan to develop more
accurate automatic measures of quality, as well as
more fine-grained control of domain transfer.

Acknowledgments

The authors would like to thank Sofia Scharfenberg,
Jasmin Rehm, and the rest of the Alexa Data Ser-
vices Rapid Machine Learning Prototyping team
for all of their help with preparing and performing
the human evaluation study.

References

Srinivas Bangalore, Owen Rambow, and Steve Whit-
taker. 2000. Evaluation metrics for generation. In
INLG’2000 Proceedings of the First International
Conference on Natural Language Generation, pages
1-8, Mitzpe Ramon, Israel. Association for Compu-
tational Linguistics.

Ankur Bapna, Gokhan Tur, Dilek Hakkani-Tur, and
Larry Heck. 2017. Towards zero shot frame seman-
tic parsing for domain scaling. In Interspeech 2017.

Anja Belz and Ehud Reiter. 2006. Comparing auto-
matic and human evaluation of NLG systems. In
11th Conference of the European Chapter of the
Association for Computational Linguistics, Trento,
Italy. Association for Computational Linguistics.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural Language Processing with Python, 1st edi-
tion. O’Reilly Media, Inc.

Pawet Budzianowski and Ivan Vulié. 2019. Hello, it’s
GPT-2 - how can I help you? towards the use of pre-
trained language models for task-oriented dialogue
systems. In Proceedings of the 3rd Workshop on
Neural Generation and Translation, pages 15-22,
Hong Kong. Association for Computational Linguis-
tics.

291

Lu Chen, Bowen Tan, Sishan Long, and Kai Yu. 2018.
Structured dialogue policy with graph neural net-
works. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1257-1268, Santa Fe, New Mexico, USA. Associ-
ation for Computational Linguistics.

Emilie Colin, Claire Gardent, Yassine Mrabet, Shashi
Narayan, and Laura Perez-Beltrachini. 2016. The
webnlg challenge: Generating text from dbpedia
data. In Proceedings of the 9th International Nat-
ural Language Generation conference, pages 163—
167. Association for Computational Linguistics.

Nina Dethlefs. 2017. Domain transfer for deep natu-
ral language generation from abstract meaning repre-
sentations. I[EEE Computational Intelligence Maga-
zine, 12:18-28.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ondrej Dusek and Filip Jurcicek. 2015. Training a nat-
ural language generator from unaligned data. In Pro-
ceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 451-461,
Beijing, China. Association for Computational Lin-
guistics.

Ondrej Dusek and Filip Jurcicek. 2016. A context-
aware natural language generator for dialogue sys-
tems. CoRR, abs/1608.07076.

Ondrej Dusek, Jekaterina Novikova, and Verena Rieser.
2018. Findings of the e2e nlg challenge. In Proceed-
ings of the 11th International Conference on Natural
Language Generation, pages 322-328. Association
for Computational Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. Creating Train-
ing Corpora for NLG Micro-Planning. In 55th an-
nual meeting of the Association for Computational
Linguistics (ACL), Vancouver, Canada.

Heng Gong, Xiaocheng Feng, Bing Qin, and Ting Liu.
2019. Table-to-text generation with effective hier-
archical encoder on three dimensions (row, column
and time). In EMNLP/IJCNLP.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P Xing. 2017. Toward
controlled generation of text. In Proceedings
of the 34th International Conference on Machine
Learning-Volume 70, pages 1587-1596. IMLR.org.

Alon Lavie and Abhaya Agarwal. 2007. Meteor: An
automatic metric for mt evaluation with high levels
of correlation with human judgments. In Proceed-
ings of the Second Workshop on Statistical Machine
Translation, StatMT ’07, pages 228-231, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

https://doi.org/10.3115/1118253.1118255
https://www.aclweb.org/anthology/E06-1040
https://www.aclweb.org/anthology/E06-1040
https://doi.org/10.18653/v1/D19-5602
https://doi.org/10.18653/v1/D19-5602
https://doi.org/10.18653/v1/D19-5602
https://doi.org/10.18653/v1/D19-5602
https://www.aclweb.org/anthology/C18-1107
https://www.aclweb.org/anthology/C18-1107
https://doi.org/10.18653/v1/W16-6626
https://doi.org/10.18653/v1/W16-6626
https://doi.org/10.18653/v1/W16-6626
https://doi.org/10.3115/v1/P15-1044
https://doi.org/10.3115/v1/P15-1044
http://arxiv.org/abs/1608.07076
http://arxiv.org/abs/1608.07076
http://arxiv.org/abs/1608.07076
http://aclweb.org/anthology/W18-6539
https://hal.inria.fr/hal-01623744
https://hal.inria.fr/hal-01623744
http://dl.acm.org/citation.cfm?id=1626355.1626389
http://dl.acm.org/citation.cfm?id=1626355.1626389
http://dl.acm.org/citation.cfm?id=1626355.1626389

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110-119, San Diego, California. Association
for Computational Linguistics.

Xiujun Li, Yun-Nung Chen, Lihong Li, Jianfeng Gao,
and Asli Celikyilmaz. 2017. End-to-end task-
completion neural dialogue systems. In Proceedings
of the Eighth International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 733-743, Taipei, Taiwan. Asian Federation of
Natural Language Processing.

Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang,
and Zhifang Sui. 2017. Table-to-text generation by
structure-aware seq2seq learning. In AAAL

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-

based neural machine translation. arXiv preprint
arXiv:1508.04025.

Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019.
Step-by-step: Separating planning from realization
in neural data-to-text generation. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 2267-2277, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Jekaterina Novikova, Ondfej Dusek, Amanda Cer-
cas Curry, and Verena Rieser. 2017a. Why we need
new evaluation metrics for nlg. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2241-2252. Asso-
ciation for Computational Linguistics.

Jekaterina Novikova, Ondiej Dusek, and Verena Rieser.
2017b. The e2e dataset: New challenges for end-
to-end generation. In Proceedings of the 18th An-
nual SIGdial Meeting on Discourse and Dialogue,
pages 201-206. Association for Computational Lin-
guistics.

Shereen Oraby, Vrindavan Harrison, Abteen Ebrahimi,
and Marilyn Walker. 2019. Curate and generate: A
corpus and method for joint control of semantics and
style in neural NLG. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 5938-5951, Florence, Italy. Asso-
ciation for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics.

292

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2019. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset.

Abigail See, Peter J Liu, and Christopher D Man-
ning. 2017. Get to the point: Summarization
with pointer-generator networks. arXiv preprint
arXiv:1704.04368.

Van-Khanh Tran and Le-Minh Nguyen. 2018. Adver-
sarial domain adaptation for variational neural lan-
guage generation in dialogue systems. In Proceed-
ings of the 27th International Conference on Com-
putational Linguistics, pages 1205-1217, Santa Fe,
New Mexico, USA. Association for Computational
Linguistics.

Marilyn Walker, Albry Smither, Shereen Oraby, Vrin-
davan Harrison, and Hadar Shemtov. 2018. Explor-
ing conversational language generation for rich con-
tent about hotels. In Proceedings of the Eleventh
International Conference on Language Resources
and Evaluation (LREC-2018), Miyazaki, Japan. Eu-
ropean Languages Resources Association (ELRA).

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic,
Lina Maria Rojas-Barahona, Pei hao Su, David
Vandyke, and Steve J. Young. 2016. Multi-domain
neural network language generation for spoken dia-
logue systems. In HLT-NAACL.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-
Hao Su, David Vandyke, and Steve Young. 2015. Se-
mantically conditioned Istm-based natural language
generation for spoken dialogue systems. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 1711-1721.
Association for Computational Linguistics.

Sam Wiseman, Stuart M Shieber, and Alexander M
Rush. 2017. Challenges in data-to-document gen-
eration. arXiv preprint arXiv:1707.08052.

Chenguang Zhu, Michael Zeng, and Xuedong Huang.
2019. Multi-task learning for natural language gen-
eration in task-oriented dialogue. In Empirical
Methods in Natural Language Processing (EMNLP).
ACL.

https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
https://www.aclweb.org/anthology/I17-1074
https://www.aclweb.org/anthology/I17-1074
https://doi.org/10.18653/v1/N19-1236
https://doi.org/10.18653/v1/N19-1236
http://aclweb.org/anthology/D17-1238
http://aclweb.org/anthology/D17-1238
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/P19-1596
https://doi.org/10.18653/v1/P19-1596
https://doi.org/10.18653/v1/P19-1596
http://aclweb.org/anthology/P02-1040
http://aclweb.org/anthology/P02-1040
http://arxiv.org/abs/1909.05855
http://arxiv.org/abs/1909.05855
http://arxiv.org/abs/1909.05855
https://www.aclweb.org/anthology/C18-1103
https://www.aclweb.org/anthology/C18-1103
https://www.aclweb.org/anthology/C18-1103
https://www.aclweb.org/anthology/L18-1628
https://www.aclweb.org/anthology/L18-1628
https://www.aclweb.org/anthology/L18-1628
https://doi.org/10.18653/v1/D15-1199
https://doi.org/10.18653/v1/D15-1199
https://doi.org/10.18653/v1/D15-1199

Appendix

A Service and Slot Descriptions

Events_1 The comprehensive portal to find and re-
serve seats at events near you

category Type of event

time Time when the event is scheduled to start

Events_ 2 Get tickets for the coolest concerts and
sports in your area

date Date of event

time Starting time for event

Media_1 A leading provider of movies for search-
ing and watching on-demand

title Title of the movie

genre Genre of the movie

Table 10: Services, slots and their descriptions. In bold-
face the service names, in verbatim the slots.

B Details of SER Errors

All of the errors made by Seq2Seq and CVAE are
deletion errors (constrained decoding prevents rep-
etitions/hallucinations). While using schema leads
to more deletions in GPT?2, it reduces repetitions
and hallucinations, leading to better SER.

SER| Delete Repeat Halluc.
Seq2Seq | MR 0.1602 | 0.1602 O 0
Schema| 0.2062 | 0.2062 0 0
CVAE MR 0.2469 | 0.2469 0 0
Schema| 0.2407 | 0.2407 O 0
GPT2 MR 0.1929 | 0.0791 0.0037 0.1101
Schema| 0.1810 | 0.0850 0.0020 0.0940

Table 11: Detailed analysis of slot errors.

C Seen vs. Unseen Domains

C.1 Data Distribution Plots

For the seen set in Figure 2a, we present the dis-
tribution of references both in training and test.
For the unseen sets in Figure 2b, we present only
test reference distribution (since there are no corre-
sponding train references).

C.2 Performance across Services

Table 8 shows the performance of each model
across all seen and partially-unseen test sets.

D Seq2Seq and CVAE Model Diagram

Figure 3 shows a model architecture diagram for
Seq2Seq and CVAE.

293

6000 % Refs in Train

Refs in Test
5000

4000
3000
2000

1000

V77
I

2% A
Y
V2%
22

V7
ZZA

N
%
N4
3
N/
(N
N
<,
o
N
o
N
4
N
.
N/

N 0 S S & & N &
S & & S S
& & 0 S %g&‘ B & < Q\z?
& &
<

(a) Distribution of refs in seen services.
2500 « Partially Unseen
m Fully Unseen
2000

1500
1000

500

/7 7//7///7//////;
V/////////;
/77

S, nmmmnnY,
)
.

%
N
%
Cp
Ny
"
%
A4
%
Y
%
N
(3
O/:?
?

2,
“,
%,
P
2
%'@I
7

D
&
o
&@

(b) Distribution of refs in partially/fully unseen services.

Figure 2: Distribution of references across services.

E Output Examples

Table 13 shows more model output examples.
Schema 1 shows correct outputs for all models.
Schema 2 shows a slot drop in CVAE, and Schema
3 shows incorrect outputs from Seq2Seq/CVAE for
the single fully-unseen domain, alarm-1.

SEQ2SEQ CVAE GPT2
Service % Test Refs BLEU SER | BLEU SER | BLEU SER |
events_1 19% 0.6168 0.0490 0.6126 0.0294 0.4682 0.0588
rentalcars_.1 18% 0.7486 0.1500 0.6645 0.1125 0.6173 0.1000
buses._1 15% 0.3831 0.1542 0.5035 0.1000 0.4016 0.0167
homes_1 9% 0.3672 0.0660 0.5132 0.1176 0.4836 0.0065
ridesharing_1 9% 0.6334 0.2292 0.6316 0.1667 0.62838 0.0000
hotels_1 8% 0.4414 0.0983 0.5094 0.0700 0.3405 0.0000
music_1 8% 0.6807 0.1111 0.8538 0.0278 0.6961 0.0000
travel_1 7% 0.4542 0.0175 0.4334 0.1053 0.3762 0.0000
weather_1 7% 0.6302 0.1528 0.7578 0.1111 0.5830 0.1667

(a) Seen services.

SEQ2SEQ CVAE GPT2
Service % Test Refs BLEU SER | BLEU SER | BLEU SER |
restaurants_2 24% 0.2466 0.2098 0.2126 0.3501 0.2297 0.0527
flights_3 18% 0.3193 0.4579 0.3481 0.5000 0.3008 0.7368
services_4 18% 0.5791 0.2197 0.3288 0.4013 0.5760 0.0851
hotels_4 17% 0.3601 0.2284 0.3381 0.2978 0.4173 0.1552
banks_2 10% 0.4305 0.2546 0.4578 0.2315 0.5049 0.3519
media_2 9% 0.3914 0.3218 0.3815 0.3218 0.3249 0.4483
movies_2 4% 0.3956 0.4028 0.3556 0.4444 0.3800 0.8472

(b) Partially-unseen services.

Table 12: Automatic evaluation metrics across seen and partially-unseen services (best in bold, worst in italic).

“$timel”

e - Ml - chn iwﬂﬂmﬂﬂ%
ry
Final Distribution PRI R Vocab Distribution *
¢ \

Context i (e |

vector : _/
Attention i P_gen :
Distribution Copy Mechamsm/ /

Target
Encoder Seq2Seq Template
Hidden Decoder
State
INFORM TIME $time1 2{‘ dtdC”
<sos> Booking a table ae
o _ ————;ﬂ”‘“ CVAE
) ' slot domain intent Natural @
domain act slot value description description description Language MR

Template i \‘: SquSeq & CVAE
Hidden {]
State | Booking a table at Stimel i mu var

Figure 3: Seq2seq and CVAE model architectures

294

[Schema 1] ACTIONS (MR): CONFIRM(leaving-date=$leaving-datel), CONFIRM(travelers=$travelersl)
Slot Desc: leaving-date: “date of bus leaving for journey”, travelers: “number of travelers for journey”
Service: buses-1 Service Desc: book bus journeys from the biggest bus network in the country
Intent: BuyBusTickets Intent Desc: buy tickets for a bus journey
Natural Language MR: please confirm that the leaving date is $leaving-datel.

please confirm that the travelers is $travelers].

Ref can you confirm once again that you need tickets for $travelersl people for the bus leaving on $leaving-datel.
Seq2Seq | please confirm the following details : you want to book $travelers| tickets on $leaving-datel .

CVAE please confirm : $travelers] tickets for the bus leaving on $leaving-datel .

GPT2 okay, it’s $travelers| tickets leaving $leaving-datel, is that right?

[Schema 2] ACTIONS (MR): INFORM(ride-fare= $ride-farel)
INFORM(approx-ride-duration=$approx-ride-durationl)

Slot Desc: ride-fare “total fare for taxi ride”, approx-ride-duration: “approximate duration of ride to the destination”

Service: ridesharing-1 Service Desc: on-demand taxi calling service

Intent: GetRide Intent Desc: call a taxi to head to a given destination

Natural Language MR: the ride fare is [$ride-farel]. the approximate ride duration is [$approx-ride-durationl .

Ref around $approx-ride-durationl minutes for $ride-farel.

Seq2Seq | around $approx-ride-durationl minutes for $ride-farel.

CVAE the cab is on the way . it will cost $ride-farel.

GPT2 the ride will be $ride-farel and is expected to last $approx-ride-durationl minutes.

[Schema 3] ACTIONS (MR): REQUEST(new-alarm-time=null)

Slot Desc: new-alarm-time: “time to set for the new alarm”

Service: alarm-1 Service Desc: Manage alarms by getting and setting them easily
Intent: AddAlarm Intent Desc: Set a new alarm

Natural Language MR: what [new alarm time] do you want?

Ref at what time, you want the alarm to be set?
Seq2Seq | what time do you want to go ?

CVAE what time would you like to go ?

GPT2 what time do you want to set the alarm?

Table 13: Example model outputs.

295

