
Proceedings of The 13th International Conference on Natural Language Generation, pages 148–157,
Dublin, Ireland, 15-18 December, 2020. c©2020 Association for Computational Linguistics

148

Market Comment Generation from Data with Noisy Alignments

Yumi Hamazono1,2 Yui Uehara2 Hiroshi Noji2
Yusuke Miyao3,2 Hiroya Takamura4,2 Ichiro Kobayashi1,2

1Ochanomizu University 2National Institute of Advanced Industrial Science and Technology
3The University of Tokyo 4Tokyo Institute of Technology

{hamazono.yumi, koba}@is.ocha.ac.jp
{yui.uehara, noji,takamura.hiroya}@aist.go.jp

yusuke@is.s.u-tokyo.ac.jp

Abstract

End-to-end models on data-to-text learn the
mapping of data and text from the aligned pairs
in the dataset. However, these alignments are
not always obtained reliably, especially for the
time-series data, for which real time comments
are given to some situation and theremight be a
delay in the comment delivery time compared
to the actual event time. To handle this issue
of possible noisy alignments in the dataset, we
propose a neural network model with multi-
timestep data and a copy mechanism, which al-
lows the models to learn the correspondences
between data and text from the dataset with
noisier alignments. We focus on generating
market comments in Japanese that are deliv-
ered each time an event occurs in the market.
The core idea of our approach is to utilizemulti-
timestep data, which is not only the latest mar-
ket price data when the comment is delivered,
but also the data obtained at several timesteps
earlier. On top of this, we employ a copy mech-
anism that is suitable for referring to the content
of data records in the market price data. We
confirm the superiority of our proposal by two
evaluation metrics and show the accuracy im-
provement of the sentence generation using the
time series data by our proposed method.

1 Introduction

In recent time, various industries such as finance,
pharmaceuticals and telecommunications have in-
creased opportunities to treat large-scale data.
Hence, there is an increasing demand to automati-
cally generate a text from large and complex data. In
recent studies, neural network-based models have
achieved significant progress on the data-to-text
which is a text generation task from input data
(Puzikov and Gurevych, 2018; Liu et al., 2018; Iso
et al., 2019).
One important issue in constructing a dataset

for data-to-text is to obtain the correct alignment

between data and text. It is not very problematic
when there is a clear correspondence between data
and text, for example, when the text is manually pro-
vided by an annotator for each input, including E2E
NLG Challenge dataset (Puzikov and Gurevych,
2018). However, this is often not a trivial prob-
lem in the wild, in particular for the application of
real-time text generation, such as sequential com-
ment generation on sports games (Taniguchi et al.,
2019) and stock markets (Murakami et al., 2017),
for which we can only obtain a loose alignment of
data and text. This problem has been taken into ac-
count in a classical task (Chen and Mooney, 2008),
but has been overlooked in the recent neural-based
models cited above.

In Murakami et al. (2017), for example, they con-
structed a dataset for market comment generation
in Japanese from a chart of stock price trends and
its market reports, wherein the alignments between
data and texts sometimes deviate. Figure 1 presents
examples of data which are a five-minute chart of
Nikkei 225 (Nikkei Stock Average) and comments
describing the chart trends. All of the (I) to (III)
comments are about an event at “9:00 am, 29th of
January”. However, since there is often a delay in
comment delivery time for an event (e.g., (II) and (I
II)), if a different movement occurs during this time
period, the expressions in comment may not exactly
reflect the movement at the delivery time. The word
“rebound” indicates a downward and then upward
movement on three points (the closing prices of the
last two days and the latest price). This is valid for
the prices at (I) and (II), but does not hold at (III)
because the latest price (17039.22 yen) is lower than
the last closing price (17041.45 yen). In addition,
the expression “gains 88 yen” is only valid at the
opening time (I) and is not valid at (II). To deal with
these inconsistencies, the models have to be aware
of these possible mismatch of data and text due
to the delay, but a simple encoder-decoder-based

149

Delivery time Price movement Comment (bold text: movement expression)

(I) 09:00 rebound
gained 86 yen

Nikkei stock average starts with rebound, gains 86 yen.

(II) 09:05 rebound
gained 22 yen

Nikkei stock average starts with rebound, gains 86 yen, a positive response
in high price of crude oil. The stock price of Toyota increased.

(III) 09:19 continuous fall
dropped 2 yen

Tosho begins with rebound. A positive response in high price of crude
oil, Fanuc share prices dropped significantly.

Figure 1: Nikkei 225 and market comments about an event at 9:00 am, 29th of January

model of Murakami et al. (2017), which does not
tell the difference between the event and delivery
times, may perform an undesirable generalization
between data and text.

In this study, we extend Murakami et al. (2017)’s
model with a new architecture to solve the prob-
lem due to the noisy alignments. The presented
architecture is a multi-timestep architecture, which
employs multiple input vectors to compensate the
lack of information about the actual event time,
treating it as a hidden variable and learning the cor-
respondences from the ambiguous data. Our model
employs a copymechanism to generate a price value
in a text, in which an attention weight to the time
can be regarded as an induced alignment between
the text and actual event time. The experimental
results reveal that our proposed model outperforms
the existing model in terms of the correctness of
market price movement expressions, in addition to
the BLEU scores.

2 Generating Market Comments

In this section, we explain the model proposed by
Murakami et al. (2017), which be used as a base
model. They proposed a model for generating a
market comment, which is a news headline about
the movement of the Nikkei 225, from the time-
series of the stock price of the Nikkei 225. Their

model is based on the encoder-decoder (Sutskever
et al., 2014).

2.1 Base Model
Murakami et al. (2017) use both a long-term vec-
tor xlong and a short-term vector xshort. To cap-
ture the long-term price movement, they use a
vector consisting of the closing prices of the "
preceding trading days represented as xlong =

(Glong, 1, Glong, 2, . . . , Glong,"). Similarly, to capture
the short-term price movement, they use a vector
consisting of the prices of # previous timesteps
on the five-minute chart, starting from the com-
ment delivery time (e.g., 10:00 am), represented
as xshort = (Gshort, 1, Gshort, 2, . . . , Gshort, #). Each of
these vectors undergoes the following two prepro-
cessing steps :

Gstd8 =
G8 − `
f

, (1)

Gnorm8 =
2 × Gmove

8
− (Ḡmax + Ḡmin)

Ḡmax − Ḡmin
, (2)

where G8 is the 8-th element of x. ` and f are the
mean and the standard deviation of the values in the
training data, respectively. Gmove

8
is defined to be

G8 − A8 , where A8 is the closing price of the previous
trading day. Ḡmax and Ḡmin are the maximum and
the minimum of Gmove, respectively. Equation (1)
is a standardization method and Equation (2) is a

150

normalization method for moving reference. By
applying these preprocessings to xlong and xshort,
we obtain xstd

long,x
norm
long , x

std
short, and xnorm

short .
In the encoding step, these vectors are passed

to multi-layer perceptrons (MLPs)1 to obtain the
vectors hstd

long, h
norm
long , h

std
short, and hnorm

short . These are
then concatenated as hlong = [hstd

long ; hnorm
long] and

hshort = [hstd
short ; hnorm

short]. These vectors are com-
bined to obtain the hidden statem of the encoder:

m = W< [hlong ; hshort] + b<. (3)

In the decoding step, Murakami et al. (2017) set
the initial hidden state s0 of the decoder asm above,
and use LSTM cells (Hochreiter and Schmidhuber,
1997). They further use additional vectors called
time embeddings t. To obtain t, time is discretized
into intervals of one hour (e.g., 9:00 am to 10:00
am), and an embedding is obtained for each interval;
9:10 am and 9:30 am are associated with the same
embedding. The time embedding of the interval,
wherein the delivery time of the comment falls into
is used as an additional input in each step of LSTM:

s8 = LSTM([t ; w8−1], s8−1). (4)

As in the standard LSTM decoder, this output is fed
into a linear layer, followed by a softmax layer to
calculate the next word probability.

2.2 Generalization Tags for Estimation of
Arithmetic Operations

Market comments often mention numerical values
including the market prices themselves and the
values obtained through arithmetic operations such
as difference and rounding. To allow the model to
generate numerical values with such computation
during decoding, Murakami et al. (2017) introduce
generalization tags (Table 1), which specify which
operation should be performed to obtain a value.
In Murakami et al. (2017), for simplicity, the input
value to these operations is fixed as the Gshort,1, the
first (latest) price at the delivery time, which is
converted to I and J in Table 1 (see caption).

However, this simplification ignores the possible
mismatch of the delivery and event times (Section 1).
We extend this method with a variant of a copy
mechanism (Section 3.2), in which the event time is

1Murakami et al. (2017) used MLPs, convolutional neu-
ral networks (CNNs) and long short-term memory networks
(LSTMs). We use MLPs in the encoder for our baseline model
because the differences of the performance were small in their
experiment.

Tag Arithmetic operation

<operation1> Return J
<operation2> Round down J to the nearest 10
<operation3> Round down J to the nearest 100
<operation4> Round up J to the nearest 10
<operation5> Round up J to the nearest 100
<operation6> Return I as it is
<operation7> Round down I to the nearest 100
<operation8> Round down I to the nearest 1,000
<operation9> Round down I to the nearest 10,000
<operation10> Round up I to the nearest 100
<operation11> Round up I to the nearest 1,000
<operation12> Round up I to the nearest 10,000

Table 1: Generalization tags and corresponding arith-
metic operations. I is defined as the latest price, and J
is defined as the difference between I and the closing
price of the previous trading day.

softly predicted with attention and each numerical
value is generated on demand during decoding with
an operation in Table 1.

3 Multi-timesteps for Time-series Data

Murakami et al. (2017)’s model put an assumption
that the event and delivery times are identical. This
assumption simplifies the task and thus Murakami
et al. (2017) propose a model with a basic encoder-
decoder architecture. However, due to the time gap
between the actual event time and delivery time,
this assumption is not realistic.
We extend the Murakami et al. (2017)’s model

with a multi-timestep architecture, aiming at solv-
ing that problem occurred by the noisy alignments.
Figure 2 presents our model architecture. To com-
pensating the lack of information caused by the
time gap mentioned above, we extend the encoder
with additional input vectors. Each additional vec-
tor corresponds to xshort starting from : preceding
timesteps instead of the delivery time. This allows
us to treat the actual event time as a latent variable.
On top of this, we introduce a copy mechanism with
attention in the decoder, which facilitates learning
correspondences between data and text from the
noisy training data.

3.1 Encoder with Multi-timesteps

For long-term stock prices, we use a long-term
vector xlong following Murakami et al. (2017). For
short-term stock prices, instead of xshort alone, we
use xshort-0step,. . . , xshort-=step which we abbreviate
as x0,. . . , x= for brevity. Each x: is a short-term
vector consisting of the stock prices of # timesteps,

151

Figure 2: Overview of Multi-timesteps for Time-series Data

which, instead of starting from the comment deliv-
ery time, starts from the time : steps prior to the
delivery time. When the delivery time is 10:00 am,
for example, since we use the five-minute chart,
our short-term vectors comprise of = + 1 vectors
corresponding to the vectors starting from 10:00
am, 9:55 am, 9:50 am, and so on.

We note that each interval of five minutes is not
simply associated with one value, but rather with
four different values: open (the price at the very
beginning of the interval), low (the lowest price in
the interval), high (the highest price in the interval),
and close (the price at the last of the interval).2
We encode these as four different vectors x:open ,
x:low , x:high , and x:close . Thus, there are in total
4(= + 1) − 1 vectors for short-term prices. In the
following, we use :̃ ∈ [0, 4(= + 1)) as an index for
these vectors.
Each of the input vectors undergoes the prepro-

cessing methods as Murakami et al. (2017). For
long-term vectors, we obtain xstd

long and x
norm
long in the

same way. Similarity, for each :̃ , we obtain xstd
:̃

and xnorm
:̃

from x:̃ . Given these, each MLP emits
the corresponding hidden states hlong and h:̃ .

2Murakami et al. (2017) use only the close prices. We use
four values instead since prices could largely move even in a
single interval.

Following Equation (3), we also obtain the en-
coder hidden state m with hlong and hshort. The
vector hshort depends on a sequence of h:̃ to which
an encoder maps the input data. It is computed as a
weighted sum of h:̃ as follows:

hshort =

4(=+1)−1∑̃
:=0

U:̃h:̃ . (5)

The weight U:̃ of each h:̃ is computed by:

U:̃ = exp(4 :̃)/
∑4(=+1)−1
9=0 exp(4 9). (6)

e = (40, · · · , 44(=+1)−1) is obtained by

MLP
(
[t ; a ; f0 ; h0 ; . . . ; f4(=+1)−1 ; h4(=+1)−1]

)
.

(7)

4 :̃ scores the importance ofx:̃ , based on the hidden
states h:̃ , time embedding vector t (Section 2.1),
and additional two kinds of vectors, five-minute time
embedding vectors f:̃ and article-type embedding
vector a.

f:̃ is an embedding to identify :̃ , which maps
from the starting time and the kind of price (e.g.,
open) to a vector. a is a vector obtained whether
the comment is regular or irregular. The motivation
to use these vectors is that an important x:̃ is

152

primarily determined by either the price history
(encoded by h:̃), or the delivery time (encoded by
f:̃), depending on the article type. For instance,
when the delivery time is the same as the market
opening time, that is, 9:00 am, and the comment
is a regular comment, then the comment usually
mentions the price at 9:00 am (e.g., “The opening
price is 15,430 yen.”). In this case, the importantx:̃
is primarily determined by the time encoded by f:̃ ;
that is, for regular comments, the event times are
rather fixed regardless of the variations in delivery
times. On the other hand, even if the delivery time
is the same as the market opening time, when the
comment is irregular, the comment mentions some
distinguished price movement (e.g. “The price is
over 100 yen higher than the last closing price.”)
rather than the mere price at 9:00 am. In this case,
the important x:̃ would be determined by the price
history itself. We expect these additional vectors to
provide a useful inductive bias for a model to learn
those distinctions.

3.2 Decoder with Copy Mechanism

We adapt a copy mechanism (Gu et al., 2016) in our
decoder to generate numerical values by attending
to the input. Recall that in the current task, the
values in the output text usually do not appear in
the input data (Section 2.2); rather, they can be
obtained by applying an arithmetic operation to the
certain value in the data.
We generate a numerical value by an extension

of a copy mechanism, wherein a value is generated
by applying one of the operations in Table 1 to
a data point G :̃ ,1, which is the first value (latest
price) of x:̃ . Denoting an arithmetic operation as
> ∈ {>?1, · · · , >?12}, the value is identified by a
pair (>, :̃). We reduce the generation of numerical
values to identification of these pairs, followed by
the execution of an operation.
We wish to obtain a probability distribution on

numerical values that are determined by (>, :̃). One
consideration for obtaining this is that there can be
multiple pairs of (>, :̃) that result in the same value.
For example, for an input G :̃ ,1 = I = 3200, >?6
>?7, and >?10 all result in the same value (3200).
In practice, we obtain a probability to generate a
numerical value F8 by a weighted sum of scores
for (>, :̃), for which >(G :̃ ,1) = F8 holds, according
to the obtained weights U:̃ in the encoder, which
we regard as attention. >(·) denotes execution
of operation > to the input. We note that unlike

the standard copy mechanism, we use the fixed
attention weights U:̃ throughout the decoder. This
is because, in a headline comment, which is our
target, the event to be mentioned would not change
throughout a single piece of text. In other words,
the important x:̃ would not change throughout a
comment.

Our model generates all numerical values in the
text with this copy mechanism. To do this, we
exclude numerical values from the vocabulary of
the model. To switch the copy mode and non-
copy mode, we add a special token “<PRICE>”,
which is inserted before every numerical value in
the training data and indicates that the next token
is a price value. Utilizing “<PRICE>”, we define
each conditional probability of generating target
word F8 at time 8 as:

?(F8 |F<8 ,m)

=

{
?copy(F8 |F<8 ,m), (F8−1 = “<PRICE>”)
?gen(F8 |F<8 ,m), (otherwise)

(8)

where ?gen(F8 |·) and ?copy(F8 |·) are obtained by
the generation mode and the copy mode, respec-
tively. This method is inspired by Pointer-generator
network introduced by See et al. (2017). These two
probabilities are defined as:

?gen(F8 |·) = [softmax(WEv8 + bE)]F8
(9)

?copy(F8 |·) =
∑

:̃ ,>:> (G:̃,1)=F8

@(:̃ , >) (10)

@(:̃ , >) = U:̃ · [softmax(W2c8 + b2)]> .
(11)

v8 and c8 are both obtained from the output of
decoder LSTM, s8 , at each step 8:

s8 = LSTM([t ; w8−1 ; q8−1], s8−1) (12)
v8 = Wℎs8 + bℎ (13)
c8 = MLP(s8). (14)

t is the time embedding defined in Section 2.1.
Comparing to Equation (4), we add q8 to the input
to the LSTM. Each element of q8 is @(:̃ , >). We add
this vector to properly propagate the information
about an applied arithmetic operation, which may
not be kept directly in s8 .

4 Experiments
4.1 Datasets
We used a five-minute chart of the Nikkei 225
from March 2013 to October 2016 as numerical

153

Data
Movement Expression

Total
None

Exist
Concord Diff

Train 3,522 11,172 341 15,035
Valid 378 1,346 35 1,759

Table 2: Statistics of the data

time-series data, which were collected from Thom-
son Reuters DataScope Select3. As market com-
ments, we used 18,489 headlines of Nikkei Quick
News (NQN) that describe the Nikkei 225 behavior.
They were provided by Nikkei, Inc. and written
in Japanese. We divided them into three parts on
the basis of the period of publication: 15,035 for
training (December 2010–October 2015), 1,759 for
validation (October 2015–April 2016) and 1,695
for testing (April–October 2016).

4.2 Experimental Settings

All MLPs in the model are three layers with hidden
dimension of 256. The decoder LSTM is a single
layer with hidden dimensions of 256. For the length
of short- and long-term vectors, we set " = 7 for
xlong and # = 62 for x:̃ , following Murakami et al.
(2017), changing the range of : by setting = ∈ [0, 6].
The embedding sizes of a word, five-minute tag f:̃ ,
article-tag a, and time tag t are 128, 80, 64, and
64, respectively. We trained the models for 150
epochs with the mini-batch size of 100, using Adam
(Kingma and Ba, 2015) optimizer with the initial
learning rate 1 × 10−4, and saved the parameters
every epoch, selecting the model with the highest
BLEU score on the validation dataset.

4.3 Evaluation Metrics

We conduct two types of evaluation: one is BLEU
(Papineni et al., 2002) to measure the matching
degree between the market comments written by
humans as references and the output comments
generated by the models, and the other is a new
evaluation metric that we created. The new metric
uses the matching between the market price move-
ment in the data and the movement expressions in
the comments. Using (x8 ,w6>;3

8
,w?A43

8
), which

are the 8-th sample of the input data, the market com-
ment written by humans, and the output comment
generated by the models, we define the following

3https://hosted.datascope.reuters.com/
DataScope/

variables:

<>E4C4GC (w) =

D?F0A3 (w ∈ Frise)
3>F=F0A3 (w ∈ Ffall)
#>=4 (>Cℎ4AF8B4)

<>E4(x) =

D?F0A3 (Latest Gmove > 0)
3>F=F0A3 (Latest Gmove < 0)
#>=4 (>Cℎ4AF8B4)

Cgold = {8 |<>E4C4GC (w6>;3

8
) = <>E4(x8)}

Cpred = {8 |<>E4C4GC (w?A43

8
) = <>E4(x8)}

Dgold = {8 |<>E4C4GC (w6>;3

8
) ≠ <>E4(x8)}

Dpred = {8 |<>E4C4GC (w?A43

8
) ≠ <>E4(x8)}

where Frise is {続伸 (continuous rise), 反発 (re-
bound),上げ (up / rise)},Ffall is {続落 (continuous
fall),反落 (fall back),下げ (down/fall)}, Gmove is
the same as Gmove

8
shown in Section 2.1, defined as

G − A, where A is the closing price of the previous
trading day. Using the above variables, we obtain
the following metrics:

Concord?A428B8>= =
|Cgold ∩Cpred |
|Cpred |

ConcordA420;; =
|Cgold ∩Cpred |
|Cgold |

Diff?A428B8>= =
|Dgold ∩Dpred |
|Dpred |

DiffA420;; =
|Dgold ∩Dpred |
|Dgold |

.

These metrics can be seen as a proxy for the
model’s ability to attend to an intermediate (not
latest) step according to the movement in the data.
To know the frequency of these concordances and
differences in the data, we count them in the training
and valid dataset, which we summarize in Table 2.

We evaluate the BLEU scores for both validation
and test sets, while we performed the correspon-
dence evaluation, which will be described below,
only for the validation set. We train models with
six different seeds for each setting and report the
macro averages on them.

4.4 Results
Table 3 summarizes the BLEU scores on the vali-
dation and test sets, and Table 4 presents the corre-
spondence evaluation on the validation set.

https://hosted.datascope.reuters.com/DataScope/
https://hosted.datascope.reuters.com/DataScope/

154

Valid Test Valid Test Valid Test
Baseline 21.37 21.30 - - - -
Multi-timesteps +Attention +Copy
= = 0 21.63 22.66 21.33 22.38 28.16 28.68

1 21.59 22.74 21.43 22.25 27.90 28.54
2 21.64 23.03 21.20 22.47 28.31 28.98
3 21.82 23.11 21.02 21.94 27.29 27.75
4 21.68 22.92 20.59 21.71 28.13 28.93
5 21.73 22.89 20.71 21.74 27.29 27.78
6 21.73 22.66 20.51 21.62 26.68 27.25

Table 3: BLEU (%)

According to the experimental results provided in
Table 3, our models mostly outperformed the base-
line, especiallywhen usedwith the copymechanism.
For the test set, our models always outperformed
the baseline. In particular, = = 2 with the copy
mechanism achieved the highest score, 7.68 points
improvement on the BLEU score compared to the
baseline (see the bold font in Table 3). Conversely,
the result shows that just adding attention to the
encoder (+Attention), keeping the decoder the same
as the baseline, is not helpful. It shows that simply
applying the attention mechanism does not enable
the model to obtain the correspondence between
data and text correctly, while the copy mechanism
certainly helps to obtain the correspondence. In
a comparison among the models using = = 6, in-
creasing the number of steps does not necessarily
contribute to improving the BLEU score.
Furthermore, Table 4 indicates that most of our

models outperformed the baseline. However, in the
same tendency as the BLEU score evaluation, this
result further reveals that increasing the number
of steps is not necessarily an important factor in
improving the score.

Figure 3 depicts distributions regarding the time
gap between the comment delivery time and the
event occurrence time. When we use = = 5, we
can cover 89.05% in training data and 94.07% in
validation set of their time gap data (i.e., sum of
an Irregular value and 0 to 5 of Regular values in
Figure 3). Alternatively, using more x:̃ would add
more noise, therefore, they would be related to the
transactions. According to Table 3, Table 4 and
Figure 3, using = = 3 or = = 4, covered around 80%
are considered as the best choice in this dataset.

Table 5 provides examples of the generated com-
ments where our model generated the correct move-
ment expression while the baseline generated an
incorrect expression (see, the bold font in Table 5).
Moreover, the method with copy mentioned the cor-

Figure 3: Data distribution regarding the time gap be-
tween the comment delivery time and the event occur-
rence time. First, we classified a human-written market
comment in the dataset into two types, whether it was a
regular comment (Regular) or not (Irregular) using the
expressions specific to regular comments. In the case
of a regular comment, it is classified by the time gap
between that event occurrence time and the comment
delivery time in five-minute increments, for example, 0
= from 0 min to 5 min gap, 1 = from 5 min to 10 min
gap.

rect numerical value, while the baseline generated
an incorrect numerical value. However, there is
another problem with the fluency. For instance, at
the expression of “in the higher -- yen range”,
the numerical value -- should be a round number,
e.g., round to the nearest 100, 1,000, or 10,000.
However, the model with the copy mechanism gen-
erates a specific number (see, the underline font in
Table 5)

5 Related Work

The task of generating text describing input data,
which is called data-to-text, has been worked on var-
ious domains, for instance weather forecasts (Belz,
2007; Angeli et al., 2010), healthcare (Portet et al.,
2009; Banaee et al., 2013), and sports (Liang et al.,
2009). Traditionally, data-to-text is divided into
two sub-problems (Kukich, 1983; Goldberg et al.,
1994): content selection, which is about “what
to say”, and surface realization, which is about
“how to say”. Moreover, Reiter and Dale (1997)
divides three modules, adding micro planning be-
tween the above sub-problems. In the early stage of
this task, surface realization is often realized using
templates (van Deemter et al., 2005) or statistically
learned models with hand-crafted features (Belz,
2008; Konstas and Lapata, 2012).
In recent times, various industries such as fi-

nance, pharmaceuticals, and telecommunications

155

Concord Diff Concord Diff Concord Diff
P R P R P R P R P R P R

Baseline 98.68 98.78 27.57 24.72 - - - - - - - -
Multi-timesteps +Attention +Copy
= = 0 98.61 98.94 41.00 33.93 98.90 99.08 51.35 45.28 98.85 99.25 53.90 42.61

1 98.77 99.02 46.03 40.52 98.76 99.28 56.83 41.91 98.81 99.02 45.86 39.80
2 98.79 98.47 40.66 46.13 98.99 98.78 45.00 49.74 98.71 99.06 47.08 38.56
3 98.82 98.61 43.12 46.20 98.93 98.87 44.65 46.25 98.73 98.95 45.38 38.79
4 98.88 98.86 46.58 47.05 98.80 98.44 30.60 36.29 98.68 98.68 36.46 36.06
5 98.88 98.91 44.13 43.47 98.69 98.14 27.88 34.92 98.57 98.57 34.04 31.54
6 98.80 98.70 41.88 43.43 98.70 97.11 25.54 38.74 98.46 98.81 32.35 26.17

Table 4: The correspondence evaluation on validation set (%, P=precision, R=recall)

Model Generated Comment Conc

Gold Nikkei opens with a continual rise.
The price is 17024 yen, 9 yen higher. ×
日経平均、続伸で始まる

9円高の17024円

Baseline Nikkei opens with a fall back. X
The price is 16900 yen level.
日経平均、反落で始まる 16900円台

Multi-timesteps
= = 3 Nikkei opens with a continual rise slightly. ×

日経平均、小幅続伸で始まる

+Attention Nikkei opens with a continual rise slightly. ×
日経平均、小幅続伸で始まる

+Copy Nikkei opens with a continual rise slightly. ×
The price is in the higher 17024 yen range.
日経平均、小幅続伸で始まる

17024円台後半

Table 5: Generated comment. The latest stock price
movement of comment delivery time is -48.91 yen, so
that <>E4(x) is 3>F=F0A3. Conc (concordance) row
shows whether the movement expression in the com-
ment matches the movement with the latest stock price
(X) or not (×).

have been increased providing opportunities to treat
various types of large-scale data, so that they are
interested in automatically learning a correspon-
dence relationship from data to text and generating
a description of this relationship. Therefore, re-
cent works have focused on generating text from
data with neural networks, that can solve the above
sub-tasks in one through. Especially the models,
which utilize an encoder-decoder model (Sutskever
et al., 2014) have proven to be useful (Mei et al.,
2016; Lebret et al., 2016). While text generation
by neural network can describe the text fluently,
they do not describe the exact entities or numbers.
Therefore, a copy mechanism (Vinyals et al., 2015;
Gu et al., 2016), which provides a way to directly
copy words from the input, has been utilized. By
these neural networks, the works such as condi-
tional language generation based on tables (Yang

et al., 2017), short biographies generation from
Wikipedia tables (Lebret et al., 2016; Chisholm
et al., 2017; Sha et al., 2018; Liu et al., 2018) and
sports scoreboards (Wiseman et al., 2017; Li and
Wan, 2018; Puduppully et al., 2019) are well per-
formed. Contrastingly, they can only generate the
superficial contents that appear in their input table,
and cannot generate contents that require arithmetic
operations.

However, Joulin and Mikolov (2015) and Nee-
lakantan et al. (2016) indicate that current neural
models have difficulties in learning arithmetic oper-
ations such as addition and comparisons by neural
program inductions. Thus, there have been some
methods to prepare the numerical values with arith-
metic operations in advance. Murakami et al. (2017)
post-process the price by extending the copy mech-
anism and replacing numerical values with defined
arithmetic operations after generation. Nie et al.
(2018) utilizes information from pre-computed op-
erations on raw data to consider incorporating the
facts that can be inferred from the input data to
guide the generation process. Our model prepares
numerical values with defined arithmetic operations
as Murakami et al. (2017) for copy and that copy
target is guided by encoded input.

6 Conclusion

In this paper, we have proposed an encoder-decoder
model with multi-timestep data and a copy mech-
anism for generating the market comment from
data with the noisy alignments. Both BLEU scores
and our proposal evaluation showed the accuracy
of sentence generation with time-series data has
been improved by our proposed method, especially
utilizing a copy mechanism.

156

Acknowledgements

This paper is based on results obtained from projects
commissioned by the New Energy and Industrial
Technology Development Organization (NEDO)
JPNP20006 and JPNP15009, and JSPS KAKENHI
Grant Number JP20H04217.

References
Gabor Angeli, Percy Liang, and Dan Klein. 2010. A

simple domain-independent probabilistic approach
to generation. InProceedings of the 2010Conference
on Empirical Methods in Natural Language Process-
ing, pages 502–512, Cambridge, MA. Association
for Computational Linguistics.

Hadi Banaee, Mobyen Uddin Ahmed, and Amy Loutfi.
2013. Towards NLG for physiological data monitor-
ing with body area networks. In Proceedings of the
14th European Workshop on Natural Language Gen-
eration, pages 193–197, Sofia, Bulgaria. Association
for Computational Linguistics.

Anja Belz. 2007. Probabilistic generation of weather
forecast texts. In Human Language Technologies
2007: The Conference of the North American Chap-
ter of the Association for Computational Linguistics;
Proceedings of theMain Conference, pages 164–171,
Rochester, NewYork. Association for Computational
Linguistics.

Anja Belz. 2008. Automatic generation of weather
forecast texts using comprehensive probabilistic
generation-space models. Natural Language Engi-
neering, 14(4):431–455.

David L. Chen and Raymond J. Mooney. 2008. Learn-
ing to sportscast: A test of grounded language ac-
quisition. In Proceedings of the 25th International
Conference on Machine Learning, ICML ’08, page
128–135, NewYork, NY, USA. Association for Com-
puting Machinery.

Andrew Chisholm, Will Radford, and Ben Hachey.
2017. Learning to generate one-sentence biogra-
phies from Wikidata. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 1, Long
Papers, pages 633–642, Valencia, Spain. Association
for Computational Linguistics.

Kees van Deemter, Mariet Theune, and Emiel Krahmer.
2005. Real versus template-based natural language
generation: A false opposition? Computational Lin-
guistics, 31:15–24.

EliGoldberg, NorbertDriedger, andRichard IKittredge.
1994. Using natural-language processing to produce
weather forecasts. IEEE Expert, 9(2):45–53.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in

sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1631–1640, Berlin, Germany. Association for
Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Hayate Iso, Yui Uehara, Tatsuya Ishigaki, Hiroshi
Noji, Eiji Aramaki, Ichiro Kobayashi, YusukeMiyao,
Naoaki Okazaki, andHiroya Takamura. 2019. Learn-
ing to select, track, and generate for data-to-text. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2102–
2113, Florence, Italy. Association for Computational
Linguistics.

Armand Joulin and Tomas Mikolov. 2015. Inferring al-
gorithmic patterns with stack-augmented recurrent
nets. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances
in Neural Information Processing Systems 28, pages
190–198. Curran Associates, Inc.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Ioannis Konstas and Mirella Lapata. 2012. Unsuper-
vised concept-to-text generation with hypergraphs.
In Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 752–761, Montréal, Canada. Association for
Computational Linguistics.

Karen Kukich. 1983. Design of a knowledge-based
report generator. In 21st Annual Meeting of the As-
sociation for Computational Linguistics, pages 145–
150, Cambridge, Massachusetts, USA. Association
for Computational Linguistics.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1203–1213, Austin,
Texas. Association for Computational Linguistics.

Liunian Li and Xiaojun Wan. 2018. Point precisely:
Towards ensuring the precision of data in generated
texts using delayed copy mechanism. In Proceed-
ings of the 27th International Conference on Com-
putational Linguistics, pages 1044–1055, Santa Fe,
New Mexico, USA. Association for Computational
Linguistics.

Percy Liang, Michael Jordan, and Dan Klein. 2009.
Learning semantic correspondences with less super-
vision. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language

https://www.aclweb.org/anthology/D10-1049
https://www.aclweb.org/anthology/D10-1049
https://www.aclweb.org/anthology/D10-1049
https://www.aclweb.org/anthology/W13-2127
https://www.aclweb.org/anthology/W13-2127
https://www.aclweb.org/anthology/N07-1021
https://www.aclweb.org/anthology/N07-1021
https://doi.org/10.1017/S1351324907004664
https://doi.org/10.1017/S1351324907004664
https://doi.org/10.1017/S1351324907004664
https://doi.org/10.1145/1390156.1390173
https://doi.org/10.1145/1390156.1390173
https://doi.org/10.1145/1390156.1390173
https://www.aclweb.org/anthology/E17-1060
https://www.aclweb.org/anthology/E17-1060
https://doi.org/10.1162/0891201053630291
https://doi.org/10.1162/0891201053630291
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/P19-1202
https://doi.org/10.18653/v1/P19-1202
http://papers.nips.cc/paper/5857-inferring-algorithmic-patterns-with-stack-augmented-recurrent-nets.pdf
http://papers.nips.cc/paper/5857-inferring-algorithmic-patterns-with-stack-augmented-recurrent-nets.pdf
http://papers.nips.cc/paper/5857-inferring-algorithmic-patterns-with-stack-augmented-recurrent-nets.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/N12-1093
https://www.aclweb.org/anthology/N12-1093
https://doi.org/10.3115/981311.981340
https://doi.org/10.3115/981311.981340
https://doi.org/10.18653/v1/D16-1128
https://doi.org/10.18653/v1/D16-1128
https://www.aclweb.org/anthology/C18-1089
https://www.aclweb.org/anthology/C18-1089
https://www.aclweb.org/anthology/C18-1089
https://www.aclweb.org/anthology/P09-1011
https://www.aclweb.org/anthology/P09-1011

157

Processing of the AFNLP, pages 91–99, Suntec, Sin-
gapore. Association for Computational Linguistics.

Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang,
and Zhifang Sui. 2018. Table-to-text generation by
structure-aware seq2seq learning. In Proceedings
of the Thirty-Second AAAI Conference on Artificial
Intelligence.

Hongyuan Mei, Mohit Bansal, and Matthew R. Walter.
2016. What to talk about and how? selective gen-
eration using LSTMs with coarse-to-fine alignment.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 720–730, San Diego, California. Association
for Computational Linguistics.

Soichiro Murakami, Akihiko Watanabe, Akira
Miyazawa, Keiichi Goshima, Toshihiko Yanase, Hi-
roya Takamura, and Yusuke Miyao. 2017. Learning
to generate market comments from stock prices. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1374–1384, Vancouver, Canada.
Association for Computational Linguistics.

Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever.
2016. Neural programmer: Inducing latent pro-
grams with gradient descent. In 4th International
Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Con-
ference Track Proceedings.

Feng Nie, Jinpeng Wang, Jin-Ge Yao, Rong Pan,
and Chin-Yew Lin. 2018. Operation-guided neu-
ral networks for high fidelity data-to-text genera-
tion. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3879–3889, Brussels, Belgium. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

François Portet, Ehud Reiter, Albert Gatt, Jim Hunter,
Somayajulu Sripada, Yvonne Freer, and Cindy Sykes.
2009. Automatic generation of textual summaries
from neonatal intensive care data. Artificial Intelli-
gence, 173(7):789 – 816.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019.
Data-to-text generation with entity modeling. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2023–
2035, Florence, Italy. Association for Computational
Linguistics.

Yevgeniy Puzikov and IrynaGurevych. 2018. E2ENLG
challenge: Neural models vs. templates. In Proceed-
ings of the 11th International Conference on Natural

Language Generation, pages 463–471, Tilburg Uni-
versity, The Netherlands. Association for Computa-
tional Linguistics.

Ehud Reiter and Robert Dale. 1997. Building applied
natural language generation systems. Natural Lan-
guage Engineering, 3(1):57–87.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Lei Sha, Lili Mou, Tianyu Liu, Pascal Poupart, Sujian
Li, Baobao Chang, and Zhifang Sui. 2018. Order-
planning neural text generation from structured data.
In Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
3104–3112. Curran Associates, Inc.

Yasufumi Taniguchi, Yukun Feng, Hiroya Takamura,
andManabuOkumura. 2019. Generating live soccer-
match commentary from play data. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 7096–7103.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 28, pages 2692–2700. Curran Associates,
Inc.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263, Copenhagen, Denmark. Association for
Computational Linguistics.

ZichaoYang, Phil Blunsom, ChrisDyer, andWangLing.
2017. Reference-aware language models. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1850–
1859, Copenhagen, Denmark. Association for Com-
putational Linguistics.

https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16599
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16599
https://doi.org/10.18653/v1/N16-1086
https://doi.org/10.18653/v1/N16-1086
https://doi.org/10.18653/v1/P17-1126
https://doi.org/10.18653/v1/P17-1126
http://arxiv.org/abs/1511.04834
http://arxiv.org/abs/1511.04834
https://doi.org/10.18653/v1/D18-1422
https://doi.org/10.18653/v1/D18-1422
https://doi.org/10.18653/v1/D18-1422
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/https://doi.org/10.1016/j.artint.2008.12.002
https://doi.org/https://doi.org/10.1016/j.artint.2008.12.002
https://doi.org/10.18653/v1/P19-1195
https://doi.org/10.18653/v1/W18-6557
https://doi.org/10.18653/v1/W18-6557
https://doi.org/10.1017/S1351324997001502
https://doi.org/10.1017/S1351324997001502
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16203
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16203
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://doi.org/10.1609/aaai.v33i01.33017096
https://doi.org/10.1609/aaai.v33i01.33017096
http://papers.nips.cc/paper/5866-pointer-networks.pdf
https://doi.org/10.18653/v1/D17-1239
https://doi.org/10.18653/v1/D17-1197

